王正家 何博 李濤 李明 何濤
關(guān)鍵詞: 無刷直流電機; 調(diào)速系統(tǒng); 初始比例值優(yōu)化; 模糊自適應(yīng)PI控制算法; 仿真; 動態(tài)性能
中圖分類號: TN876?34; TM33 ? ? ? ? ? ? ? ? ? ?文獻標識碼: A ? ? ? ? ? ? ? ? ? ? ?文章編號: 1004?373X(2019)01?0139?04
Abstract: Since the traditional PI control algorithm based speed control system of brushless DC motor (BLDCM) has low control precision and poor anti?jamming performance, a fuzzy adaptive PI control algorithm based on initial proportionality value optimization is presented, and an initial proportionality value optimization method is proposed. The mathematical model of dual closed?loop (current and speed) speed control system of BLDCM is built. The fuzzy self?adaptive PI control is carried out for speed loop. The system is designed and simulated with Matlab/Simulink. The simulation results of traditional PI algorithm, common fuzzy adaptive PI algorithm and optimized fuzzy adaptive PI algorithm are compared. The results show that the optimized fuzzy adaptive PI control algorithm has better dynamic performance and control effect for BLDCM speed control system.
Keywords: brushless DC motor; speed control system; initial proportionality value optimization; fuzzy adaptive PI control algorithm; simulation; dynamic performance
無刷直流電機(BLDCM)采用逆變器和轉(zhuǎn)子位置傳感器組成的電子換向器,替代機械換向器和電刷,既具有優(yōu)良的調(diào)速性能,又克服了傳統(tǒng)直流電機機械換向帶來的諸多問題。但是BLDCM調(diào)速系統(tǒng)是一種復雜的控制系統(tǒng),具有非線性、多變量和強耦合等電氣特征,采用傳統(tǒng)PI控制算法難以滿足調(diào)速系統(tǒng)的動態(tài)性能要求[1]。
傳統(tǒng)PI控制算法的調(diào)節(jié)過程性能取決于PI參數(shù)的整定情況,系統(tǒng)在各個運行狀態(tài)下始終保持參數(shù)不變將導致運行效果不佳。為了使BLDCM調(diào)速系統(tǒng)具有更好的快速響應(yīng)性、穩(wěn)定性和自適應(yīng)性,國內(nèi)外學者將一些智能控制算法運用到BLDCM調(diào)速系統(tǒng)的控制中,諸如遺傳算法、神經(jīng)網(wǎng)絡(luò)和模糊控制等。其中,模糊控制是最為常見的方法之一,具有自適應(yīng)性強、實時性高、易于理解和實現(xiàn)等優(yōu)點[2]。
本文在分析BLDCM特征的基礎(chǔ)上,結(jié)合傳統(tǒng)PI控制算法和模糊控制算法各自的優(yōu)勢,并優(yōu)化初始比例值,提出新的模糊自適應(yīng)PI控制算法,對BLDCM進行雙閉環(huán)仿真系統(tǒng)研究,并對比分析了傳統(tǒng)PI、普通模糊自適應(yīng)PI和優(yōu)化后模糊自適應(yīng)PI三種控制算法的仿真結(jié)果。
本文針對BLDCM為兩相導通星形三相六狀態(tài)的情形,對其數(shù)學模型和電磁轉(zhuǎn)矩特性進行分析。假設(shè)電機定子空間上均勻排布,完全對稱;電樞繞組連續(xù)且均勻分布在定子內(nèi)表面;轉(zhuǎn)子永磁體產(chǎn)生的氣隙磁場近似為方波;磁路不飽和,且不考慮相關(guān)損耗;換相、齒槽及電樞反應(yīng)等影響均不予考慮。因為BLDCM三相繞組采用星形連接,有[ia+ib+ic=0],則三相繞組的電壓平衡方程式[3]為:
由圖5可以看出,在參考轉(zhuǎn)速為1 000 r/min,使用優(yōu)化后模糊自適應(yīng)PI控制的情況下,當空載啟動時,速度曲線響應(yīng)最快,調(diào)節(jié)時間最短,超調(diào)量幾乎沒有;在負載突變時,轉(zhuǎn)速波動大小相對于傳統(tǒng)PI控制和普通模糊自適應(yīng)PI控制明顯減小。證明優(yōu)化后模糊自適應(yīng)PI控制能夠使調(diào)速系統(tǒng)具有更好的動態(tài)性能,抗干擾能力更強。
由圖6可以看出,當設(shè)定轉(zhuǎn)速變化時,傳統(tǒng)PI和普通模糊自適應(yīng)PI控制下的轉(zhuǎn)速響應(yīng)超調(diào)量都約為8.3%,而優(yōu)化后模糊自適應(yīng)PI控制下的超調(diào)量下降至2.7%,且調(diào)節(jié)時間也由前兩者的0.13 s和0.11 s減小至0.08 s,使調(diào)速系統(tǒng)具有更快的轉(zhuǎn)速響應(yīng)和較小的超調(diào)量。
由此可見,當BLDCM調(diào)速系統(tǒng)受到外部負載擾動或突然改變設(shè)定轉(zhuǎn)速時,本文所設(shè)計的基于初始比例值優(yōu)化的模糊自適應(yīng)PI控制器能夠使系統(tǒng)具有更強的抗干擾能力、更快的響應(yīng)速度和更好的自適應(yīng)性。
仿真與對比實驗分析表明,轉(zhuǎn)速響應(yīng)波形與理論分析相符,系統(tǒng)運行穩(wěn)定、可靠。較傳統(tǒng)PI和普通模糊自適應(yīng)PI兩種控制算法而言,本文提出的新的模糊自適應(yīng)PI控制算法優(yōu)化了初始比例值[KP0,]通過在線自調(diào)整其控制參數(shù)應(yīng)用到BLDCM調(diào)速系統(tǒng)中,提高了系統(tǒng)的響應(yīng)性、抗干擾能力以及自適應(yīng)性。同時,該模糊自適應(yīng)PI控制算法實現(xiàn)簡單,不僅為今后分析無刷直流電機和對其控制策略的研究提供了新的方法,且在一定程度上縮短了開發(fā)周期,具有良好的應(yīng)用價值。
參考文獻
[1] 吳娉婷,魏國亮,王永雄.基于無傳感器的BLDCM模糊自適應(yīng)控制[J].電子科技,2015,28(10):119?122.
WU Pingting, WEI Guoliang, WANG Yongxiong. Fuzzy adaptive control of sensorless brushless DC motor [J]. Electronic science & techology, 2015, 28(10): 119?122.
[2] 程聲烽,程小華.神經(jīng)網(wǎng)絡(luò)在無刷直流電機控制系統(tǒng)中的應(yīng)用[J].電機與控制應(yīng)用,2014,41(4):12?15.
CHENG Shengfeng, CHENG Xiaohua. Summary for applications of neural networks in brushless DC motor control systems [J]. Electric machines & control application, 2014, 41(4): 12?15.
[3] 雷金莉.無刷直流電機模糊PI控制系統(tǒng)建模與仿真[J].現(xiàn)代電子技術(shù),2012,35(6):161?163.
LEI Jinli. Modeling and simulation of fuzzy?PI control system for brushless DC motors [J]. Modern electronics technique, 2012, 35(6): 161?163.
[4] 王葳,張永科,劉鵬鵬,等.無刷直流電機模糊PID控制系統(tǒng)研究與仿真[J].計算機仿真,2012,29(4):196?199.
WANG Wei, ZHANG Yongke, LIU Pengpeng, et al. Study and simulation of fuzzy?PID control system of BLDCM [J]. Computer simulation, 2012, 29(4): 196?199.
[5] 林聰,于躍.無刷直流電機模糊PI控制算法研究[J].輕工機械,2017,35(3):52?55.
LIN Cong, YU Yue. Research on fuzzy PI control algorithm for BLDCM [J]. Light industry machinery, 2017, 35(3): 52?55.
[6] 王霞,朱景偉.基于模糊PI控制的無刷直流電機調(diào)速系統(tǒng)[J].電氣傳動,2014,44(1):63?67.
WANG Xia, ZHU Jingwei. Speed control system of brushless DC motor based on fuzzy PI regulator [J]. Electric drive, 2014, 44(1): 63?67.
[7] 劉慧博,王靜,吳彥合.無刷直流電機模糊自適應(yīng)PID控制研究與仿真[J].控制工程,2014,21(4):583?587.
LIU Huibo, WANG Jing, WU Yanhe. Study and simulation of fuzzy adaptive PID control of brushless DC motor [J]. Control engineering of China, 2014, 21(4): 583?587.
[8] 劉金琨.先進PID控制Matlab仿真[M].4版.北京:電子工業(yè)出版社,2016:299?301.
LIU Jinkun. ?Advanced PID control Matlab simulation [M]. 4th ed. Beijing: Publishing House of Electronics Industry, 2016: 299?301.
[9] 溫佳斌,麻宸偉.無刷直流電機模糊PI控制系統(tǒng)設(shè)計[J].電機與控制學報,2016,20(3):102?108.
WEN Jiabin, MA Chenwei. Design of fuzzy PI control system for brushless DC motor [J]. Electric machines and control, 2016, 20(3): 102?108.
[10] 陳忠華,康立乾,王洋.直流調(diào)速系統(tǒng)中常規(guī)PI與模糊PI控制器的比較[J].計算機系統(tǒng)應(yīng)用,2012,21(8):80?84.
CHEN Zhonghua, KANG Liqian, WANG Yang. Comparison between conventional PI controller and fuzzy PI controller in the DC drive system [J]. Computer systems & applications, 2012, 21(8): 80?84.
[11] 付子義,邢陽.無刷直流電機的變論域模糊自適應(yīng)控制[J].計算機仿真,2015,32(5):336?339.
FU Ziyi, XING Yang. Brushless DC motor control based on variable universe fuzzy adaptive PID [J]. Computer simulation, 2015, 32(5): 336?339.
[12] 王曉遠,傅濤.基于模糊RBF神經(jīng)網(wǎng)絡(luò)的無刷直流電機控制[J].微電機,2015,48(11):33?36.
WANG Xiaoyuan, FU Tao. Brushless DC motor control system based on fuzzy RBF neural network [J]. Micromotors, 2015, 48(11): 33?36.