張馨月,王寅,陳健,陳安吉,王莉穎,郭曉穎,牛雅酈,張星宇,陳利東,高強(qiáng)
?
水分和氮素對(duì)玉米苗期生長(zhǎng)、根系形態(tài)及分布的影響
張馨月,王寅,陳健,陳安吉,王莉穎,郭曉穎,牛雅酈,張星宇,陳利東,高強(qiáng)
(吉林農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院/吉林省商品糧基地土壤資源可持續(xù)利用重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)春 130118)
【目的】東北地區(qū)春旱頻發(fā)嚴(yán)重影響玉米出苗與苗期生長(zhǎng),明確水分、氮素對(duì)玉米苗期生長(zhǎng)和根系發(fā)育的影響及其耦合效應(yīng),可為東北春玉米水、氮調(diào)控措施的優(yōu)化提供依據(jù)?!痉椒ā?016—2017連續(xù)2年設(shè)置水分、氮素兩因素盆栽試驗(yàn),土壤相對(duì)含水量設(shè)4個(gè)水平,分別為重度干旱(W0,30%)、適度干旱(W1,50%)、水分適宜(W2,70%)和水分過(guò)量(W3,90%);施氮量設(shè)3個(gè)水平,分別為不施氮(N0,0)、低氮(N1,0.12 g N·kg-1土)和高氮(N2,0.24 g N·kg-1土)?!窘Y(jié)果】水分、氮素均顯著影響玉米苗期的植株生長(zhǎng)、根系發(fā)育、氮素吸收與利用,且兩因素對(duì)植株干重、根系形態(tài)、吸氮量和氮肥利用率交互作用顯著。土壤水分虧缺或過(guò)量均抑制了植株生長(zhǎng)、干物質(zhì)累積、根系發(fā)育和氮素吸收。W0處理的負(fù)面影響最為嚴(yán)重,其地上部干重、根系干重和植株吸氮量與W2處理相比分別降低55.5%、60.1%和47.4%,氮肥利用率下降6.4個(gè)百分點(diǎn),根長(zhǎng)和根表面積分別減少58.2%和59.5%。施氮顯著促進(jìn)玉米苗期植株生長(zhǎng)與氮素吸收,降低根冠比,且不同水分條件下氮肥效應(yīng)及對(duì)根系發(fā)育的影響存在明顯差異。水分適宜條件下施氮促進(jìn)根系生長(zhǎng),顯著增加根長(zhǎng)、根表面積和根體積,植株干重和吸氮量增幅最高。干旱脅迫條件下施氮抑制了根系發(fā)育,顯著降低根長(zhǎng)和根表面積,氮肥效應(yīng)偏低。水分過(guò)量條件下施氮改善根系生長(zhǎng),但施氮效應(yīng)仍低于W2處理。各水分條件下,N1處理的根長(zhǎng)和根表面積均高于N2處理,而體積接近或更小,說(shuō)明低氮增加了細(xì)根的比例。水分、氮素不僅顯著影響根系形態(tài),也導(dǎo)致根系空間分布出現(xiàn)明顯差異。干旱脅迫促進(jìn)根系下扎,增加深層土壤的根長(zhǎng)分布,W0和W1處理0—12 cm土層根長(zhǎng)比例相比W2處理分別下降11.0和8.3個(gè)百分點(diǎn),而24—36 cm土層分別提高9.5和6.9個(gè)百分點(diǎn)。與干旱脅迫相反,水分過(guò)量趨向于增加根系在表層土壤的聚集。施氮顯著促進(jìn)表層土壤的根系分布,N1和N2處理0—12 cm土層根長(zhǎng)比例相比N0處理分別增加16.3和13.7個(gè)百分點(diǎn),而24—36 cm土層分別下降11.5和12.5個(gè)百分點(diǎn)。所有水-氮處理中,W1N1處理根系的空間分布最為均衡。【結(jié)論】水分、氮素對(duì)玉米苗期生長(zhǎng)和根系發(fā)育有顯著的耦合效應(yīng),適宜的水、氮措施可優(yōu)化根系形態(tài)與空間分布,增加植株干重和氮素吸收利用。春玉米生產(chǎn)中建議降低氮肥基施用量以發(fā)揮水氮耦合效應(yīng),促進(jìn)根系下扎和細(xì)根增殖,提高植株耐旱性和氮肥利用率。
玉米;水分;氮素;根冠比;根系形態(tài);根系分布
【研究意義】東北地區(qū)是我國(guó)玉米主產(chǎn)區(qū)和重要的商品糧基地,2016年黑龍江、吉林和遼寧三省玉米種植面積和總產(chǎn)量分別占全國(guó)的30.3%和33.8%,在全國(guó)玉米生產(chǎn)和糧食供應(yīng)中占有重要地位[1]。該地區(qū)春玉米種植屬典型的雨養(yǎng)農(nóng)業(yè)系統(tǒng),降水不足導(dǎo)致的干旱脅迫是限制玉米生產(chǎn)的主要環(huán)境因素,常常導(dǎo)致玉米受災(zāi)減產(chǎn)[2-4]。近五年除2016年降雨較多外,其余年份東北地區(qū)均遭遇大面積干旱。其中,2014年8月嚴(yán)重的夏伏旱導(dǎo)致遼寧、吉林近3.33×106hm2農(nóng)田受旱,玉米總產(chǎn)量較2013年減產(chǎn)超過(guò)4×106t。本年度(2018年)4月中旬至5月下旬,吉林中西部、遼寧大部地區(qū)降水普遍減少一半以上,部分嚴(yán)重地區(qū)甚至不足往年同期的20%,導(dǎo)致玉米播種和出苗受到極大影響,全面減產(chǎn)幾成定局。研究顯示,東北地區(qū)未來(lái)增溫趨勢(shì)明顯,干旱發(fā)生頻率將大幅增加[3, 5]。因此,急需加強(qiáng)春玉米抗旱減災(zāi)的栽培與施肥技術(shù)研究以應(yīng)對(duì)日益嚴(yán)重的干旱脅迫,保障高產(chǎn)穩(wěn)產(chǎn)?!厩叭搜芯窟M(jìn)展】東北地區(qū)春玉米不同生長(zhǎng)階段,吐絲期干旱對(duì)產(chǎn)量造成的影響最為嚴(yán)重,而苗期干旱發(fā)生的頻率最高,“十年九春旱”極大影響了玉米出苗和苗期生長(zhǎng)[4, 6]。研究表明,苗期干旱脅迫顯著降低玉米葉片的光合能力和電子傳遞速率,抑制幼苗營(yíng)養(yǎng)生長(zhǎng),嚴(yán)重時(shí)甚至對(duì)后期生殖生長(zhǎng)造成不利影響[7-9]。但是,適度的苗期干旱可改變根系形態(tài),并提高植株滲透調(diào)節(jié)、碳氮代謝和酶促防御等方面能力,對(duì)后期生長(zhǎng)具有補(bǔ)償和激發(fā)作用[10-12]。由此,一些學(xué)者提出了調(diào)虧灌溉、交替灌溉、根區(qū)灌溉等節(jié)水灌溉技術(shù),通過(guò)不同灌溉措施人為創(chuàng)造適度的土壤干旱條件以發(fā)揮“煉苗”作用,提高植株耐旱性以促進(jìn)后期生長(zhǎng),從而提高水分利用效率[13-17]。施用氮肥是促進(jìn)玉米生長(zhǎng)和獲得高產(chǎn)的重要措施,但東北玉米生產(chǎn)中農(nóng)戶普遍過(guò)量施氮且大多為一次性基施,極易造成苗期旺長(zhǎng)、氮素?fù)p失及環(huán)境污染[18-21]。已有研究顯示,合理施氮可以促進(jìn)干旱條件下作物根系生長(zhǎng),提高根系活力和水肥吸收能力,增強(qiáng)植株抗性,從而減輕或恢復(fù)由于干旱脅迫而造成的不利影響[22-24]。但是,不同土壤水分條件下氮素可能發(fā)揮不同的作用。Clay等[25]研究發(fā)現(xiàn),水分充足、重度干旱條件下施氮對(duì)小麥生長(zhǎng)分別表現(xiàn)出正向和負(fù)向的調(diào)節(jié)作用,而輕度干旱條件下無(wú)明顯影響。夏玉米上的研究顯示,氮肥作用受控于土壤水分狀況,干旱限制了氮肥的施用效果,導(dǎo)致根系生物量和生理特性下降,而適度補(bǔ)充灌水則增強(qiáng)了氮肥作用,促進(jìn)根系生長(zhǎng)并改善了生理特性[26]??梢姡趾偷貙?duì)作物的生長(zhǎng)發(fā)育具有復(fù)雜的交互作用,通過(guò)合理的水、氮調(diào)控發(fā)揮其耦合效應(yīng)是促進(jìn)作物生長(zhǎng)、提高耐旱性的重要技術(shù)途徑?!颈狙芯壳腥朦c(diǎn)】水分和氮素對(duì)玉米植株生長(zhǎng)、生理特性和產(chǎn)量形成等方面已有較多研究,但針對(duì)苗期階段的研究還相對(duì)較少,尤其是對(duì)根系生長(zhǎng)、形態(tài)和空間分布的影響還不清楚?!緮M解決的關(guān)鍵問(wèn)題】本研究通過(guò)設(shè)置盆栽試驗(yàn),研究不同水、氮組合條件下玉米苗期植株的生長(zhǎng)發(fā)育、根系形態(tài)與空間分布、氮素吸收與利用狀況,以期為春玉米抗旱減災(zāi)的水肥管理措施提供依據(jù)。
2016—2017年在吉林農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院科研基地溫室內(nèi)開展盆栽試驗(yàn),選用玉米品種為良玉99。供試土壤均為吉林農(nóng)業(yè)大學(xué)科研基地試驗(yàn)大田的黑土,pH 6.58,有機(jī)質(zhì)含量為2.57 g·kg-1,堿解氮含量為93 mg·kg-1,有效磷含量為13.8 mg·kg-1,速效鉀含量為130.9 mg·kg-1,風(fēng)干過(guò)5 mm篩。盆栽試驗(yàn)采用高45 cm、口徑42 cm的塑料桶,桶內(nèi)可裝55 kg干土,桶底部鋪一層鵝卵石和紗布作為過(guò)濾層,防止盆底滯水,塑料桶內(nèi)部沿桶邊緣等距離插入三根口徑3 cm的PVC管用于灌水。
盆栽試驗(yàn)設(shè)置土壤水分、施氮量?jī)蓚€(gè)因素,土壤相對(duì)含水量設(shè)置4個(gè)水平:30%、50%、70%和90%,分別為重度干旱(W0)、適度干旱(W1)、水分適宜(W2)和水分過(guò)量(W3),施氮量設(shè)置3個(gè)水平:0、0.12和0.24 g N·kg-1土,分別為不施氮(N0)、低氮(N1)和高氮(N2)。除氮肥外,每盆施入等量的磷、鉀和鋅肥,每千克干土用量分別為0.15 g P2O5、0.15 g K2O和0.02 g ZnSO4。氮、磷、鉀肥分別采用尿素(N 46%),重鈣(P2O546%)和氯化鉀(K2O 60%)。所有肥料稱好后與過(guò)篩干土攪拌均勻裝入桶中,而后灌水使土壤相對(duì)含水量保持在70%并靜置3 d使土壤自然沉降。每個(gè)處理設(shè)4次重復(fù),完全隨機(jī)排列,定期進(jìn)行倒盆調(diào)整。2年盆栽試驗(yàn)均于6月上旬播種,每盆播種3株,二葉期間苗定植1株。控水前,所有處理的土壤相對(duì)含水量統(tǒng)一維持在70%,于4葉期開始按照設(shè)計(jì)的水分梯度進(jìn)行控水。W2區(qū)組維持70%土壤相對(duì)含水量,W0和W1區(qū)組通過(guò)自然落干分別達(dá)到50%和30%的土壤相對(duì)含水量,W3增加灌水達(dá)到90%土壤相對(duì)含水量??厮畷r(shí)間維持2周,每天通過(guò)稱重法維持設(shè)計(jì)的土壤水分含量。盆栽控水期內(nèi),玉米植株總干重的變化量占總灌水量的比例低于0.25%,因此植株自身干重的變化對(duì)于補(bǔ)充灌水量來(lái)講可忽略不計(jì)。
控水結(jié)束當(dāng)天,割去整個(gè)地上部植株裝入網(wǎng)袋中帶回實(shí)驗(yàn)室,105℃殺青30 min,75℃烘干至恒重獲得地上部干重。2016年采用分層法挖取根系,以6 cm一層共分6層進(jìn)行取樣。每層土塊取出后裝入網(wǎng)眼直徑1 mm的尼龍網(wǎng)袋,采用低壓流水沖洗,沖洗干凈后采用EPSON V800高分辨率掃描儀進(jìn)行圖像掃描,而后使用WinRHIZO根系分析系統(tǒng)分析根系長(zhǎng)度、表面積、體積等參數(shù)。完成形態(tài)掃描后,收集所有根系樣品75℃烘干至恒重獲得根系干重。2017年對(duì)根系進(jìn)行整體挖掘,清洗后直接烘干獲取干重?cái)?shù)據(jù),未進(jìn)行形態(tài)掃描。
試驗(yàn)數(shù)據(jù)采用Excel 2013軟件進(jìn)行計(jì)算處理,采用SPSS 17.0軟件進(jìn)行雙因素方差分析,用LSD法比較處理間在=0.05水平上的差異顯著性。
表1顯示,氮素顯著影響2年試驗(yàn)中玉米苗期的 株高、莖粗和SPAD值,而水分顯著影響了除2016年SPAD值外的所有指標(biāo),兩因素對(duì)苗期植株生長(zhǎng)指標(biāo)均未表現(xiàn)出顯著的交互作用。干旱脅迫抑制了玉米苗期植株生長(zhǎng),2年試驗(yàn)中W0和W1處理的株高、莖粗及2017年SPAD值均顯著低于W2處理。水分過(guò)量對(duì)植株苗期生長(zhǎng)的影響較小,除2017年SPAD值外,W3處理與W2處理的各項(xiàng)指標(biāo)均無(wú)顯著差異。施氮顯著提高了各水分條件下玉米苗期的株高、莖粗和葉片SPAD值,但N1和N2處理間并無(wú)顯著差異。莖粗作為反映植株生長(zhǎng)健壯的重要指標(biāo),2年試驗(yàn)W2條件下N1和N2處理的植株莖粗相比N0處理分別增加22.2%和25.4%,而W0、W1和W3條件下N1處理的平均增幅分別為15.9%、18.7%和20.6%,N2處理平均增幅分別為21.4%、23.1%和21.2%。可見,氮素對(duì)玉米莖粗的增幅在不同水分條件下存在明顯差異,干旱脅迫和水分過(guò)量均降低了氮肥的施用效果,尤其以嚴(yán)重干旱脅迫的負(fù)面影響最大。
表1 水分、氮素對(duì)春玉米苗期植株生長(zhǎng)的影響
方差分析結(jié)果中*, **和***分別表示處理間在P=0.05、P=0.01和P=0.001水平上存在顯著差異,ns表示差異不顯著(P>0.05)。同一水分條件下,不同小寫字母表示施氮量間差異顯著;同一施氮量下,不同大寫字母表示水分處理間差異顯著。下同
In the ANOVA results, *, ** and *** indicate significant differences between treatments at P=0.05, P=0.01 and P=0.001 levels, respectively. The different lowercase letters followed means indicate significant differences between N rates under the same soil water condition, and the different capital letters followed means indicate significant differences between soil water conditions under the same N rate. The same as below
水分、氮素對(duì)玉米苗期植株的地上部和根系干重及根冠比均有顯著影響,且兩因素對(duì)地上部和根系干重表現(xiàn)出顯著交互作用(表2)。干旱脅迫和水分過(guò)量均降低了苗期植株的地上部和根系干重。與W2處理相比,2年試驗(yàn)中W0處理地上部和根系干重平均下降55.5%和60.1%,W1處理平均下降27.4%和23.1%,W3處理則平均下降7.6%和9.1%。W1處理提高了根冠比,W0和W3處理則表現(xiàn)為下降趨勢(shì),尤其是W0處理的根冠比下降了10.6%。施氮顯著提高了所有水分條件下植株的地上部干重,2年試驗(yàn)W2條件下N1和N2處理相比N0處理平均增加1.01和0.90倍,而W0、W1和W3條件下N1處理的平均增幅分別為32.2%、48.4%和79.9%,N2處理平均增幅分別為34.8%、58.7%和91.3%。施氮對(duì)W0條件下植株的根系干重?zé)o顯著促進(jìn)作用,但顯著提高了W1、W2和W3條件的根系干重,2年試驗(yàn)中,N1處理相比N0處理分別增加35.8%、68.8%和57.3%,N2處理分別增加27.6%、53.6%和61.3%??梢?,施氮條件下根系干重的增幅低于地上部干重,因此根冠比明顯下降。干旱脅迫條件下施氮導(dǎo)致根冠比的下降更為明顯,W0條件下N1和N2處理較N0處理平均下降19.6%和26.8%,W1條件下則分別為7.4%和18.8%。結(jié)果表明,玉米苗期植株干物質(zhì)累積和分配對(duì)氮素的響應(yīng)受水分條件的顯著影響,干旱脅迫和水分過(guò)量條件下低量施氮可在兼顧較高植株干重的情況下減少根冠比降幅。
表2 水分、氮素對(duì)玉米苗期地上部干物質(zhì)量、根系干重和根冠比的影響
水分、氮素均顯著影響玉米苗期的根系形態(tài),且兩因素顯示出顯著交互作用(表3)。所有處理中,根長(zhǎng)和根表面積均以W2N1處理最高而W0N2處理最低,根體積則以W2N2處理最高而W0N0處理最低??傮w上,干旱脅迫和水分過(guò)量均抑制了苗期的根系生長(zhǎng),顯著降低根長(zhǎng)、根表面積和根體積。與W2處理相比,W0處理的根長(zhǎng)、根表面積和根體積平均下降58.2%、59.5%和65.1%,W1處理分別下降35.8%、32.9%和24.2%,而W3處理分別下降10.2%、13.5%和24.1%。不同水分條件下根系生長(zhǎng)對(duì)氮素的響應(yīng)存在顯著差異,干旱脅迫條件下施氮對(duì)根長(zhǎng)和根表面積顯示出負(fù)向抑制作用,而水分適宜與過(guò)量條件下則表現(xiàn)出正向促進(jìn)作用。以根長(zhǎng)為例,W2條件下N1和N2處理相比N0處理分別增加35.0%和14.9%,而W0條件下分別下降31.3%和38.3%,W1條件下降幅相對(duì)較小,分別為9.9%和27.6%。施氮增加了所有水分條件下根系的體積,W2處理增幅最高,其次為W3和W2處理,W1處理最低。與N2處理相比,N1處理的根系體積接近或較低,根長(zhǎng)和根表面積則相對(duì)較高,說(shuō)明低氮條件下根系的平均直徑較小,細(xì)根比例較高。
春玉米苗期根長(zhǎng)在土壤剖面不同土層中整體上呈“紡錘狀”分布,中層土壤中的比例較高,而表層和深層土壤的比例相對(duì)較低(圖1—2)。W2處理表層土壤(0—12 cm)、中層土壤(12—24 cm)和深層土壤(24—36 cm)的玉米平均根長(zhǎng)分別為83.6、97.8和42.8 m,分布比例平均為37.2%、43.7%和19.1%。干旱脅迫條件下表層土壤的玉米根長(zhǎng)明顯下降,而深層土壤的分布比例明顯提高。與W2處理相比,W0和W1處理0—12 cm土層根長(zhǎng)比例平均下降11.0和8.3個(gè)百分點(diǎn),而24—36 cm土層根長(zhǎng)比例平均提高9.5和6.9個(gè)百分點(diǎn)。與干旱脅迫相反,水分過(guò)量條件下根系呈現(xiàn)在表層土壤聚集的趨勢(shì),W3處理0—12 cm土層根長(zhǎng)比例相比W2處理平均提高4.2個(gè)百分點(diǎn),而24—36 cm土層根長(zhǎng)比例平均下降了3.4個(gè)百分點(diǎn)。氮素對(duì)玉米苗期根長(zhǎng)的空間分布也顯示出巨大影響,施氮促進(jìn)根系在表層土壤的增殖,分布比例明顯提高。相比N0處理,N1和N2處理0—12 cm土層根長(zhǎng)比例平均增加16.3和13.7個(gè)百分點(diǎn),12—24 cm土層變化較小,平均下降4.8和1.1個(gè)百分點(diǎn),而24—36 cm土層平均下降11.5和12.5個(gè)百分點(diǎn)。不同水分條件下,施氮后根長(zhǎng)分布的變化也存在差異,W0處理根長(zhǎng)比例的變幅明顯較小,而W2處理的變幅則相對(duì)較大。結(jié)果表明,干旱脅迫促進(jìn)了春玉米根系下扎,而充足或過(guò)量的水分及氮肥施用增加了根系表聚,綜合來(lái)看適量干旱結(jié)合減量施氮(W1N1處理)有助于玉米苗期形成較均衡的根系分布。
表3 水分、氮素對(duì)玉米苗期根系形態(tài)的影響
圖1 水分、氮素對(duì)玉米苗期不同土層根長(zhǎng)的影響
圖2 水分、氮素對(duì)玉米苗期不同土層根長(zhǎng)分布比例的影響
2年試驗(yàn)中,水分、氮素均顯著影響玉米苗期植株的氮素吸收量和氮肥利用率,且兩因素對(duì)吸氮量表現(xiàn)出顯著的交互作用(圖3)。干旱脅迫降低了植株吸氮量,2016年W0和W1處理與W2處理相比平均下降了47.1%和13.4%,而2017年則下降了47.7%和28.9%。水分過(guò)量條件下植株吸氮量略有下降,但與W2處理差異并不顯著。各水分條件下植株吸氮量均隨施氮量的增加而持續(xù)提高。相比N0處理,N1處理吸氮量平均提高了2.2倍,而N2處理提高了2.9倍。所有水氮組合處理中,以W2N2處理的植株吸氮量最高,2016和2017年分別為2.08和1.84 g N/株。水分適宜條件下玉米植株的氮肥利用率最高,2016年N1和N2處理分別為23.4%和13.1%,2017年則分別為12.0%和8.8%。干旱脅迫和水分過(guò)量均降低了氮肥利用率,兩年結(jié)果平均來(lái)看,W0、W1和W3處理的氮肥利用率相比W2處理分別下降了6.4、3.7和2.25個(gè)百分點(diǎn),其中2016年降幅較2017年更高。所有水分條件下,N2處理的氮肥利用率均顯著低于N1處理,兩年中W0、W1、W2和W3條件下分別降低2.9、4.1、6.7和6.0個(gè)百分點(diǎn)。結(jié)果表明,充足的水分條件和適量的氮素供應(yīng)有利于提高植株的氮素吸收與利用。
柱子內(nèi)不同大寫字母表示同一施氮量條件下水分處理間存在顯著差異,柱子上方的*表示同一水分條件下施氮量間存在顯著差異
水分和氮素是保障作物良好生長(zhǎng)的重要物質(zhì)基礎(chǔ),兩者相互制約、相互作用,適宜的水-氮措施可有效發(fā)揮耦合效應(yīng),實(shí)現(xiàn)高產(chǎn)穩(wěn)產(chǎn)與水肥高效[15, 21-22, 27]。已有研究表明,水分、氮素對(duì)植株不同生育階段的干物質(zhì)積累與分配均有顯著影響。一般來(lái)說(shuō),土壤干旱或氮素脅迫條件下,作物為增強(qiáng)對(duì)水分、養(yǎng)分的吸收會(huì)增加同化物在根系中的分配以促進(jìn)根系生長(zhǎng),從而提高根系的相對(duì)干重與根冠比;相反地,水分、氮素充足條件則導(dǎo)致根冠比下降[28-30]。本研究表明,水分、氮素均顯著影響了玉米苗期的植株生長(zhǎng)、地上部干重、根系干重及根冠比,并對(duì)干物質(zhì)累積與分配表現(xiàn)出顯著的交互作用。與已有研究類似,本研究中不施氮處理的根冠比顯著高于施氮處理,輕度干旱脅迫處理的根冠比與水分適宜處理相比也明顯較高。因此,所有水-氮處理中以W1N0處理的根冠比最高。但是,本研究中重度干旱脅迫處理的根冠比與水分適宜處理相比有所下降,原因可能是嚴(yán)重且持續(xù)的水分缺乏阻礙了干物質(zhì)從地上向根系的轉(zhuǎn)移,導(dǎo)致根冠比反而下降,這可能造成根系傷害難以恢復(fù)并影響后期生長(zhǎng)。
一方面,作物根系的形態(tài)與空間分布決定了根系構(gòu)型,并進(jìn)一步影響根系從土壤獲取水分、養(yǎng)分資源的能力[31-33]。另一方面,作物根系構(gòu)型具有很強(qiáng)的可塑性,土壤環(huán)境、水肥資源的變化均會(huì)對(duì)其產(chǎn)生顯著影響[31,34]。Sharp等[35]發(fā)現(xiàn),干旱條件下作物根系變細(xì),橫向生長(zhǎng)減弱而增加向土壤深層的擴(kuò)展以尋找、利用深層土壤中的水分。與水分脅迫類似,氮素缺乏也會(huì)誘導(dǎo)根系變細(xì)并增加縱向擴(kuò)展,促進(jìn)根系在下層土壤的增殖,而高氮?jiǎng)t抑制根系縱向擴(kuò)展、促進(jìn)根系橫向生長(zhǎng)[36-37]。與以上研究一致,本研究結(jié)果也顯示出水分、氮素對(duì)春玉米苗期根系形態(tài)和空間分布所具有的重要調(diào)控作用。而且,筆者發(fā)現(xiàn)水、氮兩因素之間存在著顯著的交互作用,兩者供應(yīng)狀況的上調(diào)與下降對(duì)根系形態(tài)和空間分布具有明顯的疊加效應(yīng)。干旱脅迫與氮素缺乏組合條件下,玉米苗期的根長(zhǎng)、根表面積和根體積均顯著下降,但同時(shí)大幅提高了根系在土壤深層的分布比例,極大地促進(jìn)了根系下扎。而水分適宜和過(guò)量條件下,施氮明顯促進(jìn)了根系生長(zhǎng),各項(xiàng)形態(tài)指標(biāo)均顯著較高,但根系在土壤深層的分布比例顯著下降,導(dǎo)致了根系大量表聚。一般來(lái)說(shuō),較深的根系分布有利于植株增加對(duì)深層土壤水分、養(yǎng)分的獲取,可提高植株水肥利用效率,增強(qiáng)耐旱性及抗倒伏能力,而較淺的根系分布在土壤肥力較低、環(huán)境脅迫較嚴(yán)重的條件下極易導(dǎo)致植株養(yǎng)分缺乏或加重脅迫傷害[32-33, 37]。因此,通過(guò)適宜的水、氮措施發(fā)揮耦合效應(yīng)而調(diào)控苗期根系構(gòu)型,是促進(jìn)玉米后期生長(zhǎng)發(fā)育、提高植株抗性和水肥利用效率的重要途徑。
綜合本研究結(jié)果,不同水分條件下N1處理的植株干重與N2處理均無(wú)顯著差異,而根冠比的下降幅度相對(duì)較小,說(shuō)明苗期低氮供應(yīng)更有利于干物質(zhì)在根系的分配,從而促進(jìn)了根系擴(kuò)展,并增加了細(xì)根數(shù)量,表現(xiàn)出相比N2處理更大的根長(zhǎng)與根表面積,而且適度干旱脅迫條件下N1處理的根系分布更為均衡。因此,降低氮肥基施用量有助于發(fā)揮水氮耦合效應(yīng),促進(jìn)根系下扎和細(xì)根增殖,從而提高干旱抗性和氮肥利用率。
水分和氮素對(duì)玉米苗期的植株干重、吸氮量、根系形態(tài)及分布表現(xiàn)出顯著的交互作用。土壤水分虧缺或過(guò)量均抑制了玉米苗期生長(zhǎng)、干物質(zhì)累積和氮素吸收。施氮促進(jìn)各水分條件下玉米的植株生長(zhǎng)與氮素吸收,但降低了根冠比。干旱脅迫條件下,施氮抑制了根系發(fā)育,顯著降低根長(zhǎng)和根表面積,因此加重了植株的受旱表現(xiàn)。干旱脅迫促進(jìn)玉米苗期根系下扎,而水分過(guò)量則導(dǎo)致根系在表層土壤聚集。施氮提高了表層土壤的根系分布,并在水分充足或過(guò)量條件下表現(xiàn)出明顯的疊加效應(yīng)。所有水-氮處理中,以適度干旱與低量施氮處理的根系空間分布最為均衡。相比高氮處理,各水分條件下低氮處理的根長(zhǎng)、根表面積及細(xì)根比例更高,因此植株生長(zhǎng)表現(xiàn)接近且氮肥利用率顯著更高。因此,東北春玉米生產(chǎn)中建議減少氮肥基施用量以發(fā)揮水氮耦合效應(yīng),促進(jìn)根系下扎和細(xì)根增殖,提高植株耐旱性和氮肥利用率。
[1] 中華人民共和國(guó)國(guó)家統(tǒng)計(jì)局. 中國(guó)統(tǒng)計(jì)年鑒. 北京: 中國(guó)統(tǒng)計(jì)出版社, 2017.
National Bureau of Statistics of the People's Republic of China.. Beijing: China Statistics Press, 2017. (in Chinese)
[2] 王崇桃, 李少昆. 玉米生產(chǎn)限制因素評(píng)估與技術(shù)優(yōu)先序. 中國(guó)農(nóng)業(yè)科學(xué), 2010, 43(6): 1136-1146.
WANG C T, LI S K. Assessment of limiting factors and techniques prioritization for maize production in China., 2010, 43(6): 1136-1146. (in Chinese)
[3] YIN X, OLESEN J E, WANG M, KERSEBAUM K C, CHEN H, MOHAN S, ?ztürk I, CHEN F. Adapting maize production to drought in the Northeast Farming Region of China.2016, 77: 47-58.
[4] 張淑杰, 張玉書, 孫龍彧, 紀(jì)瑞鵬, 蔡福, 武晉雯, 李廣霞. 東北地區(qū)玉米生育期干旱分布特征及其成因分析. 中國(guó)農(nóng)業(yè)氣象, 2013, 34(3): 350-357.
ZHANG S J, ZHANG Y S, SUN L Y, JI R P, CAI F, WU J W, LI G X. Analysis of distributional characteristics and primary causes of maize drought in Northeast China.2013, 34(3): 350-357. (in Chinese)
[5] LIU Z, HUBBARD K G, LIN X, YANG X. Negative effects of climate warming on maize yield are reversed by the changing of sowing date and cultivar selection in Northeast China., 2013, 19: 3481-3492.
[6] 馮冬蕾, 程志剛, 吳瓊, 朱津輝, 曲驊倩, 李吉. 基于MCI指數(shù)的東北地區(qū)1961-2014年氣象干旱特征分析. 干旱區(qū)資源與環(huán)境, 2017, 31(10): 118-124.
FENG D L, CHENG Z G, WU Q, ZHU J H, QU H Q, LI J, Meteorological drought characteristics in Northeast China from 1961 to 2014 based on the comprehensive monitoring index analysis., 2017, 31(10): 118-124. (in Chinese)
[7] 張仁和, 薛吉全, 浦軍, 趙兵, 張興華, 鄭友軍, 卜令鐸. 干旱脅迫對(duì)玉米苗期植株生長(zhǎng)和光合特性的影響. 作物學(xué)報(bào), 2011, 37(3): 521-528.
ZHANG R H, XUE J Q, PU J, ZHAO B, ZHANG X H, ZHENG Y J, BU L D. Influence of drought stress on plant growth and photosynthetic traits in maize seedlings., 2011, 37(3): 521-528. (in Chinese)
[8] FLEXAS J, BOTA J, CIFRE, J, MARIANO ESCALONA J, GALMES J, GULIAS J, LEFI E, MARTINEZ-CANELLAS S, MORENO M, RIBAS-CARBO M, RIERA D, SAMPOL B, MEDRANO H. Understanding down-regulation of photosynthesis under water stress: future prospects and searching for physiological tools for irrigation management., 2004, 144(3): 273-283.
[9] 馬樹慶, 王琪, 張鐵林, 于海, 徐麗萍, 紀(jì)玲玲. 吉林省中部玉米出苗率和產(chǎn)量對(duì)播種-出苗期水分脅迫的反應(yīng)及其氣象評(píng)估. 應(yīng)用生態(tài)學(xué)報(bào), 2014, 25(2): 451-457.
MA S Q, WANG Q, ZHANG T L, YU H, XU L P, Ji L L. Response of maize emergence rate and yield to soil water stress in period of seeding emergence and its meteorological assessment in central area of Jilin province., 2014, 25(2): 451-457. (in Chinese)
[10] SHARP R E, POROYKO V, HEJLEK L G, SPOLLEN W G, SPRINGER G K, BPHNERT H J, NGUYEN H. Root growth maintenance during water deficits: physiology to functional genomics., 2004, 55(407): 2343-2351.
[11] 梁愛(ài)華, 馬富裕, 梁宗鎖, 慕自新. 旱后復(fù)水激發(fā)玉米根系功能補(bǔ)償效應(yīng)的生理學(xué)機(jī)制研究. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2008, 36(4): 58-64.
LIANG A H, MA F Y, LIANG Z S, MU Z X. Studies on the physiological mechanism of functional compensation effect in maize root system induced by re-watering after draught stress., 2008, 36(4): 58-64. (in Chinese)
[12] 劉吉利, 趙長(zhǎng)星, 吳娜, 王月福, 王銘倫. 苗期干旱及復(fù)水對(duì)花生光合特性及水分利用效率的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2011, 44(3): 469-476.
LIU J L, ZHAO C X, WU N, WANG Y F, WANG M L. Effects of drought and rewatering at seedling stage on photosynthetic characteristics and water use efficiency of peanut.2011, 44(3): 469-476. (in Chinese)
[13] KANG S Z, SHI W J, ZHANG J H. An improved water-use efficiency for maize grown under regulated deficit irrigation., 2000, 67(3): 207-214.
[14] 郭相平, 康紹忠, 索麗生. 苗期調(diào)虧處理對(duì)玉米根系生長(zhǎng)影響的試驗(yàn)研究. 灌溉排水學(xué)報(bào), 2001, 20(1): 25-27.
GUO X P, KANG S Z, SUO L S. Effects of regulated deficit irrigation on root growth in maize., 2001, 20(1): 25-27. (in Chinese)
[15] HU T T, KANG S Z, LI, F S, ZHANG J H. Effects of partial root-zone irrigation on the nitrogen absorption and utilization of maize., 2009, 96(2): 208-214.
[16] KANG S Z, HAO X M, DU T S, TONG L, SU X L, LU H N, LI X L, HUO Z L, LI S E, DING R S. Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice., 2017, 179: 5-17.
[17] ADU M, YAWSON D, ARMAH F, ASARE P, FRIMPONG K. Meta-analysis of crop yields of full, deficit, and partial root-zone drying irrigation., 2018, 197: 79-90.
[18] GAO Q, LI C L, FENG G Z, WANG J F, CUI Z L, CHEN X P, ZHANG F S. Understanding yield response to nitrogen to achieve high yield and high nitrogen use efficiency in rainfed corn., 2012, 104(1): 165-168.
[19] PENG Y, LI X, LI C. Temporal and spatial profiling of root growth revealed novel response of maize roots under various nitrogen supplies in the field.2012, 7(5): e37726.
[20] WANG G L, CHEN X P, CUI Z L, ZHANG F S. Estimated reactive nitrogen losses for intensive maize production in China., 2014, 197: 293-300.
[21] YIN G H, GU J, ZHANG F S, LIU Z X. Maize yield response to water supply and fertilizer input in a semi-arid environment of Northeast China., 2014, 9(1): e86099.
[22] 李生秀, 李世清, 高亞軍, 王喜慶, 賀海軍. 施用氮肥對(duì)提高旱地作物利用土壤水分的作用機(jī)理和效果. 干旱地區(qū)農(nóng)業(yè)研究, 1994, 12(1): 38-46.
LI S X, LI S Q, GAO Y J, WANG X Q, HE H J. The mechanism and effects of N fertilization in increasing water use efficiency., 1994, 12(1): 38-46. (in Chinese)
[23] 張艷, 張洋, 陳沖, 李東, 翟丙年. 水分脅迫條件下施氮對(duì)不同水氮效率基因型冬小麥苗期生長(zhǎng)發(fā)育的影響. 麥類作物學(xué)報(bào), 2009, 29(5): 844-848.
ZHANG Y, ZHANG Y, CHEN C, LI D, ZHAI B N. Effect of water stress and nitrogen application on growth and development of winter wheat genotypes with different water and nitrogen use efficiency at seedling stage., 2009, 29(5): 844-848. (in Chinese)
[24] 王秀波, 上官周平. 干旱脅迫下氮素對(duì)不同基因型小麥根系活力和生長(zhǎng)的調(diào)控. 麥類作物學(xué)報(bào), 2017, 37(6): 820-827.
WANG X B, SHANGGUAN Z P. Effect of nitrogen on root vigor and growth in different genotypes of wheat under drought stress., 2017, 37(6): 820-827. (in Chinese)
[25] CLAY D E, ENGEL R E, LONG D, LIU Z. Nitrogen and water stress interact to influence carbon-13 discrimination in wheat., 2001, 65(6): 1823-1828.
[26] 宋海星, 李生秀. 水、氮供應(yīng)和土壤空間所引起的根系生理特性變化. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2004, 10(1): 6-11.
SONG H X, LI S X. Changes of root physiological characteristics resulting from supply of water, nitrogen and root-growing space in soil., 2004, 10(1): 6-11. (in Chinese)
[27] HOKAM E, EI-HENDAWY S, SCHMIDHALTER U. Drip irrigation frequency: The effects and their interaction with nitrogen fertilization on maize growth and nitrogen use efficiency under arid conditions., 2011, 197(3): 186-201.
[28] ANDERSON E L. Tillage and N fertilization effects on maize root growth and root﹕shoot ratio., 1988, 108(2): 245-251.
[29] BENJAMIN J G, NIELSEN D C, VOGIL M F, CALDERON F. Water deficit stress effects on corn (, L.) root﹕shoot ratio., 2014, 4(4): 151-160.
[30] GHEYSARI M, MIRLATIFI S M, BANNAYAN M, HOOGENBOOM G. Interaction of water and nitrogen on maize grown for silage., 2009, 96(5): 809-821.
[31] LYNCH J P. Root architecture and plant productivity., 1995, 109(1): 7-13.
[32] LUNCH J P. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems., 2013, 112(2): 347-357.
[33] MI G H, CHEN F J, WU Q P, ZHANG F S. Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems., 2010, 53(12): 1369-1373.
[34] YU P, WHITE P J, HOCHHOLDINGRT F, LI C J. Phenotypic plasticity of the maize root system in response to heterogeneous nitrogen availability., 2014, 240(4): 667-678.
[35] SHARP R E, HSIAO T C, SILK W K. Growth of the maize primary root at low water potentials: II. Role of growth and deposition of hexose and potassium in osmotic adjustment., 1990, 93(4): 1337-1346.
[36] TRACHSEL S, KAEPPLER S M, BROWM K M, LYNCH J P. Maize root growth angles become steeper under low N conditions., 2013, 140: 18-31.
[37] MU X, CHEN F, WU Q, MI G H. Genetic improvement of root growth increases maize yield via enhanced post-silking nitrogen uptake., 2015, 63: 55-61.
Effects of soil water and nitrogen onplant growth, root morphology and spatial distribution of Maize at the seedling stage
ZHANG XinYue, WANG Yin, CHEN Jian, CHEN AnJi, WANG LiYing, GUO XiaoYing, NIU YaLi, ZHANG XingYu, CHEN LiDong, GAO Qiang
(College of Resources and Environment, Jilin Agricultural University/Key Laboratory of Sustainable Utilization of Soil Resources of Jilin Commodity Grain Base, Changchun 130118)
【Objective】The frequent spring drought has severely negative impacts on seed emergence and seedling growth in the maize production of Northeast China. It is necessary to understand the coupling effects of soil water condition and nitrogen (N) rate on maize plant and root growth at the seedling stage, and further to provide reference for optimizing water and N management in maize production of Northeast China. 【Method】In this study, two pot experiments were conducted in 2016 and 2017, with a two factor factorial design of soil water and N rates. The soil water condition included 30%, 50%, 70% and 90% of field capacity, respectively, representing severe water-stress (W0), moderate water-stress (W1), well-watered (W2) and over-watered (W3), respectively. The N rates included 0, 0.12 and 0.24 g·kg-1soil, representing N-omission (N0), low N (N1) and high N (N2), respectively. 【Result】Soil water and N rate had significant individual effects on maize plant and root growth at the seedling stage, and showed interactive effects on dry matter (DM), root morphology, N uptake, and N fertilizer use efficiency (NUE). Both soil water deficit and excess had negative impacts on maize plant growth, DM accumulation, root development, and N uptake at the seedling stage, and was especially serious under W0 treatment. Compared with W2 treatment, on average in two years, shoot and root DM and plant N uptake under W0 treatment decreased by 55.5%, 60.1% and 45.8%, respectively, NUE decreased by 7.8 percentage points. and root length (RL) and root surface area (RSA) decreased by 58.2% and 59.5%, respectively. The N fertilization improved significantly maize plant growth and N uptake but reduced root/shoot ratio at the seedling stage. Moreover, the plant and root growth responses of N fertilizer differed obviously with the different soil water conditions. The N fertilization improved root growth in terms of higher RL, RSA and root volume (RV) under W2 treatment, and therefore showed the highest plant DM and N uptake. However, N fertilization limited root growth and decreased significantly RL and RSA under W0 and W1 treatments. The N fertilization also improved root growth under W3 treatment, but the N fertilizer response was still lower than that under W2 treatment. Across all the soil water conditions, maize plants showed higher RL and RSA under N1 treatments than that under N2 treatments, but the RV was equal or smaller, indicating that low N supply induced fine root development at the seedling stage. Soil water and N rate not only affected significantly maize root morphology, but also had great effects on root system spatial distribution. The water-stress induced deeper root growth and RL distribution in subsoil. Compared with W2 treatment, on average, the distribution ratio of RL in 0-12 cm soil layer decreased by 11.0 percentage points under W0 treatment and 8.3 percentage points under W1 treatment, but their distribution ratio in 24-36 cm soil layer increased by 9.5 and 6.9 percentage points, respectively. In contrast to soil water-stress condition, maize root system showed a concentrated trend in topsoil under over-watered condition. The N fertilization improved significantly root distribution in topsoil. Compared with N0 treatment, the RL distribution ratio increased by 16.3 and 13.7 percentage points higher in 0-12 cm soil layer under N1 and N2 treatments, respectively, and the distribution ratio decreased by 11.5 and 12.5 percentage points lower in 24-36 cm soil layer, respectively. Across all the soil water-N treatments, maize root system showed the more balanced spatial distribution under the W1N1 treatment.【Conclusion】Soil water condition and N rate had significant coupling effects on maize seedling growth and root development. The appropriate soil water and N management could optimize root morphology and spatial distribution, and improve plant DM accumulation and N uptake. Therefore, we suggested reducing basal N rate to stimulate deeper root growth with more fine root by inducing the water-N coupling effect, and further to enhance plant resistance to drought stress and to improve NUE in spring maize production of Northeast China.
maize; water; nitrogen; root/shoot ratio; root morphology; root spatial distribution
10.3864/j.issn.0578-1752.2019.01.004
2018-08-20;
2018-11-28
國(guó)家自然科學(xué)基金青年項(xiàng)目(31501829)、吉林省優(yōu)秀青年人才基金項(xiàng)目(20180520036JH)、國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFD0200101)
張馨月,E-mail:zhangxy1022@163.com。通信作者王寅,E-mail:wy1986410@163.com
(責(zé)任編輯 楊鑫浩)