劉冬梅,周宏平,茹 煜,曲榮佳
?
扇形噴頭結(jié)構(gòu)和壓力對微生物農(nóng)藥霧滴分布及活性的影響
劉冬梅1,2,周宏平1※,茹 煜1,曲榮佳1
(1. 南京林業(yè)大學(xué)機(jī)械電子工程學(xué)院,南京 210037;2. 金華職業(yè)技術(shù)學(xué)院,金華 321017)
扇形噴頭是各種噴桿式噴霧機(jī)最常用的噴頭類型。從減少微生物機(jī)體損傷、提高活性的角度,為篩選出扇形噴頭中適合噴施微生物農(nóng)藥的噴頭型號、噴施壓力,該文以常用的延長范圍扇形噴頭XR11002、廣角扇形噴頭TT11002、氣吸扇形噴頭AI11003開展了生物農(nóng)藥活性損傷對比試驗(yàn)。利用噴頭霧化測試系統(tǒng)測試不同噴霧樣本的霧滴分布,以細(xì)菌芽孢萌發(fā)率及小菜蛾死亡率量化分析噴頭結(jié)構(gòu)、壓力對細(xì)菌、病毒類生物農(nóng)藥活性損傷影響。研究結(jié)果表明:噴頭型號、壓力及噴霧介質(zhì)對生物農(nóng)藥霧滴粒徑分布的影響程度為噴頭型號>壓力>介質(zhì),其中介質(zhì)對霧滴粒徑分布無顯著性影響;壓力對細(xì)菌與病毒類生物農(nóng)藥活性損傷的影響區(qū)別明顯,壓力對細(xì)菌類活性損傷的影響呈顯著負(fù)相關(guān),對病毒類活性損傷無顯著影響,主要跟細(xì)菌、病毒不同機(jī)體結(jié)構(gòu)相關(guān);噴頭型號對細(xì)菌與病毒類生物農(nóng)藥活性損傷無顯著影響,其中流向單一的XR系列扇形噴頭對生物活性損傷影響要小于流向多重突變的TT系列和同時(shí)受外界氣流混入干擾的AI系列扇形噴頭。綜合各因素,在利用扇形噴頭噴施微生物農(nóng)藥時(shí),從霧滴分布及活性角度,優(yōu)先選用XR系列扇形噴頭中的XR11001,噴施壓力為0.15 MPa。在噴施病毒類農(nóng)藥時(shí),可忽略噴頭型號、壓力對病毒活性損傷的影響。
噴頭;農(nóng)藥;壓力;生物活性
微生物農(nóng)藥是指利用細(xì)菌、真菌、病毒等活體對病蟲害進(jìn)行殺滅或抑制的制劑,具有低毒、無殘留、不產(chǎn)生抗藥性、藥效持久,對病蟲害殺傷特異性強(qiáng)等優(yōu)點(diǎn),已成為全國生物農(nóng)藥的重要推廣方向[1-4]。與化學(xué)農(nóng)藥不同,微生物農(nóng)藥具有活性,其病蟲害防治效果不僅與噴施后霧滴沉積量、覆蓋率有關(guān),還與噴施后微生物的活性有關(guān),因此,在噴施微生物農(nóng)藥時(shí),要保持微生物的數(shù)量和活性,如孢子(菌)數(shù)、活孢(菌)率。在施藥技術(shù)中,影響生物農(nóng)藥藥效的因素有農(nóng)藥種類、噴頭型號、壓力、噴施高度、流量、風(fēng)速及溫度等。其中,噴頭是直接將生物農(nóng)藥噴施到植物靶標(biāo)上,其性能好壞對施藥效果具有重要作用。同一種噴頭在不同壓力下,霧滴沉積及微生物存活率等施藥性能指標(biāo)都會發(fā)生變化,可見,噴頭型號及噴施壓力是保證微生物農(nóng)藥有效活性、保持藥效的關(guān)鍵性因素[5]。
對于噴霧器械及操作參數(shù)對微生物農(nóng)藥施藥性能的影響,研究者進(jìn)行了大量的研究工作。Chojnacki研究了噴霧器流量調(diào)節(jié)閥對昆蟲病原線蟲存活率的影響,發(fā)現(xiàn)通過流量控制閥的壓力越大、流量越小其相對線蟲存活率下降越顯著,且間歇壓力不會導(dǎo)致線蟲死亡[6-7]。Fife等開展了噴頭、壓差及流量突然收縮對昆蟲病原線蟲活性影響,發(fā)現(xiàn)中空錐形噴嘴噴施的線蟲其相對活力要高于標(biāo)準(zhǔn)平面扇形噴嘴噴施的線蟲,壓差小于等于1.283 MPa時(shí)線蟲相對存活率在85%以上,壓差繼續(xù)增大,存活率則迅速下降,同時(shí)研究者構(gòu)建了線蟲損害與平均能量耗散率的經(jīng)驗(yàn)?zāi)P停l(fā)現(xiàn)噴霧設(shè)備部件內(nèi)能量耗散率低于1×108W/m3時(shí),才能避免流體對線蟲造成損壞[8-11]。Molina- Miras等發(fā)現(xiàn)剪切應(yīng)力是影響流體內(nèi)生物細(xì)胞敏感性的關(guān)鍵變量[12]。Hidalgo等實(shí)驗(yàn)發(fā)現(xiàn)中空錐形液壓噴嘴比旋轉(zhuǎn)電噴嘴更適合噴施真菌生物農(nóng)藥[13]。Garcla等學(xué)者發(fā)現(xiàn)昆蟲病原線蟲在生物防治中,噴頭、壓力、溫度、紫外線強(qiáng)度、添加劑和攪拌時(shí)間、流量都會影響線蟲活性、分布及害蟲防治效果[14-18]。Gouli等發(fā)現(xiàn)利用扇形噴嘴對溫室植物噴施真菌劑生物農(nóng)藥,可獲得良好噴施效果[19]。李建華等試驗(yàn)發(fā)現(xiàn),當(dāng)噴霧壓力小于0.5 MPa,含酵母菌的流體在流經(jīng)空心錐霧噴頭后,存活率顯著降低[20]。張慧春等研究了噴施生物農(nóng)藥專用轉(zhuǎn)籠式、轉(zhuǎn)盤式離心霧化噴頭,并測試了其霧化性能和生物活性保持率[21-23]。肖麗萍等利用平面扇形噴嘴和中空錐形噴嘴在不同操作參數(shù)下噴施不同生物農(nóng)藥,研究其霧滴特性,為選擇合適噴嘴、噴量流速、壓力及生物藥劑進(jìn)行生物防治提供借 鑒[24-25]。翟恩昱等利用TP型扇形噴頭研究了扇形噴頭磨損對微生物農(nóng)藥施藥性能的影響,發(fā)現(xiàn)扇形噴頭球頭結(jié)構(gòu)尺寸與霧滴沉積量和活體微生物存活率存在線性關(guān)系[5]。
目前國內(nèi)外還沒有開發(fā)出生物農(nóng)藥專用噴頭,生物農(nóng)藥的噴施主要采用扇形噴頭和中空錐形噴頭。扇形噴頭因噴幅寬度大,霧滴分布均勻,是噴桿式噴霧機(jī)最常用的噴頭。因微生物農(nóng)藥含有活性成分,對其噴霧研究不僅要考慮霧滴特性,還要考慮活性成分存活率,目前對扇形噴頭噴施微生物農(nóng)藥活性損傷的研究主要集中在XR系列,對扇形噴頭中廣泛使用的TT、AI系列噴頭對活性成分損傷影響未見研究。同時(shí),現(xiàn)有XR系列噴頭對活性損傷研究多以線蟲、菌類微生物為研究對象,未見涉及病毒類微生物。從減少損傷、提高活性角度考慮,為篩選扇形噴頭中適合噴施微生物農(nóng)藥的噴頭型號、噴施壓力,本文以常用XR系列、TT系列、AI系列扇形噴頭進(jìn)行不同生物農(nóng)藥噴施實(shí)驗(yàn),研究了不同型號噴頭內(nèi)部流道結(jié)構(gòu)、噴施壓力對菌類、病毒類農(nóng)藥活性損傷影響,以期對工程實(shí)踐中選擇噴頭型號、噴施壓力提供借鑒。
噴霧樣本是揚(yáng)州綠源生物化工有限公司的8 000 IU/mg蘇云金桿菌(細(xì)菌)、江西省新龍生物科技有限公司的20億PIB/mL甘藍(lán)夜蛾核型多角體病毒(病毒)2種微生物農(nóng)藥以一定比例兌水后的混合物,根據(jù)農(nóng)藥廠家建議,試驗(yàn)時(shí)以50 mL蘇云金桿菌兌15 kg水、30 mL多角體病毒兌15 kg水的比例配出混合液,同時(shí)與普通水進(jìn)行試驗(yàn)對比[24]。這2種微生物農(nóng)藥在國內(nèi)有機(jī)農(nóng)場中使用較為普遍,均用于農(nóng)作物蟲害防治,且蘇云金桿菌和多角體病毒都屬于懸浮劑,其中多角體病毒呈粘稠糊狀,蘇云金桿菌為液體狀。
試驗(yàn)噴頭選擇美國TeeJet公司的XR11002延長范圍扇形噴頭、TT11002廣角扇形噴頭和AI11003氣吸扇形噴頭,剖面結(jié)構(gòu)如圖1所示[26-27]。XR型扇形噴頭產(chǎn)生的是細(xì)霧,在低噴霧壓力下覆蓋性能較好,適用壓力范圍為0.103~0.414 MPa,是大田噴桿式噴霧機(jī)最常用的噴頭。TT型噴頭霧滴尺寸中等,在噴幅上噴霧量分布均勻,不易堵塞,標(biāo)準(zhǔn)工作壓力為 0.103~0.621 MPa,比較適合內(nèi)吸性農(nóng)藥。AI型噴頭產(chǎn)生充氣的大霧滴,抗漂移性能好,廣泛用于除草劑、內(nèi)吸性殺菌殺蟲劑噴施,壓力范圍為0.207~0.793 MPa。在噴霧壓力為0.15 MPa時(shí),XR11002和TT11002的噴嘴流量為0.55 L/min;在0.5 MPa時(shí),XR11002和TT11002的噴嘴流量為1 L/min,AI11003的噴嘴流量為1.46 L/min;在0.8 MPa時(shí),AI11003的噴嘴流量為1.92 L/min[28-29]。
1.2.1 噴頭霧化測試系統(tǒng)
噴頭霧化測試系統(tǒng)如圖2所示,主要由霧化系統(tǒng)、測試系統(tǒng)、接收槽組成,霧化系統(tǒng)包括噴頭、泵、調(diào)壓裝置、壓力表、水管、水箱、噴頭安裝架,測試系統(tǒng)由德國新帕泰克公司HELOSQUIXEL型激光粒度分析儀和計(jì)算機(jī)軟件分析系統(tǒng)組成。調(diào)節(jié)噴頭安裝架,使噴頭距離激光束高度為35 cm,噴頭左右對稱面與激光束共面,使扇形霧面與激光束垂直。測試時(shí),通過計(jì)算機(jī)控制激光粒度儀發(fā)射并接收激光,測試結(jié)果通過系統(tǒng)自帶軟件記錄并顯示霧滴測試數(shù)據(jù)及分布曲線。
圖1 不同型號扇形噴頭的剖面結(jié)構(gòu)
1. 霧化系統(tǒng) 2. 測試系統(tǒng) 3. 接收槽
1.2.2 微生物農(nóng)藥接收及菌培養(yǎng)裝置
蘇云金桿菌和多角體病毒的接收裝置由藥液霧化系統(tǒng)和培養(yǎng)皿組成,調(diào)節(jié)噴頭安裝架,使噴頭距離培養(yǎng)皿高度為50 cm。培養(yǎng)皿收集的蘇云金桿菌經(jīng)平板菌落計(jì)算法前期處理后放在日本Panasonic公司MIR-554-PC溫箱進(jìn)行培養(yǎng)。藥液接收裝置如圖3所示。
1. 霧化系統(tǒng) 2. 培養(yǎng)皿
試驗(yàn)采用延長范圍扇形噴頭XR11002、廣角扇形噴頭TT11002和氣吸扇形噴頭AI11003。為探索噴頭型號、噴施壓力對菌類、病毒類生物農(nóng)藥活性損傷的影響,本文設(shè)計(jì)了微生物農(nóng)藥的霧滴粒徑分布試驗(yàn)和菌類、病毒類生物活性損傷試驗(yàn)。試驗(yàn)介質(zhì)為水、蘇云金桿菌、多角體病毒,每組試驗(yàn)重復(fù)3次,取其平均值作為最終數(shù)據(jù)。
1.3.1 微生物農(nóng)藥霧滴粒徑分布試驗(yàn)
設(shè)置噴頭距離激光束高度為35 cm,分別用噴頭XR11002、TT11002、AI11003進(jìn)行3種介質(zhì)噴施。根據(jù)3種系列噴頭的適用壓力范圍,其中XR型噴頭壓力范圍為0.103~0.414 MPa,TT型噴頭壓力范圍為0.103~0.621 MPa,AI型噴頭壓力范圍為0.207~0.793 MPa,同時(shí)結(jié)合試驗(yàn)對比需要,將XR11002、TT11002的噴施壓力設(shè)為0.15、0.2、0.3、04、0.5、0.6 MPa,因AI11003屬粗霧,其壓力檔位設(shè)為0.3、0.4、0.5、0.6、0.7、0.8 MPa。在噴施蘇云金桿菌混合液及多角體病毒混合液時(shí),要充分?jǐn)嚢杷渲械膰娛┤芤海顾巹┗旌暇鶆颉?/p>
1.3.2 蘇云金桿菌活性損傷試驗(yàn)
為避免數(shù)據(jù)繁多不易比較,在活性損傷試驗(yàn)中根據(jù)各系列噴頭的壓力范圍,同時(shí)考慮壓力設(shè)置范圍寬易于試驗(yàn)結(jié)果的分析,故將噴頭XR11002、TT11002的噴施壓力定為0.15、0.3、0.5 MPa,因AI11003屬粗霧,壓力太小霧滴受力變化不明顯,將其試驗(yàn)壓力設(shè)置為0.3、0.5、0.8 MPa。利用9個(gè)已標(biāo)記的培養(yǎng)皿收集不同噴頭不同壓力下噴施的蘇云金桿菌水溶液,以不經(jīng)過噴頭噴施的蘇云金桿菌水溶液作為對照組,每次共10個(gè)對比樣本,在南京林業(yè)大學(xué)生物與環(huán)境學(xué)院無菌實(shí)驗(yàn)室進(jìn)行活性損傷檢測試驗(yàn)。將蘇云金桿菌水溶液分別稀釋10、100、1 000倍,取0.1 mL每個(gè)稀釋度的樣品,加入冷卻平板中,用涂布器涂勻后,于28 ℃溫箱中培養(yǎng),每個(gè)稀釋度取3個(gè)樣本,培養(yǎng)16 h后統(tǒng)計(jì)各試驗(yàn)樣本萌發(fā)的菌落數(shù)。
1.3.3 多角體病毒生物活性損傷試驗(yàn)
通過小菜蛾死亡率來檢驗(yàn)噴頭及噴施壓力對多角體病毒的損傷影響,各噴頭噴施壓力與蘇云金桿菌的設(shè)置相同。利用9個(gè)培養(yǎng)皿收集不同噴頭不同壓力下的多角體病毒水溶液。以不經(jīng)過噴頭噴施的多角體病毒水溶液作為對照組,每次共10個(gè)對比試驗(yàn)盒,3次重復(fù),在試驗(yàn)盒上用記號筆標(biāo)記噴頭型號及相應(yīng)的噴施壓力。選取孵出8日的小菜蛾2齡蟲,每盒裝35只,將每盒小菜蛾饑餓2 h。將有機(jī)杭白菜洗凈、自然晾干,分為10份,每份15 g,將10份有機(jī)杭白菜浸入10個(gè)培養(yǎng)皿中,10 s后取出,懸置20 s,放入與培養(yǎng)皿標(biāo)記相同的試驗(yàn)盒中,蓋上蓋子,防止小菜蛾逃跑。觀察16、24和48 h小菜蛾死亡情況,用鵝毛觸碰小菜蛾,不動者視為死亡[30],如圖4所示。
蘇云金桿菌的活性損傷用菌的芽孢萌發(fā)率表示,其中芽孢萌發(fā)率用噴頭霧化后的蘇云金桿菌每毫升菌落數(shù)除以未經(jīng)噴頭噴施的蘇云金桿菌的菌落數(shù)來計(jì)算。其中,每毫升菌落數(shù)=同一稀釋度的平均菌落數(shù)′稀釋倍數(shù)。本文蘇云金桿菌水溶液分別稀釋10、100、1 000倍,其稀釋度分別是10-1、10-2、10-3,選取每個(gè)平板上長有30~300個(gè)菌落的稀釋度來計(jì)算蘇云金桿菌每毫升菌落數(shù)。通過試驗(yàn),發(fā)現(xiàn)稀釋度為10-1時(shí),其萌發(fā)菌落數(shù)太少,稀釋度為10-3時(shí),萌發(fā)菌落太密集,為便于試驗(yàn)對比及易于清查菌落數(shù)目,本次試驗(yàn)稀釋度選10-2。為便于統(tǒng)計(jì)蘇云金桿菌萌發(fā)的菌落數(shù),避免菌落太多,培養(yǎng)時(shí)間定為16 h。噴頭型號及壓力對多角體病毒的活性影響用小菜蛾死亡率表示,統(tǒng)計(jì)小菜蛾食用浸有多角體病毒的杭白菜后死亡條數(shù),觀察多角體病毒在不同壓力下經(jīng)不同噴頭霧化后對小菜蛾的毒殺效果,其中小菜蛾死亡率=單個(gè)試驗(yàn)盒中小菜蛾死蟲數(shù)/單個(gè)試驗(yàn)盒中小菜蛾總蟲數(shù),如圖4。
圖4 小菜蛾及毒殺試驗(yàn)
3種型號噴頭在不同壓力下噴施蘇云金桿菌、多角體病毒及普通水的霧滴粒徑分布如表1所示。利用SPSS軟件的組間方差分析檢驗(yàn)不同噴頭的霧滴體積中徑均值的差異顯著性,檢驗(yàn)結(jié)果如表2所示。由表2可看出,總體均值的方差檢驗(yàn)中,各噴頭的Sig.(Significance)值均小于0.05,說明在5%的顯著性水平下,不同噴頭的霧滴體積中徑均值具有顯著性差異。XR11002、TT11002、AI11003噴頭霧滴體積中徑均值分別為123.8111、212.7611、404.2611m。因大多數(shù)生物農(nóng)藥無內(nèi)吸性,主要毒殺形式為觸殺和胃毒殺,噴灑時(shí)藥液要分布均勻才能起到良好效果,要求藥液覆蓋密度大、附著能力及穿透性強(qiáng),而細(xì)小霧滴在作物葉片表面的覆蓋密度和均勻性遠(yuǎn)優(yōu)于粗霧滴,且附著能力好,故利用扇形噴頭進(jìn)行農(nóng)林業(yè)病蟲害生物防治時(shí)優(yōu)選XR型扇形噴頭。噴頭型號、壓力、介質(zhì)對霧滴粒徑大小的影響程度如表3所示,在主效應(yīng)檢驗(yàn)中,發(fā)現(xiàn)噴頭型號、壓力的Sig.值均為0.000,而介質(zhì)Sig.值為0.073,大于0.05,說明噴頭型號、壓力對霧滴體積中徑有顯著性影響,介質(zhì)對霧滴體積中徑無顯著性影響。根據(jù)效應(yīng)量的度量值偏2判斷,噴頭型號的偏2最大且通過了顯著性檢驗(yàn),壓力的偏2次之且通過了顯著性檢驗(yàn),介質(zhì)的偏2最小且未通過顯著性檢驗(yàn)。因此,試驗(yàn)中噴頭型號、壓力、介質(zhì)對霧滴體積中徑影響程度從大到小排序?yàn)閲婎^型號、壓力、介質(zhì),即噴頭型號對霧滴體積中徑的影響最顯著,其次是壓力,沒有顯著影響的是介質(zhì)。
表1 不同噴頭在不同壓力下噴施不同介質(zhì)的霧滴粒徑分布參數(shù)
注:VMD水表示體積中徑,m;表示相對寬度。
Note: VMD水means volume median diameter,m.means relative width.
表2 單因素方差分析
表3 主體間效應(yīng)的檢驗(yàn)
同樣,對霧滴譜相對寬度進(jìn)行均值差異顯著性檢驗(yàn),其中,XR11002、AI11003噴頭的Sig.值均為0.000,TT11002的Sig.值為0.004,均小于0.05,說明不同噴頭的霧滴譜相對寬度均值具有顯著性差異。其中,XR11002、TT11002、AI11003的霧滴譜相對寬度均值分別為1.3708、1.6832、1.6057,因霧滴譜相對寬度越小,霧滴霧化越均勻,由此看出XR11002噴頭的霧滴分布均勻性要優(yōu)于TT11002、AI11003。在霧滴譜相對寬度的主效應(yīng)檢驗(yàn)中,噴頭型號、壓力的測試Sig.值分別為0.000和0.011,有顯著性影響,介質(zhì)的Sig.值為0.093,大于0.05,沒有顯著性影響;噴頭型號的偏2最大,為0.463,壓力的偏2次之,為0.336,介質(zhì)的偏2最小,為0.001,由此可見噴頭型號、壓力、介質(zhì)對霧滴譜相對寬度的影響程度從大到小依次為噴頭型號、壓力、介質(zhì)。
綜合分析可知,噴頭型號、壓力和介質(zhì)對微生物農(nóng)藥霧滴粒徑大小及均勻性分布影響程度由大到小依次為噴頭型號>壓力>介質(zhì)??紤]微生物農(nóng)藥主要是以觸殺和胃毒殺方式進(jìn)行病蟲害防治,從藥液的覆蓋密度、分布均勻性、穿透性及附著能力角度考慮,在農(nóng)林業(yè)病蟲害生物防治中優(yōu)選XR系列扇形噴頭。
不同噴頭在不同壓力下噴施的蘇云金桿菌在培養(yǎng)16 h后其芽孢萌發(fā)率如表4所示。對芽孢萌發(fā)率進(jìn)行均值差異顯著性檢驗(yàn),檢驗(yàn)結(jié)果如表5所示。由表5可看出,XR11002、TT11002、AI11003噴頭的Sig.值分別為0.031、0.001、0.040,均小于0.05,說明蘇云金桿菌的芽孢萌發(fā)率均值具有顯著性差異。其中,XR11002、TT11002、AI11003的芽孢萌發(fā)率均值分別為88.87%、81.88%、73.55%,可看出XR11002噴頭的蘇云金桿菌芽孢萌發(fā)率要高于TT11002及AI11003,此結(jié)果與各噴頭內(nèi)部流道結(jié)構(gòu)相關(guān),當(dāng)XR11002噴頭噴施菌液時(shí),流體通過2段相同流向的通道流至噴孔噴出,噴施過程中無流體方向的突然改變及外在氣流的混入干擾。而TT11002噴頭強(qiáng)制改變流體方向,使流體由豎直方向強(qiáng)制進(jìn)入水平混流室,然后再次由水平流道改為幾乎是垂直的噴孔通道[26];AI11003噴頭設(shè)置有前置孔,在前置噴孔處因文丘里效應(yīng)導(dǎo)致空氣被吸入噴頭[27],菌體同時(shí)受氣、液兩種流體作用。這些噴頭流道的流向突變及有外界氣流混入干擾的氣、液混流結(jié)構(gòu)都會使菌體受到多重受力,引起菌體結(jié)構(gòu)受損。
表4 噴頭型號和壓力對蘇云金桿菌活性損傷影響
表5 單因素方差分析
噴頭型號、壓力對蘇云金桿菌芽孢萌發(fā)率的影響程度如表6所示,在主效應(yīng)檢驗(yàn)中,噴頭型號的Sig.值為0.066,略大于0.05,說明噴頭型號對芽孢萌發(fā)率沒有顯著性影響;壓力的Sig.值為0.000,有顯著性影響。從表4中可看出,總體上同一噴頭噴施的蘇云金桿菌隨壓力增大其芽孢萌發(fā)率呈減少趨勢。主要原因是蘇云金桿菌具有細(xì)胞結(jié)構(gòu),隨壓力增大,流體內(nèi)快速瞬態(tài)應(yīng)力場使菌體受到瞬時(shí)拉伸力和剪切力的作用,引起菌體結(jié)構(gòu)發(fā)生破壞。一旦細(xì)胞壁、細(xì)胞膜發(fā)生損傷,細(xì)菌就很難存活,造成活菌數(shù)量及相應(yīng)子代數(shù)減少,從而引起萌發(fā)菌落數(shù)下降。同時(shí)在主效應(yīng)檢驗(yàn)中,壓力的偏2為0.336,噴頭型號的偏2為0.157,由此也可看出噴頭型號、壓力對芽孢萌發(fā)率的影響程度為壓力>噴頭型號。
表6 主體間效應(yīng)的檢驗(yàn)
綜合分析可知,壓力對菌的活性有顯著性影響,且為負(fù)相關(guān);噴頭型號對菌的活性無顯著性影響。從提高菌的活性考慮,優(yōu)先選用XR系列扇形噴頭。因生物農(nóng)藥霧滴越小,冠層穿透性和覆蓋性能越好,但小于150m的霧滴,易揮發(fā),抗飄移性差,因此生物農(nóng)藥平均體積中徑在150m左右比較合適。根據(jù)測量及噴頭廠家數(shù)據(jù),當(dāng)噴施壓力為0.15 MPa時(shí),XR11001和XR11002在最低噴霧高度50 cm下霧滴體積中徑分別為140、200m左右,結(jié)合霧滴分布及壓力對活性的影響,建議選用XR系列中的XR11001,噴施壓力為0.15 MPa。
用浸過多角體病毒的有機(jī)杭白菜喂食小菜蛾,記錄16、24和48 h后小菜蛾死亡條數(shù),試驗(yàn)數(shù)據(jù)如表7所示。對小菜蛾死亡率進(jìn)行均值差異顯著性檢驗(yàn),XR11002、TT11002、AI11003噴頭的Sig.值分別為0.881、0.817、0.978,均大于0.05,說明小菜蛾死亡率均值沒有顯著性差異。小菜蛾死亡率的主效應(yīng)檢驗(yàn)結(jié)果如表8所示,其中,噴頭型號、壓力的Sig.值分別為0.171、0.762,均大于0.05,說明噴頭型號、壓力對小菜蛾死亡率沒有顯著性影響,也反映了噴頭型號、壓力對多角體病毒的活性損傷無顯著性影響。這主要是由多角體病毒的生物結(jié)構(gòu)決定,多角體病毒無細(xì)胞結(jié)構(gòu),僅由DNA或RNA單個(gè)分子構(gòu)成,其遺傳物質(zhì)包裹在蛋白質(zhì)外殼內(nèi)部,壓力增大及流向突變等造成的外殼損傷不足以影響病毒活性及繁殖。
在每種噴頭不同壓力下,小菜蛾死亡率都隨時(shí)間增長呈逐漸升高趨勢。從主效應(yīng)檢驗(yàn)結(jié)果中可看到噴頭型號、壓力的偏2分別為0.123、0.064,且均未通過顯著性檢驗(yàn);時(shí)間的偏2為0.861,通過顯著性檢驗(yàn),由此可看出,時(shí)間顯著影響小菜蛾的死亡率,噴頭型號、壓力對小菜蛾死亡率無顯著影響。綜合分析可知,噴頭型號、壓力對多角體病毒的活性損傷無顯著性影響,在噴施病毒類生物農(nóng)藥時(shí),因病毒無細(xì)胞結(jié)構(gòu)、敏感性弱,可忽略噴頭型號及壓力對多角體病毒活性的影響。
表7 噴頭型號及壓力對多角體病毒活性損傷影響
表8 主體間效應(yīng)的檢驗(yàn)
論文從減少損傷、提高活性角度,試驗(yàn)研究了具有不同流道結(jié)構(gòu)的XR系列、TT系列、AI系列扇形噴頭在不同噴施壓力下對微生物農(nóng)藥霧滴分布及活性損傷的影響,結(jié)論如下:
1)噴頭型號、壓力及介質(zhì)對微生物農(nóng)藥霧滴粒徑分布的影響程度為噴頭型號>壓力>介質(zhì)。噴頭型號、壓力對霧滴粒徑分布有顯著性影響,介質(zhì)無顯著性影響。
2)壓力對菌類微生物農(nóng)藥的活性損傷有顯著性影響,且呈負(fù)相關(guān),噴施壓力越大,菌的存活率越低。從提高菌的活性角度,建議XR11002和TT11002噴頭的噴施壓力不大于0.15 MPa,AI11003的噴施壓力不大于0.3 MPa;噴頭型號對菌的活性無顯著性影響。
3)壓力及噴頭型號對病毒活性的損傷影響無顯著性,主要跟病毒無細(xì)胞的特殊機(jī)體結(jié)構(gòu)相關(guān)。在噴施病毒類生物農(nóng)藥時(shí),噴頭型號及噴施壓力對病毒活性損傷可忽略不計(jì)。
4)利用扇形噴頭XR系列、TT系列、AI系列噴施微生物農(nóng)藥時(shí),優(yōu)先選用XR系列扇形噴頭,考慮霧滴分布及活性,建議選用XR系列中的XR11001,噴施壓力為0.15 MPa。
[1] 范月蕾,趙曉勤,陳大明,等. 微生物殺蟲劑研發(fā)現(xiàn)狀和產(chǎn)業(yè)化發(fā)展態(tài)勢[J]. 生物產(chǎn)業(yè)技術(shù),2016(1):54-58. Fan Yuelei, Zhao Xiaoqin, Chen Daming, et al. Research status and industrialization development trend of microbial pesticide[J]. Industry of Biotechniques, 2016(1): 54-58. (in Chinese with English abstract)
[2] Singh R L. Principles and Applications of Environmental Biotechnology for a Sustainable Future[M]. Singapore Springer: 2017.
[3] Gupta S, Dikshit A K. Biopesticides: an ecofriendly approach for pest control[J]. Journal of Biopesticides, 2010, 3(1): 186-188.
[4] Martín L, Marqués J L, González-Coloma A, et al. Supercritical methodologies applied to the production of biopesticides: a review[J]. Phytochemistry Reviews, 2012, 11(4): 413-431.
[5] 翟恩昱,鄭加強(qiáng),周宏平,等. 扇形霧噴頭磨損對微生物農(nóng)藥施藥性能的影響[J]. 林業(yè)工程學(xué)報(bào),2018,3(1): 109-116. Zhai Enyu, Zheng Jiaqiang, Zhou Hongping, et al. Effects of flat-fan nozzle wear on application of microbial pesticides[J]. Journal of Forestry Engineering, 2018, 3(1): 109-116. (in Chinese with English abstract)
[6] Chojnacki J. Effect of fluid flow through control valve in sprayer installation on viability of entomopathogenic nematodes[J]. Journal of Research & Applications in Agricultural Engineering, 2011, 56(1): 19-25.
[7] Chojnacki J. The investigation of influence of static pressure periods in sprayers on entomopathogenic nematodes viability[J]. Electronic Journal of Polish Agricultural Universities, 2011, 90(6): 825-831.
[8] Fife J P, Derksen R C, Ozkan H E, et al. Effects of pressure differentials on the viability and infectivity of entomopathogenic nematodes[J]. Biological Control, 2003, 27(1): 65-72.
[9] Fife J P, Derksen R C, Ozkan H E, et al. Evaluation of a contraction flow field on hydrodynamic damage to entomopathogenic nematodes-A biological pest control agent.[J]. Biotechnology & Bioengineering, 2004, 86(1): 96-107.
[10] Fife J P, Ozkan H E, Derksen R C, et al. Using computational Fluid dynamics to predict damage of a biological pesticide during passage through a hydraulic nozzle[J]. Biosystems Engineering, 2006, 94(3): 387-396.
[11] Fife J P, Ozkan H E, Derksen R C, et al. Viability of a biological pest control agent through hydraulic nozzles[J]. Transactions of the ASAE, 2005, 48(1): 45-54.
[12] Molina-Miras A, Sánchez-Mirón A, García-Camacho F, et al. CFD-aided optimization of a laboratory-scale centrifugation for a shear-sensitive insect cell line[J]. Food & Bioproducts Processing, 2018, 107: 113-120.
[13] Hidalgo E, Bateman R, Krauss U, et al. A field investigation into delivery systems for agents to controlmoniliophthoraroreri[J]. European Journal of Plant Pathology, 2003, 109(9): 953-961.
[14] Garcla L C, Raetano C G, Wilcken S R S, et al.Pressurization of the spraying suspension and viability of entomopathogens[J].Engenharia Agrícola, 2005, 25(3): 783-790
[15] Lanzoni A, Ade G, Martelli R, et al. Technological aspects of Steinernema carpocapsae spray application alone or mixed with Bacillus thuringiensis aizawai in spinach crop[J]. Bulletin of Insectology, 2014, 67(1): 115-123.
[16] Moreira G F, Batista E S, Campos H B, et al. Spray nozzles, pressures, additives and stirring time on viability and pathogenicity of entomopathogenic nematodes (nematoda: rhabditida) for greenhouses[J]. Plos One, 2013, 8(6): e65759.
[17] ShapiroIlan D I, Gouge D H, Piggott S J, et al. Application technology and environmental considerations for use of entomopathogenic nematodes in biological control[J]. Biological Control, 2006, 38(1): 124-133.
[18] Brusselman E, Beck B, Temmerman F, et al. Distribution of entomopathogenic nematodes in a biopesticide spray[J]. Transactions of the ASABE, 2011, 54(6): 1981-1989.
[19] Gouli V, Kassa A, Skinner M, et al. Fungal conidia distribution on chrysanthemum: varying spray parameters[J]. Archives of Phytopathdogy and Plant Protection, 2011, 44(6): 567-574.
[20] 李建華,鄭加強(qiáng),余果. 噴霧接種生物顆粒兩相流及其對菌種活性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(1):47-54. Li Jianhua, Zheng Jiaqiang, Yu Guo. Solid-liquid two-phase flow of microbial particle spraying inoculation and itsinfluence on microbial viability[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(1): 47-54. (in Chinese with English abstract)
[21] 張慧春,鄭加強(qiáng),周宏平,等. 轉(zhuǎn)籠式生物農(nóng)藥霧化噴頭的性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(4):63-70. Zhang Huichun, Zheng Jiaqiang, Zhou Hongping, et al. Performance experiments of rotary cage atomizer for biologicalpesticide application[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(4): 63-70. (in Chinese with English abstract)
[22] 朱正陽,張慧春,鄭加強(qiáng),等. 風(fēng)送轉(zhuǎn)盤式生物農(nóng)藥離心霧化噴頭的性能[J]. 浙江農(nóng)林大學(xué)學(xué)報(bào),2018,35(2): 361-366.Zhu Zhengyang, Zhang Huichun, Zheng Jiaqiang, et al. Performance of an air-assisted spinning disc nozzle for biological pesticide[J].Journal of Zhejiang A&F University, 2018, 35(2): 361-366. (in Chinese with English abstract)
[23] 宋偉,周宏平,張慧春,等. 轉(zhuǎn)籠式生物農(nóng)藥霧化噴頭的性能分析[J]. 南京林業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2012,36(5):133-136.Song Wei, Zhou Hongping, Zhang Huichun, et al. Performance analysis on rotating-cage spraying atomizer of biological pesticide[J]. Journal of Nanjing Forestry University: Natural Science Edition, 2012, 36(5): 133-136. (in Chinese with English abstract)
[24] 肖麗萍,劉木華,Zhu Heping,等. 噴嘴噴施不同生物農(nóng)藥霧滴特性研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(2):100-106. Xiao Liping, Liu Muhua, Zhu Heping, et al. Spray droplet size characteristics of different biological pesticides with different hydraulic nozzles[J]. Transactions of the Chinese Society of Agricultural Machinery, 2018, 49(2): 100-106. (in Chinese with English abstract)
[25] 肖麗萍,蔡金平,劉木華,等. 不同生物農(nóng)藥的噴霧覆蓋率與頁面沉積量的實(shí)驗(yàn)研究[J]. 農(nóng)機(jī)化研究,2018,40(9):189-194. Xiao Liping, Cai Jinping, Liu Muhua, et al. Comparative experimental study on spray coverage and deposition of different bio-pesticides with different hydraulic nozzles[J]. Journal of Agricultural Mechanization Research, 2018, 40(9): 189-194. (in Chinese with English abstract)
[26] 張慧春,Gary Dorr,鄭加強(qiáng),等. 噴霧飄移的風(fēng)洞試驗(yàn)和回歸模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(3):94-100. Zhang Huichun, Gary Dorr, Zheng Jiaqiang, et al. Wind tunnel experiment and regression model for spray drift[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(3): 94-100. (in Chinese with English abstract)
[27] 劉秀娟,周宏平,鄭加強(qiáng). 農(nóng)藥霧滴飄移控制技術(shù)研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005,21(1):186-190.Liu Xiujuan, Zhou Hongping, Zheng Jiaqiang. Research progress of pesticide droplet control technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(1): 186-190. (in Chinese with English abstract)
[28] 王立軍,姜明海,孫文峰,等. 噴霧機(jī)設(shè)計(jì)中噴頭的選型[J]. 農(nóng)機(jī)化研究,2005(2):151-153. Wang Lijun, Jiang Haiming, Sun Wenfeng, et al. The type choice of nozzle in sprayer design[J]. Journal of Agricultural Mechanization Research,2005(2):151-153. (in Chinese with English abstract)
[29] 邊厚望. 廣角扇形噴嘴[EB/OL]. 2012-03-03. http://www. doc88.com/p-505548748596.html
[30] 魏書艷,陸德玲,張婧,等. 9種藥劑對小菜蛾的室內(nèi)毒力測定及田間防控試驗(yàn)[J]. 江蘇農(nóng)業(yè)科學(xué),2013,41(7): 116-119.Wei Shuyan, Lu Deling, Zhang Qian, et al. Indoor virulence determination and field control of 9 insecticides against Plutellaxylostella[J]. Jiangsu Agricultural Sciences, 2013, 41(7): 116-119. (in Chinese with English abstract)
Effect of fan nozzle structure and pressure on distribution and activity of microbial pesticide droplets
Liu Dongmei1,2, Zhou Hongping1※, Ru Yu1, Qu Rongjia1
(1.210037,; 2.321017,)
The flat fan nozzle is the most common type of nozzle for various boom sprayers. From the perspective of reducing damage and improving activity, in order to screen the nozzle pattern and spray pressure suitable for spraying microbial pesticide in flat fan nozzles, the comparative experiments of bioactivity damage were carried out for extended range fan nozzle XR, wide-angle fan nozzle TT and air suction fan nozzle AI. The nozzle atomization test system was used to test the droplet distribution of three different spray samples of Bacillus thuringiensis, Brassica californica polyhedrosis virus and water. The influence of nozzle structure and spray pressure on the activity damage of bacteria and virus biological pesticide was quantified by spore germination rate of Bacillus thuringiensis and mortality of Plutella xylostella. The experimental results showed that the XR series fan nozzles with a single direction of flow had less impact on the biological activity than the TT series with multiple flow mutations and the AI series fan nozzles with interference from external air flow. When the XR11002 nozzle sprayed microbial pesticide, the fluid flew through the 2 channels of the same flow direction to the nozzle hole, and there was no sudden change of the fluid direction and no external airflow interference during the spraying process. However, the TT11002 nozzle forcibly changed the direction of the liquid, forcing the fluid to entered the horizontal mixing chamber from the vertical direction, and then changing from the horizontal flow channel to the almost vertical orifice channel, resulting in microbial damage caused by shear stress and normal stress. The AI11003 nozzle was provided with a front hole, and in the hole, the air was sucked into the nozzle due to the Venturi effect. The gas and liquid mixed flow structure caused the microorganism to be subjected to multiple interferences and force, causing damage to biological structures. At 0.5 MPa, after 16 hours culture, the spore germination rate of Bacillus thuringiensis sprayed with XR11002 sprinkler was 83.76%, while that of TT11002 and AI11003 were 65% and 68.33% respectively. Pressure on the bacterial and viral biological pesticide activity difference was obvious. The pressure had a negative correlation to the activity damage of bacteria, and had no obvious effect on the damage of the virus activity, it was mainly related to the structure of bacteria and virus. The bacteria had the cell structure, the increase of pressure caused the increase of damage degree to cell wall and cell membrane, resulting in the decrease of the living bacteria and subalgebra. The virus had no cell structure, its genetic material was wrapped in the protein shell, and the destruction of the shell did not affect the virus activity. The damage degree of nozzle to virus biologic pesticides was less than that of bacteria, which was caused by the different structure of the 2 organisms. Therefore, when using the flat fan nozzle to spray the microbiological pesticide, the XR series fan nozzle was preferred. Therefore, when using the flat fan nozzle to spray the microbiological pesticide, the XR series fan nozzle was preferred. From the angle of reducing the activity damage, it was suggested that the spray pressure of XR11002 and TT11001 were not greater than 0.15MPa, and the spray pressure of AI11003 was not greater than 0.3MPa. In combination with various factors, when spraying microbial pesticides with fan nozzles, XR11001 in XR series fan nozzles was preferred from the viewpoint of droplet distribution and activity, and the spraying pressure was 0.15 MPa. In the spraying of virus pesticides, the impact of the type of nozzle and pressure on the viral activity damage can be ignored. This paper provides a reference for screening the optimal nozzle type and spraying pressure suitable for bio-pesticide spraying.
nozzles; pesticides; pressure; biological activity
10.11975/j.issn.1002-6819.2018.21.007
S491; S435
A
1002-6819(2018)-21-0057-08
2018-06-21
2018-08-31
國家十三五重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFD0600202)
劉冬梅,女,博士生,講師,主要從事植保機(jī)械及精準(zhǔn)施藥技術(shù)研究。Email:ldm123ldm@126.com
周宏平,男,教授,博士生導(dǎo)師,主要從事植保機(jī)械裝備與技術(shù)研究。Email:hpzhou@njfu.edu.cn
劉冬梅,周宏平,茹 煜,曲榮佳. 扇形噴頭結(jié)構(gòu)和壓力對微生物農(nóng)藥霧滴分布及活性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(21):57-64. doi:10.11975/j.issn.1002-6819.2018.21.007 http://www.tcsae.org
Liu Dongmei, Zhou Hongping, Ru Yu, Qu Rongjia. Effect of fan nozzle structure and pressure on distribution and activity of microbial pesticide droplets[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(21): 57-64. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.21.007 http://www.tcsae.org