国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

河流系統(tǒng)實(shí)時(shí)洪水預(yù)報(bào)誤差多點(diǎn)聯(lián)合校正方法研究

2018-12-29 10:10高益輝鐘平安徐斌朱非林曹瀚翔
南水北調(diào)與水利科技 2018年5期

高益輝 鐘平安 徐斌 朱非林 曹瀚翔

摘要:實(shí)時(shí)校正是改善洪水實(shí)時(shí)預(yù)報(bào)精度的重要手段。河流系統(tǒng)中多個(gè)站點(diǎn)之間具有高度的水力聯(lián)系,各個(gè)站點(diǎn)之間的誤差也具有空間關(guān)聯(lián)性。依據(jù)河道水流演進(jìn)的基本方程和動(dòng)態(tài)自適應(yīng)的自回歸方法,建立了考慮誤差空間演化的河流系統(tǒng)實(shí)時(shí)洪水預(yù)報(bào)誤差多點(diǎn)聯(lián)合校正方法。利用洪峰段洪量誤差、洪峰流量誤差、納什效率系數(shù)(NSE)和峰滯時(shí)間等指標(biāo)分別對多點(diǎn)聯(lián)合校正和不考慮誤差空間關(guān)聯(lián)性的單點(diǎn)校正開展校正效果評估。以淮河王家壩斷面以上為背景開展實(shí)證研究,結(jié)果表明:考慮河流系統(tǒng)誤差空間關(guān)聯(lián)性的多點(diǎn)聯(lián)合校正效果優(yōu)于單點(diǎn)校正,洪峰段效果更為顯著,能夠更有效地提高河流系統(tǒng)洪水預(yù)報(bào)的精度。

關(guān)鍵詞:洪水預(yù)報(bào)誤差;實(shí)時(shí)校正;馬斯京根法;多點(diǎn)聯(lián)合校正;單點(diǎn)校正;自回歸模型

中圖分類號:P338 文獻(xiàn)標(biāo)志碼:A 文章編號:

16721683(2018)05002106

Study on multipoint joint correction method for realtime flood forecasting errors of river systems

GAO Yihui1,ZHONG Pingan1,XU Bin1,ZHU Feilin1,CAO Hanxiang2

1.College of Hydrology and Water Resources,Hohai University,Nanjing 210098,China;2.Taizhou Tian Qin Geographic Information Engineering Co.,Ltd.,Taizhou 318000,China

Abstract:

Realtime correction is an important way to improve the accuracy of realtime flood forecasting.There are highlevel hydraulic connections among the multiple stations in a river system,and the errors between the multiple stations are spatially interconnected as well.Based on the basic equations of river flood routing and the dynamic adaptive autoregressive method,this study proposed a multipoint joint correction method for realtime flood forecasting errors with consideration to the spatial evolution of errors.The correction effect was evaluated in terms of the flood volume error during flood peak period,flood peak discharge error,NashSutcliffe efficiency coefficient,and lag time of peak.This paper conducted a case study on the region up the Wangjiaba section of Huaihe River to demonstrate the proposed methodology.The results indicated that the effect of multipoint joint correction was better than that of singlepoint correction,and the effect was even more prominent for the flood peak period.The proposed method can effectively improve the accuracy of flood forecasting of the river system.

Key words:

flood forecasting errors;realtime correction;Muskingum method;multipoint joint correction;singlepoint correction;autoregressive model

由于水文物理過程的復(fù)雜性和人類認(rèn)識水平的局限性,實(shí)時(shí)洪水預(yù)報(bào)中不可避免地存在由于數(shù)據(jù)輸入、模型結(jié)構(gòu)和模型參數(shù)等不確定性帶來的誤差[12]。實(shí)時(shí)校正是減輕不確定性影響,改善實(shí)時(shí)洪水預(yù)報(bào)精度的重要措施[34]。

從20世紀(jì)60年代開始,國內(nèi)外學(xué)者對洪水預(yù)報(bào)實(shí)時(shí)校正方法進(jìn)行了廣泛的研究。Koren V.I.等[5]將廣義差分ARMA模型引入預(yù)報(bào)模型,在多瑙河布達(dá)佩斯至巴加河段采取自我校正預(yù)報(bào)器算法進(jìn)行水位預(yù)報(bào);Wood E.F.[6]在大流域上使用卡爾曼濾波器技術(shù),建議采用分區(qū)子系統(tǒng)的處理方式,采用增補(bǔ)噪聲過程的技術(shù)補(bǔ)償預(yù)報(bào)誤差,來處理各個(gè)子系統(tǒng)之間互相影響的問題;葛守西[7]指出了托尼迪建議的MISP算法存在的問題,建議了一種用衰減記憶在線識別、衰減卡爾曼濾波和匹配法自適應(yīng)濾波聯(lián)合運(yùn)用的算法;李致家等[8]討論了基于馬斯京根流量演算河道洪水實(shí)時(shí)預(yù)報(bào)的半自適應(yīng)濾波模型;田雨、雷曉輝等[9]對典型的水文模型流量預(yù)報(bào)實(shí)時(shí)校正算法、誤差自回歸校正算法、衰減記憶最小二乘算法和卡爾曼濾波算法四種洪水預(yù)報(bào)實(shí)時(shí)校正方法進(jìn)行了對比分析,討論了各種方法的利弊。

國內(nèi)外專家學(xué)者對洪水預(yù)報(bào)實(shí)時(shí)校正的研究成果豐富,但較少考慮河流水系整體對校正結(jié)果的影響。本文針對以往實(shí)時(shí)校正方法對預(yù)報(bào)誤差空間關(guān)聯(lián)性考慮不足的問題,基于動(dòng)態(tài)自適應(yīng)的自回歸方法,構(gòu)建多點(diǎn)關(guān)聯(lián)的系統(tǒng)校正模型,并以淮河王家壩斷面為背景驗(yàn)證模型的有效性。

1 方法原理

1.1 河流系統(tǒng)預(yù)報(bào)誤差實(shí)時(shí)校正需求

流域干支流上下游斷面存在水力聯(lián)系,組成一個(gè)有機(jī)的河流系統(tǒng)。如圖1所示,流域內(nèi)有n+1個(gè)斷面,因?yàn)橛兴β?lián)系存在,各斷面的預(yù)報(bào)誤差組成是不同的,第1到第n支流斷面的流量僅來源于其控制面積以上降水徑流,洪水預(yù)報(bào)產(chǎn)生的預(yù)報(bào)誤差不受其他斷面的影響,可以采用目前已有的實(shí)時(shí)校正方法進(jìn)行單點(diǎn)校正。而第n+1斷面流量包括兩個(gè)部分,一是上游相關(guān)支流斷面出流經(jīng)河道匯流傳播而來,二是區(qū)間入流。顯然,n+1斷面的預(yù)報(bào)誤差也由兩部分組成,如采用單點(diǎn)誤差信息進(jìn)行實(shí)時(shí)校正,則上游關(guān)聯(lián)斷面的校正結(jié)果對n+1斷面的影響將無法反映。由此可見,當(dāng)某斷面有上游關(guān)聯(lián)斷面時(shí),采用多點(diǎn)聯(lián)合校正方法,可以反映預(yù)報(bào)誤差在空間上的傳遞。

根據(jù)以上分析,將一個(gè)具有n+1個(gè)斷面的復(fù)雜流域水系分成兩種類型:一是斷面流量只由本斷面以上的流域降水匯流形成,如圖1中的斷面1至斷面n;二是斷面流量由上游若干斷面入流和區(qū)間入流組成,如圖1中的第n+1斷面。對于兩種不同類型分別采取單點(diǎn)校正和多點(diǎn)聯(lián)合校正。

1.2 單點(diǎn)校正

對于圖1中的斷面1至斷面n所示的沒有上關(guān)聯(lián)斷面的實(shí)時(shí)洪水預(yù)報(bào)誤差校正,直接采用本斷面的誤差系列分析得到實(shí)時(shí)校正項(xiàng)。以第i斷面為例,單點(diǎn)矯正的計(jì)算步驟如下。

(1)計(jì)算歷史(或面臨時(shí)刻前已發(fā)生的)誤差系列。

式中:δi(t)為時(shí)刻的模型計(jì)算誤差;QFi(t)為t時(shí)刻的模型預(yù)報(bào)流量;Qi(t)為t時(shí)刻的實(shí)測流量。

(2)建立誤差實(shí)時(shí)校正模型,即建立未來時(shí)刻預(yù)報(bào)誤差與歷史誤差之間的關(guān)系[1011]。

式中:δ′[KG-*4]i(t)為t[JP3]時(shí)刻的模型預(yù)報(bào)誤差估計(jì)值;δi(t-j)為t-j時(shí)刻的模型預(yù)報(bào)誤差;f[·]為誤差校正函數(shù)。

(3)未來時(shí)刻經(jīng)過實(shí)時(shí)校正后的預(yù)報(bào)流量估計(jì)值為:

式中:QF′[KG-*4]i(t)為t時(shí)刻i斷面經(jīng)實(shí)時(shí)校正后的模型預(yù)報(bào)流量。

如果要多時(shí)段連續(xù)校正,則按下式計(jì)算:

1.3 多點(diǎn)聯(lián)合校正方法

具有上關(guān)聯(lián)斷面的流量組成復(fù)雜,如圖1中斷面n+1所示,預(yù)報(bào)誤差來源也復(fù)雜,需要先對n+1斷面的誤差進(jìn)行分解,分為上關(guān)聯(lián)斷面預(yù)報(bào)誤差和區(qū)間來水預(yù)報(bào)誤差。

式中:δ′[KG-*4]n+1(t)為t時(shí)刻預(yù)報(bào)誤差的估計(jì)值;δ′[KG-*4]i(t)為上游第i斷面t時(shí)刻的預(yù)報(bào)誤差估計(jì)值;g[δ′[KG-*4]1(t),…,δ′[KG-*4]n(t)]為上游關(guān)聯(lián)斷面t時(shí)刻的預(yù)報(bào)誤差在n+1斷面的響應(yīng);δ′[KG-*4]0(t)為區(qū)間入流預(yù)報(bào)誤差估計(jì)值,估計(jì)方法與單點(diǎn)校正相同。

未來某時(shí)刻經(jīng)過實(shí)時(shí)校正后的預(yù)報(bào)流量為:

式中:Q′[KG-*4]Fn+1(t)為t時(shí)刻下斷面經(jīng)實(shí)時(shí)校正后的模型預(yù)報(bào)流量;QFn+1(t)為t時(shí)刻下斷面模型預(yù)報(bào)流量。

選擇20140928、20150626、20160714三場洪水進(jìn)行實(shí)時(shí)預(yù)報(bào)與校正分析。實(shí)時(shí)預(yù)報(bào)結(jié)果采用淮河水利委員會(huì)水文局實(shí)時(shí)預(yù)報(bào)系統(tǒng)得到,預(yù)報(bào)對象為息縣、潢川、班臺、王家壩四個(gè)斷面的流量過程,時(shí)段長為6 h。息縣、潢川、班臺預(yù)報(bào)誤差由各自斷面的預(yù)報(bào)和實(shí)測流量過程獲得,息縣、潢川、班臺至王家壩的區(qū)間預(yù)報(bào)誤差采用王家壩斷面預(yù)報(bào)誤差減去息縣、潢川、班臺預(yù)報(bào)誤差在王家壩的響應(yīng)得到,息縣、潢川、班臺和區(qū)間的誤差校正采用單點(diǎn)校正,選用動(dòng)態(tài)自適應(yīng)的自回歸方法,自回歸階數(shù)采用AIC準(zhǔn)則確定[14],本研究為3階;王家壩斷面采用多點(diǎn)聯(lián)合校正。實(shí)時(shí)校正外延一個(gè)時(shí)段。

單點(diǎn)校正動(dòng)態(tài)自適應(yīng)的自回歸方法,采用以下中心化公式[1516]:

2.2 評價(jià)指標(biāo)

(1)洪峰段洪量誤差。

洪峰段流量誤差是指洪峰出現(xiàn)時(shí)段及其前后各兩個(gè)時(shí)段所對應(yīng)的洪量[1920],此處采用相對值,即:

EW=∑[DD(]m+2[]i=m-2[DD)]W′[KG-*4]i[JB<2/]∑[DD(]m+2[]i=m-2[DD)]Wi×100% (25)

式中:W′,W為校正后洪峰段洪量和實(shí)測洪峰段洪量;m為實(shí)測過程的峰現(xiàn)時(shí)間。

(2)洪峰流量誤差。

洪峰流量誤差指一次洪水過程的最大流量的誤差,本文采用相對值。

(3)納什效率系數(shù)。

納什效率系數(shù)指洪水預(yù)報(bào)過程與實(shí)測過程之間的吻合程度,即:

E=1-[SX(]∑[DD(]n[]i=1[DD)][ye(i)-y0(i)]2[]∑[DD(]n[]i=1[DD)][y0(i)-[AKy-D]0]2[SX)]

(26)

式中:E為納什效率系數(shù);y0(i)為實(shí)測值;ye(i)為預(yù)報(bào)值;[AKy-D]0為實(shí)測值的均值;n為資料序列長度。E取值范圍為負(fù)無窮至1。E接近1,表示模式質(zhì)量好,模型可信度高;E接近0,表示模擬結(jié)果接近觀測值的平均值水平,即總體結(jié)果可信,但過程模擬誤差大;E小于0,則模型是不可信的[2122]。

(4)峰滯時(shí)間。

峰滯時(shí)間指預(yù)報(bào)峰現(xiàn)時(shí)間減去實(shí)測峰現(xiàn)時(shí)間,本文為預(yù)報(bào)時(shí)段間隔乘以6 h。

2.3 結(jié)果分析

本文直接利用王家壩斷面預(yù)報(bào)誤差進(jìn)行單點(diǎn)校正作為比較方案,其方法同前。表1為不同實(shí)時(shí)校正方法校正指標(biāo)對照表,圖3至圖5為不同校正方法的過程線對照圖。

(1)在洪峰段洪量誤差、洪峰流量誤差和納什效率系數(shù)三個(gè)指標(biāo)中,多點(diǎn)聯(lián)合校正方法均優(yōu)于單點(diǎn)校正,能夠有效地提升實(shí)時(shí)校正的效果。

(2)單點(diǎn)校正與多點(diǎn)聯(lián)合校正方法在峰現(xiàn)時(shí)間指標(biāo)中校正效果基本相同。這可能是自回歸模型的特點(diǎn)決定的,兩者對相位的影響機(jī)制相同。

(3)當(dāng)誤差變化平緩時(shí),多點(diǎn)聯(lián)合校正方法與單點(diǎn)校正方法區(qū)別不大,優(yōu)勢不明顯;當(dāng)誤差變化劇烈時(shí),多點(diǎn)聯(lián)合校正明顯優(yōu)于單點(diǎn)校正。

3 結(jié)論

根據(jù)河流系統(tǒng)預(yù)報(bào)誤差實(shí)時(shí)校正需求,本文提出了河流系統(tǒng)實(shí)時(shí)洪水預(yù)報(bào)誤差多點(diǎn)聯(lián)合校正方法。多點(diǎn)聯(lián)合校正考慮了王家壩來水的空間組成,剔除了上游關(guān)聯(lián)斷面校正成果的影響,而王家壩單點(diǎn)校正時(shí)以總誤差為對象,實(shí)際上是將關(guān)聯(lián)斷面預(yù)報(bào)誤差經(jīng)過了兩次重復(fù)校正,在河流系統(tǒng)中存在復(fù)雜水利聯(lián)系時(shí),采用多點(diǎn)聯(lián)合校正效果會(huì)更好。本文成果為復(fù)雜水系多斷面預(yù)報(bào)的實(shí)時(shí)校正提供了新的思路。受限時(shí)間、連續(xù)多時(shí)段外延效果和預(yù)報(bào)能力、缺測資料處理方式等問題需要進(jìn)一步繼續(xù)展開研究,也可以嘗試其他的回歸建模方法與本研究作對比。

參考文獻(xiàn)(References):

[1] ZHU F L,ZHONG P A,SUN Y M,et al.Realtime optimal flood control decision making and risk propagation under multiple uncertainties[J].Water Resources Research,2017,53(12),1063510654.DOI:10.1002/2017WR021480.

[2] ZHU F L,ZHONG P A,SUN Y M.Multicriteria group decision making under uncertainty:Application in reservoir flood control operation[J].Environmental Modelling & Software,2018,100,236251.DOI:10.1016/j.envsoft.2017.11.032.

[3] 梁忠民,戴榮,李彬權(quán).基于貝葉斯理論的水文不確定性分析研究進(jìn)展[J].水科學(xué)進(jìn)展,2010,21(2):274281.(LIANG Z M,DAI R,LI B G.A review of hydrological uncertainty analysis based on Bayesian theory [J].Advances in Water Science,2010,21(2):274281.(in Chinese)) DOI:10.14042/j.cnki.32.1309.2010.02.008.

[4] 葉守澤,夏軍.水文科學(xué)研究的世紀(jì)回眸與展望[J].水科學(xué)進(jìn)展,2002(1):93104.(YE S Z,XIA J.Centurys retrospect and looking into the future of hydrological science [J].Advances in Water Science,2002(1):93104.(in Chinese)) DOI:10.14042/j.cnki.32.1309.2002.01.017.

[5] KOREN V I,BELCHIKOV V A,KUCHMENT L S,et al.Hydrological forecasting.proceedings of the symposium,Oxford,UK,1518 April,1980.[J].IAHSAISH Publication,1980.DOI:10.1007/9789048134038_4.

[6] WOOD E F.Filtering of partitioned large scale hydrological systems[J].Hydrological Sci Bull,1981,26(1),3346.DOI:10.1080/02626668109490860.

[7] 葛守西.一般線性匯流模型實(shí)時(shí)預(yù)報(bào)方法的初步探討[J].水利學(xué)報(bào),1985(4):311.(GE S X.The preliminary study of forecasting method on real time for general linear model of flow concentration [J].Journal of Hydraulic Engineering,1985(4):311.(in Chinese)) DOI:10.3321/j.issn:05599350.1986.10.011.

[8] 李致家,孔祥光,朱兆成,等.河道洪水實(shí)時(shí)預(yù)報(bào)的半自適應(yīng)模型研究[J].水科學(xué)進(jìn)展,1998,9(4):367372.(LI Z J,KONG X G,ZHU Z C,et al.Halfself adaptive updating Kalman filter model of channel flow routing [J].Advances in Water Science,1998,9(4):367372.(in Chinese)) DOI:10.14042/j.cnki.32.1309.1998.04.010.

[9] 田雨,雷曉輝,蔣云鐘,等.洪水預(yù)報(bào)實(shí)時(shí)校正技術(shù)研究綜述[J].人民黃河,2011,33(3):2526.(TIAN Y,LEI X H,JIANG Y Z,et al.Review of realtime correction technology for flood forecast [J].Yellow River,2011,33(3):2526.(in Chinese)) DOI:10.3969/j.issn.10001379.2011.03.010.

[10] 王文鵬,李春紅,王建平.洪水預(yù)報(bào)系統(tǒng)中實(shí)時(shí)校正模型的優(yōu)選方法[J].水電自動(dòng)化與大壩監(jiān)測,2012,36(1):7883.(WANG W P,LI C H,WANG J P.Optimal selection method of realtime correction model in flood forecasting system [J].Hydropower Automation and Dam Monitoring,2012,36(1):7883.(in Chinese)) DOI:10.3969/j.issn.16713893.2012.01.021.

[11] 顧巍巍,孫如飛,張衛(wèi)國,等.水庫洪水實(shí)時(shí)優(yōu)化校正預(yù)報(bào)模型的探究與應(yīng)用[J].水力發(fā)電,2017,43(7):2225.GU W W,SUN R F,ZHANG W G,et al.Research and application of realtime flood correction and forecast model for reservoir flood [J].Water Power,2017,43(7):2225.(in Chinese)) DOI:10.3969/j.issn.05599342.2017.07.006.

[12] CUNGE J A.On the subject of a flood propagation computation method (Muskingum Method) [J].Journal of Hydraulic Research,1969,7(2):205230.DOI:10.1080/00221686909500264.

[13] 王家彪,雷曉輝,廖衛(wèi)紅,等.馬斯京根模型改進(jìn)新思路[J].南水北調(diào)與水利科技,2016,14(2):8792,37.(WANG J B,LEI X H,LIAO W H,et al.A new idea for modifications of the Muskingum routing model [J].SouthtoNorth Water Transfersand Water Science & Technology,2016,14(2):8792,37.(in Chinese)) DOI:10.13476/j.cnki.nsbdqk.2016.02.016.

[14] AKAIKE H.Factor analysis and AIC[J].Psychometrika,1987,52(3):317332.DOI:10.1007/BF02294359.

[15] 焦偉杰,龍海峰.基于自回歸模型的分布式水文模型預(yù)報(bào)校正[J].水資源與水工程學(xué)報(bào),2015,26(2):103108.(JIAO W J,LONG H Z.Forecast and correction of distributed hydrological model based on autoregression model[J].Journal of Water Resources & Water Engineering,2015,26(2):103108. (in Chinese)) DOI:10.11705/j.issn.1672643X.2015.02.19.

[16] 郭磊,趙英林.基于誤差自回歸的洪水實(shí)時(shí)預(yù)報(bào)校正算法的研究[J].水電能源科學(xué),2002(3):2527.(GUO L,ZHAO Y L.Study on adjustment methods of realtime flood forecasting in view of autoregressive model [J].International Journal Hydroelectric Energy,2002(3):2527.(in Chinese)) DOI:10.3969/j.issn.10007709.2002.03.009.

[17] 李致家.具有行蓄洪區(qū)的河道流量演算方法探討[J].水科學(xué)進(jìn)展,1997(1):6873.(LI Z J.Research on channel routing method with flood diversion and flood retarding areas[J].Advances in Water Science,1997(1):6873.(in Chinese)) DOI:10.3321/j.issn:10016791.1997.01.011.

[18] 梁忠民,王旭偉,寧亞偉,等.基于動(dòng)力系統(tǒng)反演理論的馬斯京根流量演算誤差校正[J].水力發(fā)電,2017,43(12):912.(LIANG Z M,WANG X W,NING Y W,et al.Study on error correction method of Muskingum flow calculation based on dynamic system inversion theory [J].Water Power,2017,43(12):912.(in Chinese)) DOI:10.3969/j.issn.05599342.2017.12.003.

[19] 楊敏芝,鐘平安,汪曼琳,等.大汶河流域陸面蒸發(fā)估算方法比較[J].南水北調(diào)與水利科技,2017,15(5):5055.(YANG M Z,ZHONG P A,WANG M L,et al.Comparative study on the methods of estimating land surface evaporation in Dawenhe river basin[J].SouthtoNorth Water Transfers and Water Science & Technology,2017,15(5):5055.(in Chinese)) DOI:10.13476/j.cnki.nsbdqk.2017.05.008.

[20] WU Y N,ZHONG P A,ZHANG Y,et al.Integrated flood risk assessment and zonation method:a case study in Huaihe River basin,China[J].Natural Hazards.2015,78(1):635651.DOI:10.1007/s1106901517373.

[21] 吳業(yè)楠,鐘平安,趙云發(fā),等.基于灰色關(guān)聯(lián)分析的相似洪水動(dòng)態(tài)展延方法[J].南水北調(diào)與水利科技,2014(1):126130.(WU Y N,ZHONG P A,ZHAO Y F,et al.Dynamic extending approach of similar flood based on gray correlation analysis[J].SouthtoNorth Water Transfers and Water Science & Technology,2014(1):126130.(in Chinese)) DOI:10.3724/sp.j.1201.2014.01126.

[22] 譚喬鳳,王旭,王浩,等.ANN、ANFIS和AR模型在日徑流時(shí)間序列預(yù)測中的應(yīng)用比較[J].南水北調(diào)與水利科技,2016,14(6):1217,26.(TAN Q F,WANG X,WANG H,et al.Comparative study of ANN,ANFIS and AR model for daily runoff time series prediction,2016[J].SouthtoNorth Water Transfers and Water Science & Technology,14(6):1217,26.(in Chinese)) DOI:10.13476/j.cnki.nsbdqk.2016.06.003.