常雙雙,李萌,厲秀梅,石玉祥,張敏紅,馮京海
?
日循環(huán)變化偏熱環(huán)境對肉雞血清腦腸肽和盲腸菌群 多樣性的影響
常雙雙1,2,李萌1,厲秀梅1,石玉祥2,張敏紅1,馮京海1
(1中國農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所/動物營養(yǎng)學(xué)國家重點實驗室,北京 100193;2河北工程大學(xué)農(nóng)學(xué)院,河北邯鄲 056021)
【目的】應(yīng)激可改變畜禽腦腸軸功能,同時改變腸道菌群結(jié)構(gòu),其中熱應(yīng)激是影響畜禽健康最為主要的環(huán)境影響因素之一。研究日循環(huán)變化偏熱環(huán)境對肉雞血清腦腸肽和盲腸菌群多樣性的影響,為肉雞健康養(yǎng)殖提供理論依據(jù)?!痉椒ā窟x取22d健康、體重相近愛拔益加(AA)肉雞120只,隨機分成2個處理組,每組6個重復(fù),每個重復(fù)10只雞(公母各5只)。將2個處理組的肉雞轉(zhuǎn)入環(huán)境控制艙,在環(huán)境溫度為21℃,相對濕度為60%的條件下適應(yīng)7d。29d時開始正式試驗,試驗組環(huán)境溫度采用24h循環(huán)變溫(26℃—29℃—32℃—29℃—26℃),相對濕度為60%;對照組環(huán)境溫度為21℃,相對濕度為60%,試驗條件維持至試驗結(jié)束,共計14d。分別于試驗第7和14天,每組隨機選取6只肉雞(公母各半,每個重復(fù)1只肉雞),肉雞采用靜脈采血,采用ELISA測定血清中5-HT、VIP、SP的含量。同時用無菌收集盲腸內(nèi)容物,將同一處理組的6個樣品迅速混勻,裝置無菌離心管中,液氮速凍,-80℃保存?zhèn)溆?。采?6S rDNA的PCR-DGGE分子技術(shù),結(jié)合共性和特異性條帶割膠回收DNA進(jìn)行克隆和測序,分析日循環(huán)變化偏熱環(huán)境對肉雞血清腦腸肽和盲腸菌群多樣性的影響。【結(jié)果】(1)試驗第7天時,日循環(huán)變化偏熱環(huán)境組肉雞血清5-HT含量顯著高于對照組(<0.05);而對照組和日循環(huán)變化偏熱環(huán)境組肉雞VIP和SP并無顯著差異。試驗第14天時,日循環(huán)變化偏熱環(huán)境組肉雞血清VIP含量顯著低于對照組(<0.05),對照組和日循環(huán)變化偏熱環(huán)境組肉雞血清5-HT和SP并無顯著差異。(2)試驗第7天,日循環(huán)變化偏熱環(huán)境組肉雞盲腸細(xì)菌條帶數(shù)低于對照組,第14天日循環(huán)變化偏熱環(huán)境組與對照組細(xì)菌條帶數(shù)相同,但日循環(huán)變化偏熱環(huán)境組肉雞盲腸菌群多樣性下降。(3)對照組和日循環(huán)變化偏熱環(huán)境組肉雞盲腸共性菌群為、、和;而日循環(huán)變化偏熱環(huán)境組利于和的生長,抑制和的定植?!窘Y(jié)論】(1)日循環(huán)變化偏熱環(huán)境組與對照組相比,試驗第7天肉雞血清5-HT的含量增加;試驗第14天肉雞血清VIP的含量下降;SP無顯著差異。(2)日循環(huán)變化偏熱環(huán)境影響肉雞盲腸菌群結(jié)構(gòu)和多樣性。
肉雞;偏熱環(huán)境;腦腸肽;腸道菌群
【研究意義】應(yīng)激可改變腦腸軸功能和腸道菌群結(jié)構(gòu)[1],其中熱應(yīng)激是影響畜禽健康最為主要的環(huán)境影響因素之一?!厩叭搜芯窟M(jìn)展】筆者所在課題組近年來初步探討了偏熱環(huán)境對肉雞生理、行為、物質(zhì)代謝、腸道菌群和生產(chǎn)性能等方面的影響。研究發(fā)現(xiàn),26和30℃偏熱處理影響肉雞休息行為且30℃偏熱處理顯著升高肉雞體核溫度[2];持續(xù)偏熱處理(26和31℃)影響肉雞糖脂代謝及禽類解偶聯(lián)蛋白(av UCP)m RNA表達(dá),降低肉雞生長性能,且不同偏熱程度對肉雞影響程度不同[3];持續(xù)偏熱處理(26 和31℃)與 21 ℃相比,降低肉雞盲腸菌群多樣性[4]。腦腸肽是一類同時存在于中樞神經(jīng)系統(tǒng)和胃腸道的胃腸肽類激素,以旁分泌、自分泌或內(nèi)分泌等形式作用于胃腸效應(yīng)細(xì)胞[5],調(diào)控著腸道運動、感覺、分泌等功能,由血液所攜帶的腦腸肽是胃腸道向腦內(nèi)傳遞的重要化學(xué)信號?,F(xiàn)已發(fā)現(xiàn)5-羥色胺(5-hydroxytryptamine,5-HT)、血管活性肽(vasoactive intestinal peptide,VIP)、P物質(zhì)(substance P,SP)等腦腸肽與胃腸活動相關(guān)[6]。腦腸肽影響腸道菌群的多樣性,VIP可以改善腸道微環(huán)境,促進(jìn)腸道有益菌的定植[7]。反過來,腸道菌群及其代謝產(chǎn)物也影響腦腸肽的分泌[8],如產(chǎn)芽孢細(xì)菌(SP)及其代謝產(chǎn)物短鏈脂肪酸(SCFA)[9-10]可以影響5-HT的產(chǎn)生;腸道菌群紊亂可導(dǎo)致5-HT水平的失衡,而利用益生菌制劑后可以明顯緩解5-HT的失衡[11]??梢?,腦腸肽分泌與腸道菌群多樣性之間存在著相互影響的關(guān)系。另外也發(fā)現(xiàn),不同變溫模式對腦腸肽和菌群的影響不一樣,如長期熱應(yīng)激(31±1.5℃)影響膽囊收縮素(CCK)的表達(dá)[12]。急性熱應(yīng)激(35±1℃)發(fā)生時,腦腸肽(如促生長素Ghrelin和CCK)在對食欲的調(diào)節(jié)發(fā)揮重要的作用,尤其是腺胃、十二指腸和空腸中增加Ghrelin是導(dǎo)致采食量降低的重要原因[13]?!颈狙芯壳腥朦c】目前有關(guān)環(huán)境溫度對肉雞腸道菌群的影響大多集中于32℃以上且通常采用恒溫模式,但實際養(yǎng)殖過程中多數(shù)情況下環(huán)境溫度都不是恒定的;近年來,主要研究熱應(yīng)激下腦腸肽(CCK與Ghrelin等)對機體攝食行為的控制作用,而有關(guān)環(huán)境溫度對肉雞血清腦腸肽5-HT、VIP和SP影響的相關(guān)研究尚未見報道。【擬解決的關(guān)鍵問題】本試驗通過檢測肉雞血清腦腸肽的含量與盲腸菌群16SrDNA DGGE圖譜分析,探討日循環(huán)變化偏熱環(huán)境對肉雞血清腦腸肽和盲腸菌群多樣性的變化。
研究于2016年10—11月在中國農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所動物營養(yǎng)學(xué)國家重點實驗室昌平基地的人工環(huán)境控制艙完成。
選取22d健康、體重相近愛拔益加(AA)肉雞120只,隨機分成2個處理組,每組6個重復(fù),每個重復(fù)10只雞(公母各5只)。試驗在動物營養(yǎng)學(xué)國家重點實驗室的環(huán)境控制艙內(nèi)進(jìn)行,溫、濕度自動控制(精度±1℃、±7%),無風(fēng)、24 h 光照。試驗肉雞均采用單層平養(yǎng),所選用籠具為動物營養(yǎng)學(xué)國家重點實驗室研發(fā)的單層平養(yǎng)籠具[14],自由采食與飲水,常規(guī)免疫。試驗動物所用飼糧與文獻(xiàn)[2-4]的試驗配方一致。
將2個處理組的肉雞轉(zhuǎn)入環(huán)境溫度為21℃、相對濕度為60%的環(huán)境控制艙適應(yīng)7d。29d時開始正式試驗,試驗組環(huán)境溫度采用24h循環(huán)變溫(26℃-29℃-32℃-29℃-26℃)見表1,相對濕度為60%;對照組環(huán)境溫度恒定為21℃,相對濕度為60%,試驗條件維持至試驗結(jié)束,共計14d。
表1 環(huán)境溫度變化時間表
1.3.1 血液采集與測定方法 分別于試驗第7和14天,每組隨機選取6只肉雞(公母各半,每個重復(fù)1只肉雞),肉雞采用靜脈采血,靜置2h后,3 000r/min低溫離心10min吸取血清,至-80℃冰箱保存。
采用酶聯(lián)免疫吸附測定(enzyme linked immunosorbent assay,ELISA),委托北京方程生物科技有限公司測定血清中5-HT、VIP、SP的含量。
1.3.2 腸道樣品的采集與測定方法
1.3.2.1 盲腸樣品的收集 分別于試驗第7和14天,每組隨機選取6只肉雞(公母各半,每個重復(fù)1只肉雞)剪斷頸靜脈處死,全身消毒后剖開腹腔,分離腸道,結(jié)扎回盲交界處,剪下盲腸迅速移至超凈工作臺,用無菌剪刀剪開腸壁,收集盲腸內(nèi)容物,將同一處理組的6個樣品迅速混勻,裝置無菌離心管中,液氮速凍,-80℃保存?zhèn)溆谩?/p>
1.3.2.2 細(xì)菌16S rDNA片段的PCR擴增 以樣品基因組 DNA 為模板,采用細(xì)菌通用引物 GC-338F 和 518R 擴增樣品 16S rDNA 高變區(qū)序列,引物信息見表2。
表2 引物信息
PCR 擴增體系(50 μL)為:10×PCR buffer 5 μL;dNTPMixture(2.5 mmol·L-1)3.2 μL;ExTaq(5 U·μL-1)0.4 μL;GC-338F(20 μmol·L-1)1 μL;518R(20 μmol·L-1)1 μL;模板 DNA 50 ng;補ddH2O至50 μL。
PCR 擴增程序為:94℃預(yù)變性 5 min;94℃變性 1 min,55℃復(fù)性 45 s,72℃延伸 1 min,30 個循環(huán);最終 72℃延伸 10 min。
PCR產(chǎn)物采用OMEGA公司DNAGel Extraction Kit 純化回收。
PCR 儀為 Biometra 公司生產(chǎn)的 T-gradient,凝膠成像儀為 Bio-Rad 公司的 Gel-Doc2000 凝膠成像系統(tǒng)。
1.3.2.3 PCR產(chǎn)物的變性梯度凝膠電泳(DGGE)分析取10 μL PCR 的產(chǎn)物進(jìn)行變性梯度凝膠電泳(DGGE)分析。采用變性梯度為 35%—55%、濃度為 7%的聚丙烯酰胺凝膠在 1×TAE緩沖液中 150V 60℃下電泳5h。
變性梯度凝膠電泳(DGGE)完畢后、采用銀染法染色、步驟如下:
a) 固定液(乙醇 50 mL、冰醋酸 2.5 mL、定容 500 mL)固定 15 min;
b) Milli-Q純水清洗、20 s 和 2 min各一次;
c) 銀染液(硝酸銀 1 g、37%甲醛 0.75 mL、定容 500 mL)染色 15 min;
d) Milli-Q純水清洗、20 s 和 2 min各一次;
e) 顯色液(氫氧化鈉 7.5 g、37%甲醛 2.5 mL、定容 500 mL)顯色 5—7 min;
最后用終止液(乙醇 50 mL、冰醋酸 2.5 mL、定容 500 mL)終止反應(yīng)。
1.3.2.4 DGGE 圖譜中優(yōu)勢電泳條帶的序列測定 DGGE 凝膠條帶回收后,以338F/518R 為引物進(jìn)行 PCR 擴增,PCR 產(chǎn)物純化后連接到pMD18-T載體上,轉(zhuǎn)化至DH5α感受態(tài)細(xì)胞中,篩選陽性克隆測序。測序結(jié)果與GenBank 中的序列進(jìn)行比對,得到條帶所代表的細(xì)菌類型。每個回收條帶選取3個克隆進(jìn)行了序列測定。
試驗數(shù)據(jù)使用SAS9.2統(tǒng)計分析軟件進(jìn)行單因素分析(One-way ANOVA),<0.05為差異顯著;采用軟件Quantity One分析DGGE圖譜多樣性。
由表3可以看出,試驗第7天時,日循環(huán)變化偏熱環(huán)境組肉雞血清5-HT含量顯著高于21℃組(<0.05);而對照組和日循環(huán)變化偏熱環(huán)境組肉雞VIP和SP并無顯著差異。試驗第14天時,日循環(huán)變化偏熱環(huán)境組肉雞血清VIP含量顯著低于對照組(<0.05),對照組和日循環(huán)變化偏熱環(huán)境組肉雞血清5-HT和SP并無顯著差異。
表3 日循環(huán)變化偏熱環(huán)境對肉雞血清腦腸肽的影響
同列數(shù)據(jù)無字母或相同字母表示差異不顯著(>0.05) ,不同小寫字母表示差異顯著(<0.05)
In the same column, values with no letter or the same letter superscripts mean no significant difference (>0.05) ,while with different small letter superscripts mean significant difference (<0.05)
2.2.1 肉雞腸道菌群PCR-DGGE擴增指紋圖譜 通過肉雞腸道菌群PCR-DGGE指紋圖譜(圖1)可以看出,試驗第7天,日循環(huán)變化偏熱環(huán)境組較對照組細(xì)菌條帶數(shù)減少2條;試驗第14天,對照組和日循環(huán)化偏熱環(huán)境組細(xì)菌條帶數(shù)相同。
2.2.2 肉雞腸道菌群結(jié)構(gòu)多樣性分析 由表4可以看出,試驗第7天,對照組和日循環(huán)化偏熱環(huán)境組細(xì)菌間的相似系數(shù)為79.9%;試驗第14天,對照組和日循環(huán)化偏熱環(huán)境組細(xì)菌間的相似系數(shù)為66.1%;試驗第14天與第7天相比,日循環(huán)化偏熱環(huán)境組細(xì)菌間相似系數(shù)下降。
2.2.3 肉雞腸道特異性菌群和共性菌群分析 從肉雞腸道菌群16S rDNA V3區(qū)PCR-DGGE指紋圖譜中分別割膠回收了2條特異性條帶和5條共性條帶,由圖1和表5可以看出,試驗第7天和14天肉雞盲腸內(nèi)容物中均檢測出共性條帶:1號菌條帶()、3號菌條帶()、4號菌條帶()、5號菌條帶()和7號菌條帶();日循環(huán)變化偏熱環(huán)境處理后,腸道菌群發(fā)生變化,試驗第14天較第7天,日循環(huán)化偏熱環(huán)境組1、3和7號菌條帶豐富度下降而4號和5號菌條帶豐富度顯著增加;且試驗第14天日循環(huán)化偏熱環(huán)境組并未檢測出2號菌條帶()和6號菌條帶()
左圖編號2代表為試驗第7天對照組;編號5為試驗第7天日循環(huán)變化偏熱環(huán)境組;右圖編號2為試驗第14天對照組;第二個編號5為試驗第14天日循環(huán)變化偏熱環(huán)境組
表4 戴斯系數(shù)比較PCR-DGGE圖譜的相似性
1:試驗第7天對照組;2:試驗第7天日循環(huán)變化偏熱環(huán)境組;3:試驗第14天對照組;4:試驗第14天日循環(huán)變化偏熱環(huán)境組
1: Control group 7 d; 2: Treatment group 7 d; 3: Control group 14 d; 4: Treatment group 14 d
表5 DGGE 圖譜中條帶的基因片段序列比對
從測序結(jié)果可見,7條菌群序列均分布于厚壁菌門()和擬桿菌門(),與 GenBank 數(shù)據(jù)庫中細(xì)菌的同源性絕大多數(shù)都在90%以上。
腦腸肽可以直接作用于中樞神經(jīng)系統(tǒng),由血液所攜帶的腦腸肽是胃腸道向腦內(nèi)傳遞的重要化學(xué)信號,這些信號物質(zhì)可以通過腦干的最后區(qū)直接入腦而作用于腦干迷走復(fù)合體,進(jìn)而影響迷走神經(jīng)的傳出功能,參與胃腸運動、食欲及攝食功能的調(diào)節(jié)[15]。
5-羥色胺(5-hydroxytryptamine,5-HT),又名血清素(serotonin),是一種神經(jīng)遞質(zhì),也是重要的腸道生理調(diào)節(jié)器,主要由腸內(nèi)分泌細(xì)胞產(chǎn)生,參與調(diào)解腸道運動、感覺,直接或間接刺激腸道分泌。本試驗結(jié)果顯示,試驗第7天,日循環(huán)變化偏熱環(huán)境組肉雞血清5-HT含量顯著高于對照組(<0.05),而試驗第14天并無顯著差異。由此可推斷血清5-HT的增加可能會通過腸道分泌和運動的變化而引起腸道菌群的變化。
血管活性腸肽(vasoactive intestinal peptide,VIP)是一種非膽堿能非腎上腺素能抑制系統(tǒng)的神經(jīng)遞質(zhì),對胃腸活動起抑制性調(diào)節(jié)作用,引起全胃腸環(huán)形肌松弛[16]。研究報道,血管活性腸肽分泌神經(jīng)元可刺激胰液和腸液分泌,保護(hù)腸黏膜,調(diào)節(jié)胃腸吸收[17]。此外還能改善腸黏膜組織微循環(huán)及內(nèi)環(huán)境,為腸上皮細(xì)胞提供營養(yǎng)物質(zhì)和氧,并清除過多的氧自由基等有害物質(zhì)[18]。有研究表明,VIP含量減少,對腸道動力的抑制作用減小,致使腸道蠕動增強,改變腸道內(nèi)環(huán)境。本試驗結(jié)果得出,試驗第7天和14天,日循環(huán)變化偏熱環(huán)境組肉雞血清VIP均低于對照組。從以上相關(guān)研究結(jié)果可以認(rèn)為,本試驗血管活性腸肽的下降可能將導(dǎo)致腸道內(nèi)環(huán)境及菌群結(jié)構(gòu)的變化。
P物質(zhì)(substance P,SP)本身又是一種速激肽,可增加胃腸蠕動,強烈促消化道平滑肌收縮,加強結(jié)腸的集團(tuán)推進(jìn)運動,刺激小腸、結(jié)腸黏膜分泌水和電解質(zhì),使胃腸道的血管擴張,通透性增高,血漿外滲,并參與炎癥過程和免疫反應(yīng)[19]。該研究結(jié)果發(fā)現(xiàn),試驗第7和14天,兩組肉雞血清SP并無顯著差異。
早先研究表明肉雞盲腸腸道內(nèi)含有復(fù)雜的微生物菌群[20-23],主要以厚壁菌門()為主,其次為變形菌門()、擬桿菌門()和放線菌門()[24-25]。而家禽在生長發(fā)育過程中,溫度過高改變家禽腸道微生物菌群結(jié)構(gòu)[26]。研究報道,持續(xù)偏熱環(huán)境(26℃和31℃)下肉雞盲腸細(xì)菌條帶數(shù)和菌群多樣性下降[4]。本研究通過對肉雞盲腸微生物進(jìn)行圖譜條帶和多樣性分析得出,第7天日循環(huán)變化偏熱環(huán)境組較對照組,肉雞盲腸細(xì)菌條帶數(shù)下降,第14天日循環(huán)變化偏熱環(huán)境組和對照組細(xì)菌條帶數(shù)相同但細(xì)菌間相似性下降,結(jié)果表明日循環(huán)變化偏熱環(huán)境影響肉雞盲腸菌群平衡,且隨著偏熱環(huán)境時間的增加,對菌群結(jié)構(gòu)的影響增大。
據(jù)報道,肉雞暴露于34—38℃下,熱應(yīng)激導(dǎo)致擬桿菌屬、柔嫩梭菌屬、顫螺菌屬、梭菌屬、考拉桿菌屬、薩特氏菌屬、Dorea 豐度比例降低;而毛螺旋菌科和瘤胃菌科的瘤胃球菌屬、厭氧原體屬、豐度比例增加[27]。本研究發(fā)現(xiàn)試驗第14天日循環(huán)變化偏熱環(huán)境組和豐度下降而和豐度顯著增加,同時日循環(huán)變化偏熱環(huán)境組不利于和的定植。和屬于擬桿菌門,擬桿菌門是腸道革蘭氏陰性菌中數(shù)量最大的一類細(xì)菌,產(chǎn)降解植物細(xì)胞壁的酶,參與植物細(xì)胞壁的降解,從而與腸道的消化功能有關(guān)。和屬于厚壁菌門,研究表明,后腸微生物區(qū)系中的優(yōu)勢菌群是厚壁門菌,其含量大約占60%—70%,其中丁酸鹽產(chǎn)生菌對腸上皮細(xì)胞的發(fā)育具有重要作用[28],而宿主腸道內(nèi)丁酸鹽產(chǎn)生菌大多來自厚壁菌門中的柔嫩梭菌類群(IV)和球狀梭菌類群(XIVa)。瘤胃球菌()是最重要的一種可水解纖維素的細(xì)菌,它通過一系列可被纖維素衍生物抑制的作用機制吸附在纖維素上,進(jìn)而參與纖維素的降解消化,在腸道的消化功能上起到重要作用[29]。在肉雞腸道內(nèi)的作用機制有待進(jìn)一步研究探討。
腸道內(nèi)既定植著400—1 000種細(xì)菌,總數(shù)達(dá)一百萬億,是人體自身細(xì)胞總數(shù)的10倍[30-31],這些細(xì)菌具有維持宿主腸道微生態(tài)平衡、調(diào)節(jié)腸道動力、提高免疫功能、影響營養(yǎng)物質(zhì)的吸收等多種重要的生理功能[32-36];同時腸道也是人體最大的內(nèi)分泌器官,能分泌胃泌素、胃動素、膽囊收縮素等多種肽類激素。有研究表明[7-11],腸道菌群結(jié)構(gòu)和種類與腦腸肽分泌之間存在相互影響的關(guān)系。5-HT的產(chǎn)生受到腸道菌群及其代謝產(chǎn)物影響,特別是產(chǎn)芽孢細(xì)菌(SP)和短鏈脂肪酸(SCFA)[8-9]。宿主腸道內(nèi)SCFA丁酸鹽產(chǎn)生菌大多來自厚壁菌門中的柔嫩梭菌類群,而丁酸鹽產(chǎn)生菌對腸上皮細(xì)胞的發(fā)育具有重要作用;來自健康老鼠和人類微生物群的固有的SP促進(jìn)結(jié)腸EC產(chǎn)生5-HT[37]。據(jù)報道,在生命早期缺乏菌群的時候,會導(dǎo)致血漿色氨酸水平的升高[38]。還有研究表明雙歧桿菌可以影響色氨酸的代謝[39],口服嬰兒雙歧桿菌可誘導(dǎo)大鼠神經(jīng)遞質(zhì)多巴胺、5-HT血漿濃度升高[40]。腸道菌群紊亂可導(dǎo)致5-HT水平的失衡,而利用益生菌制劑后可以明顯緩解5-HT失調(diào)的癥狀[11]。反過來,腦腸肽也會影響菌群的多樣性。VIP可以改善腸道微環(huán)境,減少脂多糖對腸黏膜的損傷,促進(jìn)有益菌的定植使菌群比例恢復(fù)正常[7]。以上結(jié)果說明,本試驗得出的5-HT和VIP含量的變化與肉雞菌群多樣性的變化是有關(guān)系的,但是5-HT含量的增加和VIP含量降低與細(xì)菌菌群結(jié)構(gòu)變化(和的增加,以及和的減少)的確切關(guān)系還需進(jìn)一步研究。
4.2 日循環(huán)變化偏熱環(huán)境降低肉雞盲腸細(xì)菌多樣性,改變菌群結(jié)構(gòu),促進(jìn)和的生長,抑制和的定植。且隨著日循環(huán)偏熱環(huán)境作用時間的延長,肉雞盲腸菌群相似性差異增大。
[1] SUN Y, ZHANG M, CHEN C C, III M G, SUN X, ELZAATARI M, HUFFNAGLE G B, YOUNG V B, ZHANG J J, HONG S C, MING Y. Stress-induced corticotropin-releasing hormone-mediated NLRP6 inflammasome inhibition and transmissible enteritis in mice., 2013, 144(7): 1478-1487.
[2] 胡春紅, 張敏紅, 馮京海, 蘇紅光, 張少帥. 偏熱刺激對肉雞休息行為, 生理及生產(chǎn)性能的影響. 動物營養(yǎng)學(xué)報, 2015, 27(7): 2070-2076.
HU C H, ZHANG M H, FENG J H, SU H G, ZHANG S S. Effects of thermal stimulation on behavior of resting posture, physiology and performance in broilers., 2015, 27(7): 2070-2076. (in Chinese)
[3] 甄龍, 石玉祥, 張敏紅, 馮京海, 張少帥, 彭騫騫. 持續(xù)偏熱環(huán)境對肉雞生長性能, 糖脂代謝及解偶聯(lián)蛋白 mRNA 表達(dá)的影響. 動物營養(yǎng)學(xué)報, 2015, 27(7): 2060-2069.
ZHEN L, SHI Y X, ZHANG M H, FENG J H, ZHANG S S, PENG Q Q. Effects of constant moderate temperatures on performance, glucose and lipid metabolism, expression of uncoupling protein of broilers., 2015, 27(7): 2060-2069. (in Chinese)
[4] 彭騫騫, 王雪敏, 張敏紅, 馮京海, 甄龍, 張少帥. 持續(xù)偏熱環(huán)境對肉雞盲腸菌群多樣性的影響. 中國農(nóng)業(yè)科學(xué), 2016, 49(01): 186-194.
PENG Q Q, WANG X M, ZHANG M H, FENG J H, ZHEN L, ZHANG S S. Effects of constant moderate temperatures on Cecal microflora diversity of broilers., 2016, 49(01): 186-194. (in Chinese)
[5] 陸英杰, 連至誠. 胃腸激素對胃腸動力的影響. 免疫學(xué)雜志, 2008 (z1): 94-96.
LU Y J, LIAN Z C. Effects of gastrointestinal hormones no gastrointestinal motility., 2008 (z1): 94-96. (in Chinese)
[6] 陳倩. 隔藥灸臍法對脾氣虛型腸易激綜合征患者血清腦腸肽影響的臨床研究[D]. 濟(jì)南: 山東中醫(yī)藥大學(xué), 2004.
CHEN Q. Clinical study on patient’ blood serum brain-gut peptides with herbs-isolated umbillical moxibustion in treating Irritable Bowel Syndrome of Spleen Qi-deficiency Type[D]. Jinan: Shandong University of Traditional Chinese Medicine, 2004. (in Chinese)
[7] CAMPOS-SALINAS J, CAVAZZUTI A, O'VALLE F, FORTE- LAGO I, CARO M, BEVERLEY S M, DELGADO M. Therapeutic efficacy of stable analogues of vasoactive intestinal peptide against pathogens., 2014, 289(21): 14583-14599.
[8] LYTE M. Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior., 2013, 9(11): e1003726.
[9] Yano J M, Yu K, Donaldson G P, SHASTRI G G, MA L, HSIAO E Y. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis., 2015, 161(2): 264-276.
[10] Reigstad C S, Salmonson C E, Rainey III J F, LINDEN D R, SONIYENGURG J L, KASHYAP P C. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells., 2014, 29(4): 1395-1403.
[11] SJ?GREN K, ENGDAHL C, Henning P. The gut microbiota regulates bone mass in mice., 2012, 27(6): 1357-1367.
[12] SONG Z, LIU L, SHEIKHAHMADI A, JIAO H C, LIN H. Effect of heat exposure on gene expression of feed intake regulatory peptides in laying hens., 2012, 2012.
[13] 姚泰, 吳博威. 生理學(xué). 第六版. 北京: 人民衛(wèi)生出版社, 2004.
YAO T, WU B W.. Sixth Edition. Beijing: People's Health Press, 2004. (in Chinese)
[14] 張敏紅, 蘇紅光, 馮京海. 采集用于建立肉雞生活環(huán)境舒適性評價模型數(shù)據(jù)的方法和專用裝置: 中國, CN103404447A[P]. 2015-11-18.
ZHANG M H, SU H G, FENG J H, TANG X F. The method of collecting chickens living environment for establishing comfort evaluation model data and special equipment: China, CN103404447A [P]. 2015-11-18. (in Chinese)
[15] WANG L, ZHOU L, TIAN R. Role of the area postrema of medullaoblongata in the regulation of canine interdigesting migrating motorcomple., 2002, 115( 3) : 384-388.
[16] 崔莉紅. 胃腸激素對結(jié)腸運動的調(diào)節(jié)作用. 醫(yī)學(xué)綜述, 2008, 14(3): 380-382.
Cui L H. Effect of gastrointestinal hormones on colonic motility., 2008, 14(3): 380-382. (in Chinese)
[17] NUSSDORFER G G, MALENDOWICZ L K. Role of VIP, PACAP, and related peptides in the regulation of the hypothalamo— pituitary–adrenal axis., 1998, 19(8): 1443-1467.
[18] 吳美玉, 胡團(tuán)敏. 血管活性腸肽與消化系疾病的研究進(jìn)展. 世界華人消化雜志, 2012, 20(16): 1453-1457.
WU M Y, HU T M. Research progress of vasoactive intestinal peptide and digestive system diseases., 2012, 20(16): 1453-1457. (in Chinese)
[19] 陳曉敏, 張燕華, 吳躍龍. 腸易激綜合征結(jié)腸黏膜 P 物質(zhì)和血管活性腸肽變化的研究. 實用臨床醫(yī)藥雜志, 2008, 12(11): 31-33.
CHEN X M, ZHANG Y H, WU Y L. Changes of colonic substance P and vasoactive intestinal polypeptide in irritable bowel syndrome., 2008, 12(11): 31-33. (in Chinese)
[20] BARNES E M, MEAD G C, BARNUML D A, HARRY E G. The intestinal flora of the chicken in the period 2 to 6 weeks of age, with particular reference to the anaerobic bacteria., 1972, 13(3): 311-326.
[21] BARNES E M. The intestinal microflora of poultry and game birds during life and after storage., 1979, 46(3): 407-419.
[22] MEAD G C, ADAMS B W. Some observations on the caecal micro‐flora of the chick during the first two weeks of life., 1975, 16(2): 169-176.
[23] SALANITRO J P, FAIRCHILDS I G, ZGORNICKI Y D. Isolation, culture characteristics, and identification of anaerobic bacteria from the chicken cecum., 1974, 27(4): 678-687.
[24] GONG J, SI W, FORSTER R J, HUANG R, YU H, YIN Y L, YANG C B, HAN Y M. 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: from crops to ceca., 2006, 59(1): 147-157.
[25] 王麗鳳. 益生菌 L. plantarum P-8 對肉雞腸道菌群, 腸道免疫和生長性能影響的研究[D]. 呼和浩特: 內(nèi)蒙古農(nóng)業(yè)大學(xué), 2014.
WANG L F. Effect of probiotic L. plantarum P-8 on gut microbiota, intestinal immunity and growth performance of broiler[D]. Hohhot: Agricultural University of the Inner Mongol, 2014. (in Chinese)
[26] BURKHOLDER K M, THOMPSON K L, EINSTEIN M E, APPLEGATE T J, PATTERSON J A. Influence of stressors on normal intestinal microbiota, intestinal morphology, and susceptibility to Salmonella enteritidis colonization in broilers., 2008, 87(9): 1734-1741.
[27] 楊梅梅. 中藥復(fù)方與益生素對熱應(yīng)激下肉雞腸道菌群及生長的影響[D]. 廣州;華南農(nóng)業(yè)大學(xué), 2016.
YANG M M. Effect of Traditional Chinese Medicine Compound and probiotics on the intestinal bacteria and growth performance of broiler under heat stress[D]. Dissertation for Master degree. Guangzhou; Agricultural University of South China, 2016. (in Chinese)
[28] PRYDE S E, DUNCAN S H, HOLD G L, STEWART C S, FLINT H J. The microbiology of butyrate formation in the human colon., 2002, 217: 133-139.
[29] MORRIS E J, COLE O J. Relationship between cellulolytic activity and adhesion to cellulose in., 1987, 133(4): 1023-1032.
[30] QIN J, LI R, RAES J, ARUMUGAM M, BURGDORF K S, MANICHANH C, MENDE D R. A human gut microbial gene catalogue established by metagenomic sequencing.e, 2010, 464(7285): 59.
[31] LEY R E, PETERSON D A, GORDON J I. Ecological and evolutionary forces shaping microbial diversity in the human intestine., 2006, 124(4): 837-848.
[32] BROWN E M, SADARANGANI M, FINLAY B B. The role of the immune system in governing host-microbe interactions in the intestine., 2013, 14(7): 660.
[33] TATTOLI I, PETITTA C, SCIROCCO A, AMMDSCATO F, CICENI A, SEVERI C E. Microbiota, innate immune system, and gastrointestinal muscle: ongoing studies., 2012, 46: S6-S11.
[34] YU X Y, YIN H H, ZHU J C. Increased gut absorptive capacity in rats with severe head injury after feeding with probiotics., 2011, 27(1): 100-107.
[35] SUN B, HU C, FANG H, ZHU L, GAO N, ZHU J. The effects of Lactobacillus acidophilus on the intestinal smooth muscle contraction through PKC/MLCK/MLC signaling pathway in TBI mouse model., 2015, 10(6): e0128214.
[36] TAN M, ZHU J C, DU J, ZHANG L M, YIN H H. Effects of probiotics on serum levels of Th1/Th2 cytokine and clinical outcomes in severe traumatic brain-injured patients: a prospective randomized pilot study., 2011, 15(6): R290.
[37] TSAVKELOVA E A, KLIMOVA S Y, CHERDYNTSEVA T A, NETRUSOV A I. Hormones and hormone-like substances of microorganisms: a review., 2006, 42(3): 229-235.
[38] 白宇, 胡云霞, 陳俊偉, 于希忠, 方南元. 細(xì)菌-腦-腸軸理論體系的建立. 東南大學(xué)學(xué)報: 醫(yī)學(xué)版, 2016, 35( 5) : 781-785.
Bai Y, Hu Y X, Chen J W, Yu X Z, Fang N Y. Establishment of a theory system of bacterial brain gut axis., 2016, 35( 5) : 781-785. (in Chinese)
[39] DESBONNET L, GARRETT L, CLARKE G, BIENENSTOCK J, DINAN T G. The probiotic: an assessment of potential antidepressant properties in the rat., 2008, 43(2): 164-174.
[40] DESBONNET L, GARRETT L, CLARKE G, KIELY B, CRYAN J F, DINAN T G. Effects of the probioticin the maternal separation model of depression., 2010, 170(4): 1179-1188.
(責(zé)任編輯 林鑒非)
Effects of the Daily Cycle Variation of the Moderate Ambient Temperatures on the Serum Brain Gut Peptide and the Diversity of Caecal Microflora in Broilers
CHANG ShuangShuang1,2, LI Meng1, LI XiuMei1, SHI YuXiang2, ZHANG MinHong1, FENG JingHai1
(1State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193;2College of Agriculture, Hebei University of Engineering, Handan 056021, Hebei)
【Objective】Stress can alter the function of brain - gut axis and the structure of intestinal flora, among which heat stress is one of the most important environmental factors affecting the health of livestock and poultry. This study was carried out to investigate the effects of the daily cycle variation of the moderate ambient temperatures on the serum brain gut peptide and the diversity of caecal microflora in broilers, and to provide a theoretical basis for the healthy broiler breeding mode. 【Method】 The study included trials with Arbor Acres (AA) broilers. At the 22d, 120broilers with equal average body weights were selected, randomly divided into 2treatments × 6 replicates of 10 birds each(male and female half and half) . The pretest period lasted for 7 days and broilers were kept at 21℃ and 60% relative humidity. When the chickens were aged 29 days, formal tests began. The environmental temperature was changed by 24h cycle (26 -29, -32, -26, -29), and the relative humidity was set to 35%, 60%, 85%, respectively. Both kept constant until the end of the experiment. The trial period lasted for 14 days. On day 21 and 42, one birds from each replicate were randomly selected and killed. The broiler was sampled with jugular vein. The contents of 5-HT, VIP and CCK in serum of broilers were measured with Elisa kit. Meanwhile cecal contents were aseptically collected, placed in a centrifugal tube, rapidly frozen in liquid nitrogen, and stored at -80℃. The effect of different humidity on serum brain gut peptide and bacterial diversity in the ceacal digesta of broilers at the daily cycle variation of the moderate ambient temperatures was studied by using 16S r DNA-based denaturing gradient gel electrophoresis (DGGE). 【Result】(1) At the 7d , the content of Serum 5-HT at the daily cycle variation of the moderate ambient temperatures was higher than control group (<0.05); the content of serum 5-HT and VIP in the control group and were no significant difference; at the 14d, the content of serum VIP in broilers at the daily cycle variation of the moderate ambient temperatures was lower than the control group (<0.05); the content of serum 5-HT and SP in the control group and were no significant difference. (2)At the 7d, the bacteria bands at the daily cycle variation of the moderate ambient temperatures were lower than the control group; at the 14d, the bacteria bands at the daily cycle variation of the moderate ambient temperatures and the control group were same, but broiler cecal microflora diversity decreased at the daily cycle variation of the moderate ambient temperatures. (3) Common microflora of broiler cecum includedand; The daily cycle variation of the moderate ambient temperatures was beneficial to the growth ofand, and inhibited the colonization ofand.【Conclusion】Compared with the control group, at the 7d, the content of serum 5-HT in broilers increased at the daily cycle variation of the moderate ambient temperatures , and at the 7d, the serum VIP content in broilers decreased at the daily cycle variation of the moderate ambient temperatures , and there was no significant difference in SP between the two groups; The daily cycle variation of the moderate ambient temperatures affected the cecal microflora structure and diversity in broilers.
broiler; moderate temperatures; serum brain gut peptide; caecal microflora
2018-02-21;
2018-09-12
國家重點研發(fā)計劃課題“肉禽舒適環(huán)境的適宜參數(shù)及限值研究”(2016YFD0500509);中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(ASTIP-IAS07)
常雙雙,Tel:15733078872;E-mail:2403486624@qq.com。
張敏紅,Tel:010-62895517;E-mail:zmh66@126.com
10.3864/j.issn.0578-1752.2018.22.014