馬敏 王桐 邱劍彬
摘要
本文研究了一類存在執(zhí)行器故障的非線性互聯切換大系統(tǒng)的自適應模糊Backstepping容錯控制.首先定義了一個分段右連續(xù)函數作為系統(tǒng)的切換信號,系統(tǒng)依據切換信號改變模型.不失一般性,考慮執(zhí)行器發(fā)生兩種類型的故障,即卡死故障和失效故障,通過模糊邏輯系統(tǒng)逼近未知非線性函數,并設計自適應模糊容錯控制器補償執(zhí)行器故障給系統(tǒng)帶來的影響.通過Lyapunov定理證明了系統(tǒng)及相關變量的有界性,并基于數值仿真,驗證了所提出方法的有效性.
關鍵詞
互聯大系統(tǒng);切換系統(tǒng);自適應模糊Backstepping控制;執(zhí)行器故障;容錯控制
中圖分類號? TP273.4
文獻標志碼? A
0 引言
互聯大系統(tǒng)[1-11] 是一類由多個子系統(tǒng)組成的結構復雜的非線性系統(tǒng),典型特點是不同子系統(tǒng)之間具有互聯性.由于該系統(tǒng)往往具有復雜性和較強的耦合性,因此互聯大系統(tǒng)的研究具有普適性.早期對大系統(tǒng)的研究主要集中在線性大系統(tǒng).Lee等[12-13] 研究了線性多輸入多輸出大系統(tǒng)在含有時滯情形下的穩(wěn)定性問題,并得到反饋增益矩陣與系統(tǒng)穩(wěn)定性的關系.隨著分散控制思想的出現,大量學者開始研究分散控制在大系統(tǒng)中的應用.Hu[14] 研究了具有線性互聯項的大系統(tǒng)的分散控制問題,通過求解Riccati方程,設計分散控制器,并給出了分散控制器與系統(tǒng)互聯項時滯無關的充分條件.
由于實際系統(tǒng)中均不可避免地存在非線性元件及非線性成分,即不存在嚴格線性的系統(tǒng),因此對非線性系統(tǒng)的研究更具有一般意義.文獻[15-16]研究了基于Lyapunov函數遞歸設計狀態(tài)反饋分散控制器的方法,通過反饋控制動態(tài)調節(jié)控制器最終實現系統(tǒng)的穩(wěn)定性分析.由于實際系統(tǒng)中系統(tǒng)狀態(tài)并不一定是完全可測的,文獻[17-18]研究了非線性互聯大系統(tǒng)的輸出反饋鎮(zhèn)定問題.通過引入狀態(tài)觀測器克服了系統(tǒng)狀態(tài)不可測量的局限性,Yan等[18] 考慮了更為一般的時變參數大系統(tǒng),所得出的結論對匹配不確定性系統(tǒng)及非匹配不確定性系統(tǒng)均具有可適性.上述文獻都是基于大系統(tǒng)互聯項精確已知的情形,若系統(tǒng)互聯項未知,上述理論則不再適用.為了更具有一般性,Jain等[19] 研究了一類具有未知互聯項的非線性大系統(tǒng)的穩(wěn)定性問題,依據微分幾何理論,將非線性互聯大系統(tǒng)轉換為一類嚴格反饋分散控制系統(tǒng),大大降低了非線性大系統(tǒng)控制器設計難度,并通過自適應控制方法克服了互聯項未知的問題.文獻[20]研究了一類具有未知互聯項的非線性大系統(tǒng)的自適應輸出跟蹤控制,采用Backstepping設計方法,解決了不滿足匹配條件時的控制器設計問題;同時,引入光滑函數補償了各個子系統(tǒng)分散控制器設計過程中其他子系統(tǒng)的影響.文獻[21]研究了系統(tǒng)中存在更大的不確定性即存在未知非線性函數的情形,利用模糊邏輯系統(tǒng)逼近未知非線性函數,以此為基礎設計了非線性互聯大系統(tǒng)的自適應模糊分散控制器,保證了系統(tǒng)的漸近穩(wěn)定性及跟蹤誤差的收斂性.上述文獻對互聯大系統(tǒng)的研究沒有考慮到被控對象的結構由于環(huán)境因素或外界擾動變化而變化的情形,而實際系統(tǒng)中這種現象是普遍存在的,因此本文選擇非線性互聯切換大系統(tǒng)作為研究對象,當系統(tǒng)模型發(fā)生變化時,適當改變控制策略.同時,由于人為因素或使用壽命限制,在實際系統(tǒng)中,執(zhí)行器故障運行是一種較為常見的狀態(tài).執(zhí)行器的非正常運行大大降低了系統(tǒng)的性能,甚至可能會導致原系統(tǒng)不穩(wěn)定,在實際生產中,可能帶來巨大的經濟損失,因此有必要在執(zhí)行器發(fā)生故障時,對故障進行補償和抵消,從而使系統(tǒng)恢復到原始的正常運行狀態(tài),容錯控制便是可以實現這一功能的控制方法. 因此,在本文中,基于非線性互聯切換大系統(tǒng)設計了自適應模糊分散控制器.
假設t>10 ?s ,執(zhí)行器發(fā)生卡死故障,? s 1,g =? s 2,g =0.02;t>20 ?s ,剩余執(zhí)行器發(fā)生失效故障,ρ s 1,g =ρ s 2,g = 0.5,ψ s 1,g =ψ s 2,g =1.可得仿真結果如圖1—12所示,其中,圖1—3分別展示了兩個子系統(tǒng)輸出及其參考信號軌跡曲線、狀態(tài)變量x i,2 軌跡曲線、跟蹤誤差軌跡曲線.圖4及圖5分別展示了子系統(tǒng)1及2的執(zhí)行器卡死與失效輸出曲線,圖6及圖7分別展示了子系統(tǒng)1及2的控制器輸出曲線,圖8及圖9分別展示了子系統(tǒng)1及2中自適應參數 ?1,2 、 ?2,2 的變化曲線.若執(zhí)行器發(fā)生故障時,系統(tǒng)未采取容錯控制策略,兩個子系統(tǒng)的輸出軌跡曲線及其對應的跟蹤誤差曲線分別如圖10和圖11所示,本文中采取的切換信號σ(t)如圖12所示.
由圖1—3可知,在如式(53)所示的自適應模糊控制器及如式(54)所示的自適應率的作用下,各個子系統(tǒng)的輸出 y i可以較好地跟蹤參考信號y r且跟蹤誤差e i,1 收斂到原點的小鄰域內,各子系統(tǒng)狀態(tài)變量x i,2 有界;由圖6—9可知,兩個子系統(tǒng)的控制信號u i,0 ,兩個子系統(tǒng)的自適應參數 ?i,2 ?均有界.由未采取容錯控制的各子系統(tǒng)輸出及跟蹤誤差曲線圖10及圖11可知,各子系統(tǒng)輸出發(fā)散、跟蹤誤差發(fā)散,相應子系統(tǒng)不穩(wěn)定.由上述仿真結果可知,本文所提出的 控制器對于一類含有執(zhí)行器故障的非線性切換互聯大系統(tǒng)具有良好的控制效果.
4 結論
本文針對一類含有執(zhí)行器故障的非線性切換互聯大系統(tǒng)設計了自適應模糊Backstepping分散控制器.首先引入一個分段常數信號用來表示系統(tǒng)模型的切換,并考慮了兩種類型的執(zhí)行器故障:執(zhí)行器卡死故障和執(zhí)行器失效故障,分別對以上兩類故障進行補償,使得系統(tǒng)維持在故障前的穩(wěn)定運行狀態(tài).同時考慮到各個子系統(tǒng)之間的互聯對系統(tǒng)性能的影響,在各子系統(tǒng)控制器設計過程中,附加相關的補償項,抵消了互聯項對系統(tǒng)的影響.文中依據模糊邏輯系統(tǒng)的“萬能逼近”特性逼近系統(tǒng)中的未知非線性函數,設計了自適應模糊控制器,通過選擇恰當的Lyapunov函數分析得到,在自適應模糊控制器的作用下系統(tǒng)所有變量有界.最后通過數值仿真驗證了上述理論的有效性.
參考文獻
References
[ 1 ]?Spooner J T,Passino K M.Adaptive control of a class of decentralized nonlinear system[J].IEEE Transactions on Automatic Control,1996,41(2):280-284
[ 2 ] Hua C C,Ding S X.Model following controller design for large-scale systems with time-delay interconnections and multiple dead-zone inputs[J].IEEE Transactions on Automatic Control,2011,56(4):962-968
[ 3 ] Tong S C,Li Y M,Jing X J.Adaptive fuzzy decentralized dynamics surface control for nonlinear large-scale systems based on high-gain observer[J].Information Sciences,2013,235(20):287-307
[ 4 ] Fan H J,Han L X,Wen C Y,et al.Decentralized adaptive output-feedback controller design for stochastic nonlinear interconnected systems[J].Automatica,2012,48(11):2866-2873
[ 5 ] Li J,Chen W S,Li J M.Adaptive NN output-feedback decentralized stabilization for a class of large-scale stochastic nonlinear strict-feedback systems[J].International Journal of Robust and Nonlinear Control,2011,21(4):452-472
[ 6 ] Zhou Q,Shi P,Liu H H,et al.Neural-network-based decentralized adaptive output-feedback control for large-scale stochastic nonlinear systems[J].IEEE Transactions on Systems Man and Cybernetics,Part B,2012,42(6):1608-1619
[ 7 ] Tong S C,Li Y M,Wang T.Adaptive fuzzy decentralized output feedback control for stochastic nonlinear large-scale systems using DSC technique[J].International Journal of Robust and Nonlinear Control,2013,23(4):381-399
[ 8 ] Lin W W,Wang W J,Yang S H.A novel stabilization criterion for large-scale T-S fuzzy systems[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B,2007,137(4):1074-1079
[ 9 ] Chen B S,Wang W J.Robust stabilization of nonlinearly perturbed large-scale systems by decentralized observer-controller compensators[J].Automatica,1990,26(6):1035-1041
[10] Wang W J,Lin W W.Decentralized PDC for large-scale T-S fuzzy systems[J].IEEE Transactions on System,2005,13(6):779-786
[11] Liu X,Zhang H B.Stability analysis of uncertain fuzzy large-scale system[J].Chaos,Solitons & Fractals,2005,25(5):1107-1122
[12] Lee T N,Radovic U L.General decentralized stabilization of large-scale linear continuous and discrete time-delay systems[J].International Journal of Control,1987,46(6):2127-2140
[13] Lee ?T N,Radovic U L.Decentralized stabilization of linear continuous and discrete-time systems with delays in interconnections[J].IEEE Transactions on Automatic Control,1988,33(8):757-761
[14] Hu Z.Decentralized stabilization of large scale interconnected systems with delays[J].IEEE Transactions on Automatic Control,1994,39(1):180-182
[15] Gavel D T,Silijak D D.Decentralized adaptive control:structural conditions for stability[J].IEEE Transactions on Automatic Control,1989,34(4):413-426
[16] Xie S,Xie L.Decentralized stabilization of a class of interconnected stochastic nonlinear systems[J].IEEE Transactions on Automatic Control,2000,45(1):132-137
[17] Saberi A,Khalil H.Decentralized stabilization of interconnected systems using output feed-back[J].International Journal of Control,1985,41(6):1461-1475
[18] Yan X G,Dai G Z.Decentralized output feedback robust control for nonlinear large-scale systems[J].Automatica,1998,34(11):1469-1472
[19] Jain S,Khorrami F.Decentralized adaptive control of a class of large-scale interconnected nonlinear systems[J].IEEE Transactions on Automatic Control,1997,42(2):136-154
[20] Zhou ?J,Wen C.Decentralized backstepping adaptive output tracking of interconnected nonlinear systems[J].IEEE Transactions on Automatic Control,2008,53(10):2378-2384
[21] Tong S,Liu C,Li Y,et al.Adaptive fuzzy decentralized control for large-scale nonlinear systems with time-varying delays and unknown high-frequency gain sign[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B,2011,41(2):474-485
[22] Wang L X.Adaptive fuzzy systems and control:design and stability analysis[M].Englewood Cliffs,NJ:Prentice Hall,1994
Adaptive fuzzy backstepping fault-tolerant control for nonlinear large-scale
interconnected switched systems with actuator failures
MA Min 1 WANG Tong 1 QIU Jianbin 1
1 The Research Institute of Intelligent Control and Systems,Harbin Institute of Technology,Harbin 150001
Abstract? Adaptive fuzzy backstepping fault-tolerant control for a class of nonlinear large-scaleinterconnected switched systems with actuator failures is investigated in this paper.The system switches dynamically according to a piecewise right continuous function.Without loss of generality,stuck faults and the faults loss of effectiveness are considered.Fuzzy logic systems are utilized to approximate the unknown nonlinear functions.Considering the actuator failures,an adaptive fuzzy fault-tolerant controller is designed.It is proved that the proposed control method can guarantee that all the signals of the closed-loop system are bounded according to the Lyapunov theorem.A simulation example is presentedto demonstratethe effectiveness of the proposed control strategy.
Key words? interconnected large-scale systems;switched systems;adaptive fuzzy backstepping control;actuator failures;fault-tolerant control