余建文,韓躍新,李艷軍,高鵬
?
赤鐵礦流化床還原過(guò)程中磁鐵礦的形成與生長(zhǎng)規(guī)律
余建文,韓躍新,李艷軍,高鵬
(東北大學(xué) 資源與土木工程學(xué)院,遼寧 沈陽(yáng),110819)
以20% CO-80% CO2(質(zhì)量分?jǐn)?shù))為還原流化氣體,借助光學(xué)顯微鏡、掃描電鏡研究赤鐵礦流化床還原過(guò)程中磁鐵礦的形成與生長(zhǎng)規(guī)律。研究結(jié)果表明:新生磁鐵礦晶核呈針狀,長(zhǎng)度不一且優(yōu)先在赤鐵礦顆粒的邊緣處形成;還原溫度和焙燒時(shí)間對(duì)產(chǎn)物磁鐵礦層的厚度影響顯著,隨著還原溫度升高和焙燒時(shí)間延長(zhǎng),產(chǎn)物磁鐵礦層厚度增加;磁鐵礦的生長(zhǎng)過(guò)程可分為2個(gè)不同的階段即誘導(dǎo)期和生長(zhǎng)期,且產(chǎn)物磁鐵礦層厚度增長(zhǎng)與還原時(shí)間的關(guān)系符合拋物線定律;在誘導(dǎo)期,生長(zhǎng)過(guò)程的指前因子0=1.95×105μm2/min,活化能Δa=60.86 kJ/mol;在生長(zhǎng)期,生長(zhǎng)過(guò)程的指前因子0=9.77×104μm2/min,活化能Δa=35.71 kJ/mol。
赤鐵礦;懸浮磁化焙燒;磁鐵礦;生長(zhǎng)動(dòng)力學(xué)
磁化焙燒是復(fù)雜難選赤鐵礦石開發(fā)利用的重要預(yù)處理方法[1?7]。流態(tài)化焙燒因具有傳熱傳質(zhì)效率高、焙燒能耗低等突出優(yōu)點(diǎn),成為近年來(lái)的研究熱點(diǎn)[8?11]。目前,關(guān)于赤鐵礦、褐鐵礦、菱鐵礦、混合型紅鐵礦等難選鐵礦石的懸浮態(tài)磁化焙燒工藝優(yōu)化研究較 多[12?15],而對(duì)于赤鐵礦懸浮態(tài)還原過(guò)程中磁鐵礦的形成及其生長(zhǎng)機(jī)制研究較少。為此,本文作者以20% CO- 80% CO2(質(zhì)量分?jǐn)?shù))為還原流化氣體,借助光學(xué)顯微鏡、掃描電鏡研究赤鐵礦流化床還原過(guò)程中磁鐵礦的形成與生長(zhǎng)規(guī)律,以便為難選赤鐵礦石的懸浮磁化焙燒過(guò)程提供參考。
試驗(yàn)原料為赤鐵礦單礦物(純度為93.48%,符合試驗(yàn)要求),另外含有少量的石英等雜質(zhì),其化學(xué)成分(質(zhì)量分?jǐn)?shù))如下:TFe,65.44%;SiO2,4.11%;Al2O3,0.61%;CaO,0.14%;MgO,0.63%,平均粒徑為60 μm。試驗(yàn)所用還原劑為CO與CO2的混合氣體,質(zhì)量比為2:8,純度為99.99%。
圖1所示為微型流化床磁化焙燒裝置示意圖。前期探索試驗(yàn)結(jié)果表明:在還原溫度為500~600 ℃,氣體流量為1 000 mL/min時(shí),赤鐵礦顆粒群(質(zhì)量為5 g)在多孔(孔徑為15 μm)石英板(直徑為25 mm)上流化狀態(tài)良好。在試驗(yàn)過(guò)程中,待溫度升至設(shè)定值(500,525,550,575或600 ℃)后通入流量為1 000 mL/min的20% CO-80% CO2混合氣體并開始計(jì)時(shí),待反應(yīng)到預(yù)設(shè)時(shí)間后,關(guān)閉CO/CO2混合氣體閥門,并停止加熱。待爐溫冷卻至室溫時(shí),將不同焙燒條件下的焙燒礦與樹脂固結(jié)成直徑×高為35 mm×5 mm的圓柱體,經(jīng)細(xì)磨、拋光后采用光學(xué)顯微鏡隨機(jī)地測(cè)量不同焙燒條件下物料光片中產(chǎn)物磁鐵礦層的厚度D,結(jié)果如圖2所示。
圖1 微型流化床磁化焙燒裝置示意圖
圖2 顆粒中產(chǎn)物磁鐵礦層厚度的測(cè)量
根據(jù)測(cè)量結(jié)果計(jì)算出不同焙燒條件下產(chǎn)物磁鐵礦層的平均厚度,對(duì)磁鐵礦相的生長(zhǎng)特性進(jìn)行定量描述。產(chǎn)物磁鐵礦層平均厚度的計(jì)算公式為
式中:為待測(cè)量顆??倲?shù);D為第個(gè)(1≤≤100)顆粒中產(chǎn)物磁鐵礦層厚度,μm。
圖3所示為反射光下550 ℃時(shí)不同焙燒時(shí)間下樣品拋光截面的顯微照片。由圖3(a)可見:在反應(yīng)前期,赤鐵礦的還原磁化反應(yīng)優(yōu)先在顆粒的邊緣(界)處發(fā)生;由圖3(b)可知:新生磁鐵礦呈針狀結(jié)構(gòu),隨著反應(yīng)時(shí)間延長(zhǎng),生成的磁鐵礦相越來(lái)越多,產(chǎn)物層厚度逐漸增大,赤鐵礦內(nèi)核逐漸變小(見圖3(c)),并最終完全轉(zhuǎn)變?yōu)榇盆F礦(見圖3(d))。
圖4所示為原料表面及焙燒樣品(還原溫度為550 ℃,焙燒時(shí)間為9 min)拋光截面的SEM圖片。由圖4(a)可見:原料赤鐵礦顆粒的表面(邊緣)粗糙、凹凸不平,這些凹凸表面存在大量不飽和化學(xué)鍵,具有很強(qiáng)的化學(xué)反應(yīng)活性,故赤鐵礦的還原磁化反應(yīng)優(yōu)先在顆粒的外表面(邊緣)發(fā)生。由圖4(b),(c)和(d)可知:反應(yīng)生成的磁鐵礦顆粒是疏松多孔的,并伴隨有大量微裂紋和微孔。由圖4(c)和(d)可見:生成的磁鐵礦晶核呈致密的針狀結(jié)構(gòu),這些針狀結(jié)構(gòu)長(zhǎng)度不一,平均長(zhǎng)度為10~20 μm,平均直徑為0.5~2.0 μm,這些致密針狀結(jié)構(gòu)的磁鐵礦晶核聚集形成蜂窩多孔狀的磁鐵礦顆粒。
還原時(shí)間/min:(a) 1;(b) 3;(c) 5;(d) 9
(a) 原料,放大1 000倍;(b) 焙燒物料,放大1 000倍;(c) 焙燒物料,放大2 000倍;(d) 焙燒物料,放大4 000倍
由上述分析可知:新生的磁鐵礦晶核優(yōu)先在原始赤鐵礦顆粒邊緣處形成,并呈致密針狀結(jié)構(gòu)。隨著反應(yīng)進(jìn)行,反應(yīng)生成的Fe2+通過(guò)擴(kuò)散作用向針狀結(jié)構(gòu)的磁鐵礦尖端運(yùn)輸,促使磁鐵礦晶核長(zhǎng)大。在磁鐵礦晶核長(zhǎng)大過(guò)程中,由于磁鐵礦與赤鐵礦晶格參數(shù)存在差異,反應(yīng)相變時(shí)會(huì)引起體積膨脹,容易在磁鐵礦與赤鐵礦的相界面處產(chǎn)生微裂紋或微孔[16]。若微裂紋發(fā)生在針狀磁鐵礦晶核的尖端,則Fe2+向針狀磁鐵礦晶核尖端擴(kuò)散的通道被阻斷,針狀磁鐵礦晶核停止生長(zhǎng);若微裂紋發(fā)生在其他磁鐵礦?赤鐵礦界面處,裸露出的新鮮赤鐵礦內(nèi)表面化學(xué)反應(yīng)活性高,磁鐵礦晶核容易在此處形成并長(zhǎng)大。由于微裂紋發(fā)生位置具有隨機(jī)性,致使新生的針狀磁鐵礦晶核長(zhǎng)度不一,且多呈樹枝狀結(jié)構(gòu)隨機(jī)地分布于磁鐵礦顆粒中(見圖4(d))。同時(shí),微裂紋的產(chǎn)生進(jìn)一步促進(jìn)了反應(yīng)的進(jìn)行,直至赤鐵礦完全轉(zhuǎn)變?yōu)槎嗫谞畹拇盆F礦。
圖5所示為不同還原溫度下產(chǎn)物磁鐵礦層厚度隨時(shí)間的變化。從圖5可見:隨著還原溫度升高或焙燒時(shí)間延長(zhǎng),產(chǎn)物磁鐵礦層厚度顯著增加。值得一提的是,當(dāng)產(chǎn)物磁鐵礦層厚度D小于10 μm時(shí),產(chǎn)物磁鐵礦層厚度隨時(shí)間增長(zhǎng)速率比產(chǎn)物磁鐵礦層厚度大于10 μm時(shí)的增長(zhǎng)速率小。這一結(jié)果表明產(chǎn)物磁鐵礦層厚度增長(zhǎng)過(guò)程可分為2個(gè)不同階段即誘導(dǎo)期(D≤ 10 μm)和生長(zhǎng)期(D>10 μm)。誘導(dǎo)期產(chǎn)物磁鐵礦層的增長(zhǎng)速度明顯要比生長(zhǎng)期的增長(zhǎng)速度慢,且隨著還原溫度升高,誘導(dǎo)期縮短。這可能是由于誘導(dǎo)期新相磁鐵礦成核困難,產(chǎn)物磁鐵礦層的厚度增長(zhǎng)緩慢;一旦新相磁鐵礦核形成(反應(yīng)進(jìn)入生長(zhǎng)期),其本身就是新的活性中心,對(duì)反應(yīng)起催化作用。同時(shí),新相磁鐵礦的形成容易引發(fā)微裂紋的產(chǎn)生,加速反應(yīng)進(jìn)行,提高Fe2+向反應(yīng)界面處擴(kuò)散、遷移的能力,促進(jìn)新相磁鐵礦核的生長(zhǎng)過(guò)程,即快速地提高產(chǎn)物磁鐵礦層厚度增長(zhǎng)的速率。
溫度/K:1—773;2—798;3—823;4—848;5—873。
在固相反應(yīng)中,產(chǎn)物層厚度增長(zhǎng)與反應(yīng)時(shí)間的關(guān)系一般遵循拋物線定律,其計(jì)算公式如下[12, 17?19]:
式中:0為初始產(chǎn)物層厚度,μm;為產(chǎn)物層厚度的增長(zhǎng)速率常數(shù),μm2/min;為反應(yīng)時(shí)間,min。
在試驗(yàn)過(guò)程中,反應(yīng)初始時(shí)無(wú)磁鐵礦形成,產(chǎn)物磁鐵礦層厚度0=0,故式(2)可簡(jiǎn)寫為
基于阿倫尼烏斯公式,生長(zhǎng)速率常數(shù)與反應(yīng)溫度之間的關(guān)系可表示為
式中:0為指前因子,μm2/min;為反應(yīng)熱力學(xué)溫度,K;Δa為表觀活化能,J/mol;為氣體常數(shù),為 8.314 J/(mol?K)。
將不同還原溫度條件下的生長(zhǎng)速率常數(shù)(見圖6)代入式(4),并對(duì)函數(shù)ln和1/進(jìn)行回歸計(jì)算和線性擬合,結(jié)果如圖7所示。由圖7可分別求得誘導(dǎo)期和生長(zhǎng)期的動(dòng)力學(xué)參數(shù):在誘導(dǎo)期,指前因子0=1.95× 105μm2/min,活化能Δa=60.86 kJ/mol;在生長(zhǎng)期,指前因子0=9.77×104μm2/min,活化能Δa= 35.71 kJ/mol。
活化能是化學(xué)反應(yīng)發(fā)生難易程度的表征。磁鐵礦生長(zhǎng)過(guò)程中誘導(dǎo)期活化能(Δa=60.86 kJ/mol)明顯高于生長(zhǎng)期活化能(Δa=35.71 kJ/mol),說(shuō)明誘導(dǎo)期磁鐵礦晶核生長(zhǎng)困難,產(chǎn)物磁鐵礦層厚度增長(zhǎng)緩慢;生長(zhǎng)期磁鐵礦晶核生長(zhǎng)過(guò)程容易,產(chǎn)物磁鐵礦層厚度增長(zhǎng)速率快。此外,產(chǎn)物磁鐵礦層厚度增長(zhǎng)動(dòng)力學(xué)分析結(jié)果也進(jìn)一步佐證了上述結(jié)論。
溫度/℃:(a) 500;(b) 525;(c) 550;(d) 575;(e) 600
(a) 誘導(dǎo)期;(b) 生長(zhǎng)期
1) 新生磁鐵礦晶核呈針狀結(jié)構(gòu)、長(zhǎng)度不一,且優(yōu)先在原始赤鐵礦顆粒的邊緣處形成;隨著反應(yīng)進(jìn)行,赤鐵礦內(nèi)核逐漸變小,生成的磁鐵礦相越來(lái)越多,產(chǎn)物層厚度逐漸增大,并最終完全轉(zhuǎn)變?yōu)榇盆F礦;新生磁鐵礦晶核在長(zhǎng)大過(guò)程中容易隨機(jī)地引發(fā)微裂紋的產(chǎn)生,故新生磁鐵礦顆粒通常是疏松多孔的。
2) 還原溫度和焙燒時(shí)間對(duì)產(chǎn)物磁鐵礦層厚度影響顯著。隨著還原溫度升高和焙燒時(shí)間延長(zhǎng),產(chǎn)物磁鐵礦層厚度顯著增加;磁鐵礦相的生長(zhǎng)過(guò)程可分為2個(gè)不同階段即誘導(dǎo)期和生長(zhǎng)期,且誘導(dǎo)期(D≤10 μm) 的產(chǎn)物磁鐵礦層增長(zhǎng)速率要比生長(zhǎng)期(D>10 μm)的增長(zhǎng)速率小。
3) 產(chǎn)物磁鐵礦層厚度的增長(zhǎng)過(guò)程符合拋物線定律。在誘導(dǎo)期,指前因子0=1.95×105μm2/min,活 化能Δa=60.86kJ/mol;在生長(zhǎng)期,指前因子0= 9.77×104μm2/min,活化能Δa=35.71 kJ/mol。
[1] LI Chao, SUN Henghu, BAI Jing, et al. Innovative methodology for comprehensive utilization of iron ore tailings: Part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting[J]. Journal of Hazardous Materials, 2010, 174(1): 71?77.
[2] YANG Huifeng, JING Lili, ZHANG Baogang. Recovery of iron from vanadium tailings with coal-based direct reduction followed by magnetic separation[J]. Journal of Hazardous Materials, 2011, 185(2/3): 1405?1411.
[3] PENG Ning, PENG Bing, CHAI Liyuan, et al. Recovery of iron from zinc calcines by reduction roasting and magnetic separation[J]. Minerals Engineering, 2012, 35: 57?60.
[4] YU Jianwen, HAN Yuexin, LI Yanjun, et al. Separation and recovery of iron from a low-grade carbonate-bearing iron ore using magnetizing roasting followed by magnetic separation[J]. Separation Science and Technology, 2017, 52(10): 1768?1774.
[5] LIU Xing, YU Yongfu, CHEN Wen. Phase change of chlorite in reducing atmosphere[J]. Physicochemical Problems of Mineral Processing, 2014, 50(2): 607?614.
[6] YU Jianwen, HAN Yuexin, LI Yanjun, et al. Beneficiation of an iron ore fines by magnetization roasting and magnetic separation[J]. International Journal of Mineral Processing, 2017, 168: 102?108.
[7] YU Jianwen, HAN Yuexin, LI Yanjun, et al. Separation and recovery of iron from a low-grade carbonate-bearing iron ore using magnetizing roasting followed by magnetic separation[J]. Separation Science and Technology, 2017, 52(10): 1?7.
[8] 朱慶山, 李洪鐘. 難選鐵礦流態(tài)化磁化焙燒研究進(jìn)展與發(fā)展前景[J]. 化工學(xué)報(bào), 2014, 65(7): 2437?2442. ZHU Qingshan, LI Hongzhong. Status quo and development prospect of magnetizing roasting via fluidized bed for low grade iron ore[J]. CIESC Journal, 2014, 65(7): 2437?2442.
[9] HOU Baolin,ZHANG Haiying, LI Hongzhong, et al. Determination of the intrinsic kinetics of iron oxide reduced by carbon monoxide in an isothermal differential micro-packed bed[J]. Chinese Journal of Chemical Engineering, 2015, 23(6): 974?980.
[10] FENG Zhili, YU Yongfu, LIU Genfan, et al. Kinetics of the thermal decomposition of Wangjiatan siderite[J]. Journal of Wuhan University of Technology(Materials Science Edition), 2011, 26(3): 523?526.
[11] YU Yongfu, QI Chaoying. Magnetizing roasting mechanism and effective ore dressing process for oolitic hematite ore[J]. Journal of Wuhan University of Technology(Materials Science Edition), 2011, 26(2): 176?181.
[12] FEILMAYR C, THURNHOFER A, WINTER F, et al. Reduction behavior of hematite to magnetite under fluidized bed conditions[J]. ISIJ International, 2004, 44(7): 1125?1133.
[13] LI Yuan, ZHU Tong. Recovery of low grade hematite via fluidized bed magnetizing roasting: investigation of magnetic properties and liberation characteristics[J]. Ironmaking & Steelmaking, 2012, 39(2): 112?120.
[14] LI Yanjun, WANG Ru, HAN Yuexin, et al. Phase transformation in suspension roasting of oolitic hematite ore[J]. Journal of Central South University, 2015, 22(12): 4560?4565.
[15] VYAZOVKIN S, BURNHAM A K, CRIADO J M, et al. ICTAC Kinetics committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1): 1?19.
[16] YU Jianwen, HAN Yuexin, LI Yanjun, et al. Mechanism and kinetics of the reduction of hematite to magnetite with CO-CO2in a micro-fluidized bed[J]. Minerals, 2017, 7(11): 209.
[17] 翟玉春. 鐵氧化物還原動(dòng)力學(xué)—用不可逆過(guò)程熱力學(xué)推導(dǎo)拋物線公式[J]. 東北大學(xué)學(xué)報(bào) (自然科學(xué)版), 1982, 3(3): 39?46. ZHAI Yuchun. Kinetics of reduction process of iron oxides—the parabolic formula derived on the basis of thermodynamics of irreversible process[J]. Journal of Northeastern University (Natural Science), 1982, 3(3): 39?46.
[18] DU Zhan, ZHU Qingshan, YANG Yafeng, et al. The role of MgO powder in preventing defluidization during fluidized bed reduction of fine iron ores with different iron valences[J]. Steel Research International, 2016, 87(12): 1742?1749.
[19] KHAWAM A, FLANAGAN D R. Solid-state kinetic models: basics and mathematical fundamentals[J]. Journal of Physical Chemistry B, 2006, 110(35): 17315?17328.
(編輯 伍錦花)
Formation and growth mechanism of magnetite during the fluidized reduction of hematite
YU Jianwen, HAN Yuexin, LI Yanjun, GAO Peng
(School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China)
A gas mixture of 20% CO-80% CO2was used as reducing and fluidizing agent, and the formation and growth mechanism of magnetite phase during the fluidized reduction of hematite was investigated by optical microscopy and scanning electron microscopy(SEM). The results show that the fresh magnetite nucleus are needle-like with different lengths, and are preferentially formed at the edges of original hematite particle. The reduction temperature and roasting time have significant effect on thickness of the magnetite product layer. With the increase of reduction temperature and roasting time, the thickness of magnetite layer increases. The growth process of magnetite phase can be divided into two different stages which includes induction period and growth period, and the growth mechanism of magnetite phase coincides with the parabolic law. In the induction and growth periods, the pre-exponential factor0is 1.95×105μm2/min and 9.77×104μm2/min, the activation energy Δais 60.86 kJ/mol and 35.71 kJ/mol, respectively.
hematite; fluidized magnetization roasting; magnetite; growth kinetics
10.11817/j.issn.1672-7207.2018.11.001
TD924.1;TD925.6
A
1672?7207(2018)11?2643?06
2017?11?20;
2018?02?09
國(guó)家自然科學(xué)基金資助項(xiàng)目(51734005,51674064,51674065);中國(guó)博士后科學(xué)基金資助項(xiàng)目(2018M631812) (Projects(51734005, 51674064, 51674065) supported by the National Natural Science Foundation of China; Project(2018M631812) supported by the National Science Foundation for Postdoctoral Science of China)
韓躍新,博士,教授,從事復(fù)雜難選礦產(chǎn)資源高效利用研究;E-mail: dongdafulong@mail.neu.edu.cn.