朱德泉,李蘭蘭,文世昌,張 順※,蔣 銳,武立權(quán)
?
滑片型孔輪式水稻精量排種器排種性能數(shù)值模擬與試驗(yàn)
朱德泉1,李蘭蘭1,文世昌1,張 順1※,蔣 銳1,武立權(quán)2
(1. 安徽農(nóng)業(yè)大學(xué)工學(xué)院,合肥 230036;2. 安徽農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,合肥 230036)
針對(duì)現(xiàn)有水稻旱直播機(jī)排種器適應(yīng)性差和排種精度低的問(wèn)題,該文設(shè)計(jì)了一種滑片型孔輪式排種器。引用球度表示水稻種子三軸尺寸,利用EDEM軟件對(duì)3種球度水稻種子在6種排種輪轉(zhuǎn)速下的排種器排種過(guò)程進(jìn)行仿真試驗(yàn),得到不同球度水稻種子在不同排種輪轉(zhuǎn)速下的排種性能變化規(guī)律,分析了排種輪轉(zhuǎn)速和種子球度對(duì)排種性能的影響。仿真結(jié)果表明:當(dāng)排種輪轉(zhuǎn)速在15~40 r/min時(shí),岡優(yōu)898種子的排種性能優(yōu)于國(guó)豐一號(hào)種子和岡優(yōu)3551種子的排種性能;當(dāng)排種輪轉(zhuǎn)速在15~30 r/min時(shí),3種球度水稻種子的排種合格率在84.01%~87.91%之間;當(dāng)排種輪轉(zhuǎn)速大于30 r/min時(shí),隨著排種輪轉(zhuǎn)速增加,排種合格率顯著下降。在此基礎(chǔ)上,選用不同球度的5個(gè)水稻品種種子為試驗(yàn)材料,選取排種輪轉(zhuǎn)速和種子球度為試驗(yàn)因素,以排種合格率、漏播率和重播率為評(píng)價(jià)指標(biāo),采用二次回歸正交旋轉(zhuǎn)組合設(shè)計(jì),進(jìn)行排種器臺(tái)架試驗(yàn)。利用Design-Expert 8.0.6軟件對(duì)試驗(yàn)結(jié)果數(shù)據(jù)進(jìn)行分析,建立排種性能指標(biāo)與排種輪轉(zhuǎn)速和種子球度之間的回歸方程,得到響應(yīng)面圖,并對(duì)仿真結(jié)果進(jìn)行驗(yàn)證。根據(jù)回歸方程進(jìn)行優(yōu)化,得到最佳工作參數(shù):排種輪轉(zhuǎn)速為27.12 r/min、種子球度為44.61%,此時(shí),排種合格率為83.90%、漏播率為5.43%、重播率為10.67%,排種性能最佳;排種器臺(tái)架試驗(yàn)結(jié)果與仿真結(jié)果基本相同,排種性能隨排種輪轉(zhuǎn)速和種子球度的變化規(guī)律一致。田間試驗(yàn)結(jié)果表明,排種器對(duì)各尺寸等級(jí)水稻種子的排種性能皆滿足水稻精量穴直播的播種要求。研究結(jié)果可為滑片型孔輪式精量排種器的結(jié)構(gòu)優(yōu)化及排種性能提升提供參考。
農(nóng)業(yè)機(jī)械;數(shù)值模擬;農(nóng)作物;水稻;排種器;排種性能;滑片型孔輪
水稻精量穴直播作為目前生產(chǎn)上先進(jìn)的水稻機(jī)械直播技術(shù),已得到廣泛的推廣應(yīng)用[1-3]。排種器是水稻精量穴直播機(jī)的核心工作部件,其排種性能直接影響機(jī)械播種質(zhì)量。型孔輪式排種器是較為常用的機(jī)械式排種器,其充種性能直接影響著排種質(zhì)量[4-10]。
目前,生產(chǎn)上使用的水稻旱直播品種繁多,種子尺寸各不相同,排種器對(duì)不同尺寸水稻種子的適應(yīng)性不一樣,高速作業(yè)對(duì)排種器的充種性能也會(huì)產(chǎn)生很大的影響[11-14]。因此,研究水稻種子尺寸及排種輪轉(zhuǎn)速對(duì)排種性能的影響,可為精密排種器的結(jié)構(gòu)優(yōu)化提供參考依據(jù)。
隨著計(jì)算機(jī)技術(shù)的快速發(fā)展,近年來(lái)許多學(xué)者應(yīng)用離散元法(discrete element method,DEM)及其數(shù)值模擬仿真軟件EDEM對(duì)排種器的工作性能進(jìn)行研究分析。王金武等運(yùn)用EDEM軟件對(duì)指夾式精量排種器排種性能進(jìn)行數(shù)值模擬與試驗(yàn)[15],廖慶喜等基于EDEM軟件對(duì)離心式排種器排種性能進(jìn)行數(shù)值模擬[16],鮑秀蘭等采用離散元法對(duì)窩眼式排種器結(jié)構(gòu)進(jìn)行優(yōu)化仿真[17],張濤等使用離散元法對(duì)排種器排種室內(nèi)玉米種群運(yùn)動(dòng)規(guī)律進(jìn)行研究[18]。這些應(yīng)用研究對(duì)排種器的結(jié)構(gòu)參數(shù)和工作參數(shù)優(yōu)化以及工作性能提升均取得較為理想的研究結(jié)果。但上述研究主要針對(duì)充種性能較好的表面光滑團(tuán)粒種子,而水稻種子是表面粗糙的細(xì)長(zhǎng)粒種子,流動(dòng)性和充種性較差,實(shí)現(xiàn)水稻精少量穴播,亟待提高排種器的排種性能。
因此,針對(duì)雜交稻旱穴直播精少量播種的農(nóng)藝要求,設(shè)計(jì)一種滑片型孔輪式排種器,建立排種輪充種過(guò)程動(dòng)力學(xué)方程,分析充種性能與排種輪轉(zhuǎn)速和種子尺寸的相關(guān)性。在此基礎(chǔ)上,引用球度表示水稻種子三軸尺寸,使用EDEM軟件對(duì)滑片型孔輪式排種器進(jìn)行排種性能仿真試驗(yàn),根據(jù)模擬仿真結(jié)果得出排種性能隨排種輪轉(zhuǎn)速和種子球度的變化規(guī)律。選用不同球度的5個(gè)水稻品種種子為試驗(yàn)材料,選取排種輪轉(zhuǎn)速和種子球度為試驗(yàn)因素,以排種合格率、漏播率和重播率為評(píng)價(jià)指標(biāo),采用二次回歸正交旋轉(zhuǎn)組合設(shè)計(jì),進(jìn)行排種器臺(tái)架試驗(yàn),得到最佳工作參數(shù)組合。通過(guò)臺(tái)架試驗(yàn)驗(yàn)證了仿真結(jié)果的可靠性,并通過(guò)田間試驗(yàn)檢驗(yàn)了排種器的工作性能,為滑片型孔輪式精量排種器結(jié)構(gòu)優(yōu)化及排種性能提升提供了依據(jù)。
滑片型孔輪式排種器主要由排種輪、排種軸、護(hù)種滑片、限種板、清種毛刷、法蘭盤(pán)、罩殼等組成,如圖1a所示。工作時(shí),機(jī)具行走地輪通過(guò)鏈傳動(dòng)將動(dòng)力傳至排種軸,帶動(dòng)排種輪以及嵌在排種輪上的護(hù)種滑片做旋轉(zhuǎn)運(yùn)動(dòng),種子從種箱下落至排種器的充種區(qū)后,在自身重力、種群側(cè)壓力及排種輪旋轉(zhuǎn)帶動(dòng)作用下充入型孔,完成充種過(guò)程。進(jìn)入清種區(qū),在清種毛刷的作用下,型孔外多余種子被刷出后落回充種區(qū),在護(hù)種滑片隨排種輪轉(zhuǎn)動(dòng)至與鉛垂方向呈15°角時(shí),即圖1b中的點(diǎn)處,護(hù)種滑片在右法蘭盤(pán)內(nèi)側(cè)圓柱凸輪作用下被推至另一側(cè),利用護(hù)種滑片無(wú)孔處封住型孔,形成護(hù)種作用,當(dāng)護(hù)種滑片隨排種輪轉(zhuǎn)動(dòng)至與排種口正下方呈15°角時(shí),即圖1b中的點(diǎn)處,左法蘭盤(pán)內(nèi)側(cè)圓柱凸輪將護(hù)種滑片推至初始位置,即護(hù)種滑片通孔與排種輪型孔軸線重合。當(dāng)種子進(jìn)入排種區(qū)后,在自身重力作用下,種子由型孔落入導(dǎo)種管,并下落投入種溝中,實(shí)現(xiàn)精量排種作業(yè)。
1. 限種板 2. 從動(dòng)軸 3. 清種毛刷 4. 右法蘭盤(pán) 5. 圓柱凸輪 6. 罩殼 7. 導(dǎo)種管 8. 護(hù)種滑片 9. 排種輪 10. 左法蘭盤(pán) 11. 排種軸
為了提高排種器的充種性能,對(duì)種子在充種區(qū)進(jìn)行受力分析。為簡(jiǎn)化分析,假設(shè)水稻種子為圓球體且規(guī)則排列[19],種子所受壓力為其上方所有種子重力之和,側(cè)壓力為0。根據(jù)排種器工作條件可知,種子在自身重力、排種輪對(duì)種子的支持力1、種子群之間的推擠力2、排種輪外壁與種子的摩擦力1、種子群內(nèi)摩擦力2、離心力F的共同作用下充入型孔中,將力系向排種輪截面的法向和切向進(jìn)行分解,如圖2a所示,建立其力學(xué)平衡方程式:
式中F為切向合力,N;F為法向合力,N;a為切向加速度,m/s2;a為法向加速度,m/s2;為水稻種子質(zhì)量,g;為水稻種子角位移,(°);為水稻種子質(zhì)心到排種輪中心距離,mm;為水稻種子角速度,rad/s;為排種輪轉(zhuǎn)速,r/min;1為排種輪外壁與種子之間的摩擦因數(shù);2為種子間摩擦因數(shù)。
整理式(1)可得
分析水稻種子充入型孔的過(guò)程可知,種子質(zhì)心沿排種輪截面法向方向的位移量(即型孔深度)與種子法向加速度a關(guān)系為
式中為種子質(zhì)心充入型孔內(nèi)時(shí)間,s。
由于a在排種轉(zhuǎn)速范圍內(nèi)與實(shí)際運(yùn)動(dòng)方向相反,可知a<0,結(jié)合式(2)和式(3)求得
型孔深度應(yīng)與每穴播量相適宜,雜交稻穴直播每穴播種(3±1)粒為宜,參考型孔參數(shù)設(shè)計(jì)經(jīng)驗(yàn),型孔內(nèi)種子以2粒平躺和1粒豎立的排列方式居多[20-21]。因此,型孔深度應(yīng)滿足
式中為種子長(zhǎng)度,mm;為種子寬度,mm。
為達(dá)到較好的充種性能,排種輪型孔直徑應(yīng)不小于種子長(zhǎng)度與種子厚度之和[20]。結(jié)合水稻種子排種試驗(yàn)研究,確定較為適合的排種輪菱形型孔長(zhǎng)對(duì)角線長(zhǎng)度1和短對(duì)角線長(zhǎng)度2分別為12 mm和10 mm,型孔深度為8 mm,如圖2b、圖2c所示。
為保證水稻種子充分充入型孔內(nèi),需適當(dāng)縮短種子進(jìn)入型孔中的時(shí)間。由式(4)、式(5)整理可得:
式中=(2+)cos+22sin。
由式(6)分析可知,在確定水稻種子角位移、種子參數(shù)、2以及水稻種子質(zhì)心到排種輪中心距離后,種子充入型孔中的時(shí)間與排種輪轉(zhuǎn)速和種子尺寸有關(guān)。
注:Fr為種子離心力,N;F1為排種輪對(duì)種子的支持力,N;F2為種子群之間的推擠力,N;G為種子自身重力,N;f1為排種輪外壁與種子的摩擦力,N;f2為種子群內(nèi)摩擦力,N;h為排種輪菱形型孔深度,mm;l1為排種輪菱形型孔長(zhǎng)對(duì)角線長(zhǎng)度,mm;l2為排種輪菱形型孔短對(duì)角線長(zhǎng)度,mm。
3.1.1 排種器模型建立
為減少仿真時(shí)間以及運(yùn)算量,在不影響仿真效果的前提下,將與種子無(wú)接觸的部件省去,應(yīng)用三維軟件SolidWorks對(duì)排種器進(jìn)行實(shí)體建模,并以.igs格式導(dǎo)入EDEM軟件中,如圖3所示。
圖3 排種器幾何模型
通過(guò)EDEM軟件前處理面板,在不影響仿真效果的前提下,簡(jiǎn)化排種器的運(yùn)動(dòng)過(guò)程,將運(yùn)動(dòng)過(guò)程簡(jiǎn)化為護(hù)種滑片隨排種輪做圓周運(yùn)動(dòng)以及護(hù)種滑片在碰到凸輪時(shí)的橫向進(jìn)給運(yùn)動(dòng)。設(shè)置種子模型的泊松比為0.3,剪切模量為1.815×108Pa,密度為1 239 kg/m3。排種輪和護(hù)種滑片材料皆為不銹鋼,泊松比為0.28,彈性模量為7.9× 107Pa,密度為7 850 kg/m3;清種毛刷材料為塑料,泊松比為0.4,彈性模量為1.0×108Pa,密度為1 150 kg/m3 [22-25]。
3.1.2 水稻種子離散模型建立
為探究種子尺寸在不同排種輪轉(zhuǎn)速下對(duì)排種器排種性能的影響,引用球度表示水稻種子與球體之間的差異程度,用以代表水稻種子尺寸[26]。水稻種子球度可由式(7)計(jì)算得出。
式中S為種子球度,%;、、分別表示種子長(zhǎng)度、寬度和厚度,mm。
選取3個(gè)不同種子尺寸等級(jí)的水稻品種:國(guó)豐一號(hào)、岡優(yōu)898和岡優(yōu)3551,每個(gè)水稻品種隨機(jī)挑選1 000粒種子,測(cè)量其三軸尺寸,取平均值。3個(gè)水稻品種種子三軸尺寸及球度如表1所示。
表1 3個(gè)水稻品種種子尺寸及球度
按照水稻種子三軸尺寸均值建立其三維模型,并在EDEM軟件中通過(guò)多球面組合對(duì)模型表面進(jìn)行填充,模擬種子的狀態(tài),如圖4所示。
圖4 水稻種子EDEM模型
3.1.3 仿真參數(shù)的設(shè)定
由于水稻種子表面無(wú)黏附作用,選擇Hertz-Mindlin無(wú)滑動(dòng)模型為仿真接觸模型[27]。根據(jù)充種區(qū)的具體情況,設(shè)置EDEM顆粒工廠以4 000粒/s的速率,生成總量數(shù)為4 000粒,生成種子顆??倳r(shí)間1 s,以保證充種區(qū)內(nèi)有足夠數(shù)量的種子進(jìn)行仿真,排種輪和護(hù)種滑片皆設(shè)置為1 s后開(kāi)始運(yùn)轉(zhuǎn),為保證仿真的連續(xù)性,設(shè)置固定時(shí)間步長(zhǎng)為4.39×10–6s,為Rayleith時(shí)間步長(zhǎng)的25%,總時(shí)間為15 s(前1 s為充種過(guò)程)[28]。
為了提高排種器的排種性能,運(yùn)用EDEM軟件進(jìn)行排種性能虛擬試驗(yàn),分析排種輪轉(zhuǎn)速和水稻種子球度對(duì)排種性能的影響。
根據(jù)田間實(shí)際工作情況,將排種輪轉(zhuǎn)速分別設(shè)置為15、20、25、30、35、40 r/min,對(duì)3個(gè)水稻品種種子分別進(jìn)行6組仿真虛擬試驗(yàn)。如圖5所示,將排種器以網(wǎng)格模型(Mesh=0.3)顯示,圖中顏色的變化表示其運(yùn)動(dòng)速度的變化,可清楚表示水稻種子的運(yùn)動(dòng)狀態(tài)。通過(guò)仿真可知,充種區(qū)邊緣處的水稻種子運(yùn)動(dòng)比較明顯,排種輪的旋轉(zhuǎn)運(yùn)動(dòng)帶動(dòng)靠近排種輪邊緣層的種子顆粒運(yùn)動(dòng),其速度逐漸增加,與實(shí)際工作情況相符合。仿真中充種和排種過(guò)程的水稻種子速度如圖5a、圖5b所示。
圖5 EDEM排種過(guò)程種子運(yùn)動(dòng)仿真
仿真過(guò)程中,排種器排種結(jié)果主要是合格、漏播、重播3種狀態(tài)。為便于觀察仿真過(guò)程中水稻種子運(yùn)動(dòng)形式,設(shè)置排種器以實(shí)體模型(Filled=0.4)形式顯示,如圖6所示。型孔中充有2~4粒水稻種子并排出導(dǎo)種口表示排種合格,如圖6a所示;有0~1粒水稻種子充入型孔表示漏播,如圖6b所示;型孔中充入多于4粒水稻種子并排出導(dǎo)種口表示重播,如圖6c所示。
圖6 EDEM仿真水稻種子3種排種狀態(tài)
以排種輪轉(zhuǎn)速和種子球度為因素,運(yùn)用EDEM軟件進(jìn)行18組虛擬仿真試驗(yàn)。根據(jù)GB/T 6973-2005《單粒(精密)播種機(jī)試驗(yàn)方法》,選取合格率1、漏播率2和重播率3為試驗(yàn)指標(biāo)[29-30],其計(jì)算公式如下
式中為理論排種數(shù),1為合格排種數(shù),2為漏播排種數(shù),3為重播排種數(shù)。
通過(guò)EDEM仿真分析得到的數(shù)據(jù)運(yùn)用Excel軟件進(jìn)行處理,得到3個(gè)水稻品種種子的排種合格率、漏播率和重播率變化曲線,如圖7所示。
圖7 排種性能EDEM仿真結(jié)果
由圖7可知,當(dāng)排種輪轉(zhuǎn)速在15~40 r/min時(shí),岡優(yōu)898種子的排種性能較優(yōu),其合格率最低達(dá)80%,岡優(yōu)3551和國(guó)豐一號(hào)種子的排種性能次之。排種輪轉(zhuǎn)速在15~ 30 r/min時(shí),隨排種輪轉(zhuǎn)速增加,3個(gè)水稻品種種子的合格率整體呈上升趨勢(shì);當(dāng)排種輪轉(zhuǎn)速高于30 r/min時(shí),合格率隨排種輪轉(zhuǎn)速增加呈顯著下降趨勢(shì)。漏播率隨排種輪轉(zhuǎn)速增大呈逐漸增大趨勢(shì),重播率隨排種輪轉(zhuǎn)速增大整體呈下降趨勢(shì)。當(dāng)排種輪轉(zhuǎn)速為 30 r/min 時(shí),岡優(yōu) 898種子的合格率達(dá)到最高為87.91%,漏播率為4.21%,重播率為7.88%;岡優(yōu)3551種子的合格率為84.01%,漏播率為3.51%,重播率為12.48%;國(guó)豐一號(hào)種子的合格率為84.52%,漏播率為8.46%,重播率為7.02%;當(dāng)排種輪轉(zhuǎn)速大于30 r/min時(shí),3個(gè)水稻品種種子合格率下降幅度以及漏播率整體增長(zhǎng)趨勢(shì)加快。當(dāng)排種輪轉(zhuǎn)速為40 r/min時(shí),3個(gè)水稻品種種子的漏播率皆超過(guò)8%,已不符合水稻精量播種的農(nóng)藝要求[31]。
結(jié)合表1和圖7綜合分析可知,3個(gè)水稻品種中,岡優(yōu)3551種子長(zhǎng)度較小,種子球度較大,其流動(dòng)性較好,種子容易充入型孔,充種性能較好,漏播率較低;但排種輪轉(zhuǎn)速過(guò)低,其重播率較高,當(dāng)排種輪轉(zhuǎn)速小于20 r/min時(shí),其重播率大于15.53%。國(guó)豐一號(hào)種子長(zhǎng)度大,其球度較小,流動(dòng)性和充種性能較差,充入型孔的種子粒數(shù)較少,會(huì)導(dǎo)致漏播率較高,當(dāng)排種輪轉(zhuǎn)速為40 r/min時(shí),其漏播率達(dá)15.20%。由于種子球度過(guò)大易導(dǎo)致重播率較高,種子球度過(guò)小會(huì)造成漏播率較高,從而合格率較低。在供試的3個(gè)水稻品種中,岡優(yōu)898種子球度介于岡優(yōu)3551和國(guó)豐一號(hào)種子球度之間,當(dāng)排種輪轉(zhuǎn)速在15~40 r/min時(shí),其重播率和漏播率均較低,而合格率較高,最高合格率為87.91%。
4.1.1 試驗(yàn)裝置
試驗(yàn)地點(diǎn)為安徽農(nóng)業(yè)大學(xué)排種性能實(shí)驗(yàn)室。試驗(yàn)設(shè)備為黑龍江省農(nóng)業(yè)機(jī)械研究院研制的JPS-12型排種器性能檢測(cè)試驗(yàn)臺(tái)。排種器固定在安裝架上,控制電機(jī)帶動(dòng)種床帶轉(zhuǎn)動(dòng),種床帶上涂有一定寬度的黏種油,水稻種子由排種口投落至黏種油層上,如圖8所示。人工觀察統(tǒng)計(jì)每穴粒數(shù)。
1. 種床帶 2. 排種器 3. 傳動(dòng)鏈條 4. 控制電動(dòng)機(jī) 5. 試驗(yàn)臺(tái)架
4.1.2 試驗(yàn)設(shè)計(jì)
通過(guò)前文仿真分析,得出不同球度水稻種子排種性能指標(biāo)隨排種輪轉(zhuǎn)速的變化規(guī)律,為進(jìn)一步探究排種輪轉(zhuǎn)速和水稻種子球度對(duì)排種器排種性能的影響及其最佳組合,選取不同種子尺寸等級(jí)的國(guó)豐一號(hào)(大)、兩優(yōu)628(大)、岡優(yōu)898(中)、岡豐188(?。鶅?yōu)3551(?。┕?個(gè)水稻品種種子作為試驗(yàn)材料,其三軸平均尺寸及球度如表2所示。
表2 5個(gè)水稻品種種子尺寸及球度
以排種輪轉(zhuǎn)速和種子球度為試驗(yàn)因素,合格率1、漏播率2以及重播率3為性能評(píng)價(jià)指標(biāo),開(kāi)展2因素5水平二次回歸正交旋轉(zhuǎn)組合試驗(yàn)。因受水稻種子尺寸限制,用5個(gè)品種的種子球度替代種子球度的5個(gè)水平,試驗(yàn)因素編碼如表3所示。每組試驗(yàn)重復(fù)3次,取平均值,試驗(yàn)結(jié)果如表4所示。
表3 試驗(yàn)因素編碼及水平設(shè)置
注:括號(hào)中的數(shù)值是不同水稻品種的種子球度實(shí)測(cè)值。
Notes: Values in brackets are the test values of seed sphericity of different varieties rice.
表4 試驗(yàn)設(shè)計(jì)與結(jié)果
4.1.3 試驗(yàn)結(jié)果分析
1)回歸方程及顯著性檢驗(yàn)
運(yùn)用Design-Expert 8.0.6軟件對(duì)表4的試驗(yàn)數(shù)據(jù)進(jìn)行回歸分析,分別得到合格率1、漏播率2、重播率3與排種輪轉(zhuǎn)速1和種子球度2之間的回歸方程。
對(duì)回歸方程進(jìn)行方差分析,如表5所示。由表5可知,排種器的排種合格率1、漏播率2、重播率3的回歸方程皆極顯著,回歸方程的失擬項(xiàng)皆不顯著,表明在一定參數(shù)范圍內(nèi),回歸模型與實(shí)際情況擬合度較高;排種器的排種合格率1、漏播率2、重播率3的決定系數(shù)2分別為0.93、0.90以及0.86,說(shuō)明回歸方程的預(yù)測(cè)值與實(shí)際值之間具有較高的相關(guān)性,故可用合格率1、漏播率2、重播率3的回歸模型對(duì)排種器的排種性能進(jìn)行分析與預(yù)測(cè)。
表5 回歸方程方差分析
注:**表示在0.01水平差異極顯著;*表示在0.05水平差異顯著。
Note: **indicates the highly significance at 0.01 level; * indicates significance at 0.05 level.
由表5進(jìn)一步分析可知,對(duì)于排種合格率1,回歸項(xiàng)12、22影響極顯著,回歸項(xiàng)1、2以及12皆影響不顯著;對(duì)于漏播率2,回歸項(xiàng)1、2以及12影響極顯著,12影響顯著,而22影響不顯著;對(duì)于重播率3,回歸項(xiàng)1、12影響極顯著,2、22影響顯著,12影響不顯著。在保證擬合回歸極顯著、失擬項(xiàng)不顯著的前提下對(duì)回歸方程進(jìn)行重新擬合,簡(jiǎn)化后的回歸方程為:
式(10)回歸模型的<0.000 1,影響極顯著;失擬項(xiàng)=0.240 3(>0.05),影響不顯著;模型的決定系數(shù)=0.91。
式(11)回歸模型的<0.000 1,影響極顯著;失擬項(xiàng)=0.313 3(>0.05),影響不顯著;模型的決定系數(shù)2=0.89。
式(12)回歸模型的<0.000 1,影響極顯著;失擬項(xiàng)=0.081 0(>0.05),影響不顯著;模型的決定系數(shù)=0.86。
2)試驗(yàn)因素影響效應(yīng)分析
由表5中各試驗(yàn)因素的檢驗(yàn)值可知,影響合格率1的主次因素分別為:12>22>12>1>2;影響漏播率2的主次因素分別為:1>12>2>12>22;影響重播率3的主次因素分別為:12>1>22>2>12。
為更加直觀地分析各因素與排種性能之間的關(guān)系,利用Design-Expert 8.0.6軟件得到種子球度和排種輪轉(zhuǎn)速對(duì)排種合格率、漏播率以及重播率影響的響應(yīng)曲面圖,如圖9所示。
圖9 排種輪轉(zhuǎn)速和種子球度對(duì)排種性能指標(biāo)的影響
響應(yīng)曲面的等值曲線可直觀地反映因素交互作用對(duì)試驗(yàn)評(píng)價(jià)指標(biāo)的影響程度,圓形曲線表示兩因素間交互作用影響不明顯,橢圓形曲線則表示兩因素交互作用影響顯著[32-33]。根據(jù)式(9)和圖9可知,種子球度與排種輪轉(zhuǎn)速存在交互作用。當(dāng)排種輪轉(zhuǎn)速一定時(shí),排種合格率隨種子球度的增大呈先增大后減小趨勢(shì),重播率隨種子球度增大呈先減小后增大趨勢(shì);當(dāng)種子球度一定時(shí),合格率隨排種輪轉(zhuǎn)速的增大呈先增大后減小趨勢(shì),重播率隨排種輪轉(zhuǎn)速增大而減小趨勢(shì)。當(dāng)排種輪轉(zhuǎn)速以及種子球度變化時(shí),合格率和重播率的變化區(qū)間皆較大。因此,種子球度和排種輪轉(zhuǎn)速對(duì)排種合格率和重播率的影響程度較為顯著。當(dāng)種子球度一定時(shí),排種器的漏播率隨排種輪轉(zhuǎn)速增大而增大,這是因?yàn)榕欧N輪轉(zhuǎn)速增大,充種時(shí)間減小,囊種的概率降低,導(dǎo)致漏播率增大;排種輪轉(zhuǎn)速變化時(shí),漏播率的變化區(qū)間較大。因此,排種輪轉(zhuǎn)速對(duì)漏播率的影響程度較為顯著。圖9所示的排種性能指標(biāo)隨排種輪轉(zhuǎn)速和種子球度的變化規(guī)律與仿真結(jié)果基本一致。
4.1.4 優(yōu)化與驗(yàn)證
為確定排種器最佳參數(shù)組合,結(jié)合各因素邊界條件建立排種性能優(yōu)化模型。其優(yōu)化模型為
通過(guò)Design-Expert 8.0.6軟件進(jìn)行優(yōu)化求解,得到排種輪轉(zhuǎn)速為27.12r/min、種子球度為44.61%時(shí),排種合格率為83.90%,漏播率為5.43%,重播率為10.67%,排種器排種性能最佳。
在排種輪轉(zhuǎn)速為27.12 r/min時(shí),對(duì)5個(gè)水稻品種種子分別進(jìn)行排種器臺(tái)架試驗(yàn),每次試驗(yàn)測(cè)定種子數(shù)不低于1 000粒,分別測(cè)定其排種合格率、漏播率和重播率,重復(fù)3次,取其平均值,結(jié)果如表6所示。
表6 驗(yàn)證試驗(yàn)結(jié)果
由表6可知,在排種輪轉(zhuǎn)速27.12 r/min工況條件下,滑片型孔輪式排種器對(duì)5個(gè)品種水稻種子的排種合格率皆高于80%,均符合水稻精量播種合格率不小于80%的農(nóng)藝要求[31];其中接近種子球度優(yōu)化參數(shù)的岡優(yōu)898排種合格率最高,為83.56%,漏播率為5.13%,重播率為11.31%。
為進(jìn)一步檢驗(yàn)滑片型孔輪式水稻精量排種器工作性能,于2017年6月5號(hào)在安徽農(nóng)業(yè)大學(xué)郭河試驗(yàn)基地開(kāi)展田間播種試驗(yàn)。試驗(yàn)前采用旋耕機(jī)對(duì)田塊土壤進(jìn)行耕整,使土壤疏松平整,平均耕深為85 mm,耕深穩(wěn)定性系數(shù)為93.28%,田間土壤平均堅(jiān)實(shí)度為386.6 kPa。水稻種植品種選取國(guó)豐一號(hào)、兩優(yōu)628、岡優(yōu)898、岡豐188和岡優(yōu)3551。將排種器安裝于精量旱直播機(jī),配套動(dòng)力為東方紅LX-854型拖拉機(jī),試驗(yàn)參照NY/T 987-2006《鋪膜穴播機(jī)作業(yè)質(zhì)量》和GB/T 25418-2010《水稻覆土直播機(jī)》進(jìn)行[34-35],試驗(yàn)時(shí)機(jī)組前進(jìn)速度約為5.85 km/h,排種器的轉(zhuǎn)動(dòng)由直播機(jī)的地輪帶動(dòng),排種輪平均轉(zhuǎn)速約為27.12 r/min。每次試驗(yàn)連續(xù)統(tǒng)計(jì)機(jī)組勻速行駛30 m取樣長(zhǎng)度內(nèi)各行每穴粒數(shù)和穴距,重復(fù)3次,取平均值,并由下式求得穴距變異系數(shù)CV。
試驗(yàn)數(shù)據(jù)均依據(jù)GB/T 6973-2005《單粒(精密)播種機(jī)試驗(yàn)方法》進(jìn)行統(tǒng)計(jì)處理[29],結(jié)果如表7所示。
表7 田間試驗(yàn)結(jié)果
由表7可知,在排種輪平均轉(zhuǎn)速27.12 r/min、機(jī)組前進(jìn)速度約5.85 km/h工況條件下,滑片型孔輪式水稻精量排種器對(duì)5種不同球度水稻品種種子播種合格率皆大于80%,漏播率均小于7.5%,重播率均小于13.5%,平均穴距滿足水稻種植株距100~250 mm的范圍要求[31],平均穴距在190~230 mm范圍內(nèi),播種穴距變異系數(shù)均小于25%,且各項(xiàng)評(píng)價(jià)指標(biāo)均能滿足水稻大田精量旱穴直播的一般種植要求。田間播種試驗(yàn)結(jié)果與臺(tái)架排種試驗(yàn)結(jié)果有所差距的主要原因可能為:機(jī)組田間無(wú)規(guī)律的振動(dòng)和地輪打滑導(dǎo)致轉(zhuǎn)速不穩(wěn)定,對(duì)排種器充種和排種具有一定的影響,從而影響機(jī)具田間播種質(zhì)量。
1)建立了滑片型孔輪式水稻精量排種器充種過(guò)程動(dòng)力學(xué)模型,分析得到影響排種器排種性能的因素有排種輪轉(zhuǎn)速和種子尺寸。利用EDEM軟件對(duì)3種球度水稻品種種子進(jìn)行排種器排種過(guò)程仿真模擬試驗(yàn),結(jié)果表明,當(dāng)排種輪轉(zhuǎn)速在15~40 r/min時(shí),整體上岡優(yōu)898種子顆粒的排種性能較好,國(guó)豐一號(hào)和岡優(yōu)3551種子的排種性能次之;當(dāng)排種輪轉(zhuǎn)速在15~30 r/min時(shí),3個(gè)水稻品種種子的排種合格率整體呈上升趨勢(shì);當(dāng)排種輪轉(zhuǎn)速高于30 r/min時(shí),排種合格率隨轉(zhuǎn)速增加而顯著降低。
2)排種器臺(tái)架試驗(yàn)結(jié)果表明,在排種輪轉(zhuǎn)速為27.12 r/min、種子球度為44.61%時(shí),排種合格率為83.90%,漏播率為5.43%,重播率為10.67%,排種器的排種性能最佳;排種器臺(tái)架試驗(yàn)結(jié)果與仿真結(jié)果基本相同,排種性能隨排種輪轉(zhuǎn)速和種子球度的變化規(guī)律一致。臺(tái)架驗(yàn)證試驗(yàn)表明,在排種輪轉(zhuǎn)速為27.12 r/min工況條件下,5種球度水稻種子的合格率皆高于80%,均符合水稻精量播種要求;接近種子球度優(yōu)化參數(shù)的岡優(yōu)898排種合格率最高,為83.56%。
3)田間播種試驗(yàn)結(jié)果表明,在排種輪平均轉(zhuǎn)速為27.12 r/min,機(jī)組前進(jìn)速度約為5.85 km/h工況條件下,滑片型孔輪式水稻精量排種器對(duì)5種球度水稻種子排種合格率皆大于80%,漏播率均小于7.5%,重播率均小于13.5%,平均穴距在190~230 mm的范圍內(nèi),播種穴距變異系數(shù)均小于25%,能夠滿足水稻大田精量旱穴直播的一般種植要求。
[1] 羅錫文,謝方平,區(qū)穎剛,等.水稻生產(chǎn)不同栽植方式的比較試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),1999,15(1):136—139. Luo Xiwen, Xie Fangping, Ou Yinggang, et al. Experimental investigation of different transplanting methods in paddy production[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1999, 15(1): 136—139. (in Chinese with English abstract)
[2] 何瑞銀,羅漢亞,李玉同,等.水稻不同種植方式的比較試驗(yàn)與評(píng)價(jià)[J].農(nóng)業(yè)工程學(xué)報(bào),2008,24(1):167—171. He Ruiyin, Luo Hanya, Li Yutong, et a1. Comparison and analysis of different rice planting methods in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(1): 167—171. (in Chinese with English abstract)
[3] 孫永健,鄭洪幀,徐徽,等.機(jī)械旱直播方式促進(jìn)水稻生長(zhǎng)發(fā)育提高產(chǎn)量[J].農(nóng)業(yè)工程學(xué)報(bào),2014,30(20):10—18. Sun Yongjian, Zheng Hongzhen, Xu Hui, et al. Mechanical dry direct-sowing modes improving growth, development and yield of rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(20): 10—18. (in Chinese with English abstract)
[4] 羅錫文,蔣恩臣,王在滿,等.開(kāi)溝起壟式水稻精量穴直播機(jī)的研制[J].農(nóng)業(yè)工程學(xué)報(bào),2008,24(12):52—56. Luo Xiwen, Jiang Enchen, Wang Zaiman, et al. Precision rice hill-drop drilling machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(12): 52—56. (in Chinese with English abstract)
[5] 湯楚宙,羅海峰,吳明亮,等.變?nèi)萘啃涂纵喪脚欧N器設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2010,26(12):114—119. Tang Chuzhou, Luo Haifeng, Wu Mingliang, et al. Design and test on seed metering device with variable capacity model-hole roller[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(12): 114—119. (in Chinese with English abstract)
[6] 吳明亮,官春云,高曉燕,等.偏心輪型孔輪式排種器排種油菜極限轉(zhuǎn)速試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2010,26(6):119—123. Wu Mingliang, Guan Chunyun, Gao Xiaoyan, et al. Test on limit turning speed of eccentric round hole-wheel seedmeter for rape[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(6): 119—123. (in Chinese with English abstract)
[7] 施祖強(qiáng),湯楚宙,官春云,等.轉(zhuǎn)速對(duì)偏心輪型孔輪式排種器排種性能的影響[J].湖南農(nóng)業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2008,34(3):359—362. Shi Zuqiang, Tang Chuzhou, Guan Chunyun, et al. Effect of rotating speed on seed performance of eccentric round hole-wheel seedmeter[J]. Journal of Hunan Agricultural University: Natural Sciences, 2008, 34(3): 359—362. (in Chinese with English abstract)
[8] 楊文敏,吳明亮,何騰飛,等.型孔輪式排種器排種性能的仿真分析—基于離散元法[J].農(nóng)機(jī)化研究,2015,37(10):34—39. Yang Wenmin, Wu Mingliang, He Tengfei, et al. Simulation analysis for seeding performance of hole-wheel seedmeter—based on discrete element method[J]. Journal of Agricultural Mechanization Research, 2015, 37(10): 34—39. (in Chinese with English abstract)
[9] 于建群,王剛,心男,等.型孔輪式排種器工作過(guò)程與性能仿真[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(12):83—87. Yu Jianqun, Wang Gang, Xin Nan, et al. Simulation analysis of working process and performance of cell wheel metering device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(12): 83—87. (in Chinese with English abstract)
[10] 張明華,羅錫文,王在滿,等.水稻直播機(jī)組合型孔排種器設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(9):29—36. Zhang Minghua, Luo Xiwen, Wang Zaiman, et al. Design and experiment of combined hole-type metering device of rice hill-drop drilling machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9): 29—36. (in Chinese with English abstract)
[11] 羅錫文,劉濤,蔣恩臣,等.水稻精量穴直播排種輪的設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2007,23(3):108—112. Luo Xiwen, Liu Tao, Jiang Enchen, et al. Design and experiment of hill sowing wheel of precision rice direct-seeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2007, 23(3): 108—112. (in Chinese with English abstract)
[12] 趙永亮,汪潤(rùn)保,李雷霞,等.水稻旱直播機(jī)械作業(yè)技術(shù)[J]. 農(nóng)業(yè)工程,2015,5(4):13—15,18. Zhao Yongliang,Wang Runbao,Li Leixia,,et al. Operation technology of rice dry direct seeding machine[J]. Agricultural Engineering, 2015, 5(4): 14—18. (in Chinese with English abstract)
[13] 孫永健,鄭洪幀,徐徽,等.機(jī)械旱直播方式促進(jìn)水稻生長(zhǎng)發(fā)育提高產(chǎn)量[J].農(nóng)業(yè)工程學(xué)報(bào),2014,30(20):10—18. Sun Yongjian,Zheng Hongzhen,Xu Hui,et al. Mechanical dry direct-sowing modes improving growth,development and yield of rice[J]. Transactions of the Chinese Societyof Agricultural Engineering (Transactions of the CSAE), 2014, 30(20): 10—18. (in Chinese with English abstract)
[14] 張紹軍,楊寶田,羅閣山.國(guó)內(nèi)外水稻直播機(jī)械化的發(fā)展研究[J].農(nóng)業(yè)科技與裝備,2012(5):61—62. Zhang Shaojun, Yang Baotian, Luo Geshan. Research on the development in direct rice seeding mechanization at home and abroad[J]. Agricultural Science &Technology & Equipment, 2012(5): 61—62. (in Chinese with English abstract)
[15] 王金武,唐漢,王奇,等.基于EDEM軟件的指夾式精量排種器排種性能數(shù)值模擬與試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2015,31(21):43-50. Wang Jinwu, Tang Han, Wang Qi, et al. Numerical simulation and experiment on seeding performance of pickup finger precision seed-metering device based on EDEM[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(21): 43—50. (in Chinese with English abstract)
[16] 廖慶喜,張朋玲,廖宜濤,等.基于EDEM的離心式排種器排種性能數(shù)值模擬[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(2):109—114. Liao Qingxi, Zhang Pengling, Liao Yitao, et al. Numerical simulation on seeding performance of centrifugal rape-seed metering device based on EDEM [J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(2): 109—114. (in Chinese with English abstract)
[17] 鮑秀蘭,孟亮.基于離散元法的窩眼式排種器結(jié)構(gòu)優(yōu)化仿真[J].江西農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,39(3):607—614. Bao Xiulan, Meng Liang. Structural optimization simulation of nest type seed metering device based on discrete element method[J]. Journal of Jiangxi Agricultural University,2017,39(3): 607—614. (in Chinese with English abstract)
[18] 張濤,劉飛,趙滿全,等.基于離散元的排種器排種室內(nèi)玉米種群運(yùn)動(dòng)規(guī)律[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(22):27—35. Zhang Tao, Liu Fei, Zhao Manquan, et al. Movement law of maize population in seed room of seed metering device based on discrete element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(22): 27—35. (in Chinese with English abstract)
[19] 田立權(quán),王金武,唐漢,等.螺旋槽式水稻穴直播排種器設(shè)計(jì)與性能試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(5):46—52. Tian Liquan,Wang Jinwu,Tang Han,et al. Design and performance experiment of helix grooved rice seeding device[J].Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(5): 46—52. (in Chinese with English abstract)
[20] 中國(guó)農(nóng)業(yè)機(jī)械化科學(xué)研究院.農(nóng)業(yè)機(jī)械設(shè)計(jì)手冊(cè)(上冊(cè))[M].北京:中國(guó)農(nóng)業(yè)科學(xué)技術(shù)出版社,2007.
[21] 王在滿,黃逸春,王寶龍,等.播量無(wú)級(jí)調(diào)節(jié)水稻精量排種裝置設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2018,34(11):9—16. Wang Zaiman, Huang Yichun, Wang Baolong, et al. Design and experiment of rice precision metering device with sowing amount stepless adjusting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(11): 9-16. (in Chinese with English abstract)
[22] 楊玲,楊明金,李慶東,等.包衣稻種物理特性的試驗(yàn)研究[J].農(nóng)業(yè)工程學(xué)報(bào),2005,21(9):7-11. Yang Ling, Yang Mingjin, Li Qingdong, et al. Experimental study on physical properties of coated rice seed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2005,21(9): 7-11. (in Chinese with English abstract)
[23] 張石平,陳進(jìn),李耀明.振動(dòng)氣吸式穴盤(pán)精量播種裝置種子“沸騰”運(yùn)動(dòng)分析[J].農(nóng)業(yè)工程學(xué)報(bào),2008,24(7):20—24. Zhang Shiping, Chen Jin, Li Yaoming. Analysis of seeds “Boiling” motion on vibrational air-suction tray seeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(7): 20—24. (in Chinese with English abstract)
[24] 李季成,權(quán)龍哲,羅立娜.稻米含水率對(duì)其彈性模量的影響[J].東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2008,39(4):1—3. Li Jicheng, Quan Longzhe, Luo Lina. Influences of brown rice grain’s water ratio on elastic modulus[J]. Journal of Northeast Agricultural University, 2008, 39(4): 1—3. (in Chinese with English abstract)
[25] 張鋒偉,趙春花,郭維俊,等.基于壓痕加載曲線的谷物種子硬度性能測(cè)定技術(shù)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(4):128—133. Zhang Fengwei, Zhao Chunhua, Guo Weijun. et al. Testing of grain hardness based on indentation loading curve[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(4): 128—133. (in Chinese with English abstract)
[26] 周祖鍔.農(nóng)業(yè)物料學(xué)[J].北京:中國(guó)農(nóng)業(yè)出版社,1994.
[27] van Liedekerke P, Tijskens E, Dintwa E, et al. EDEM simulations of the particle flow on a centrifugal fertilizer spreader[J]. Powder Technology, 2009, 190(3): 348—360.
[28] 胡國(guó)明.顆粒系統(tǒng)的離散元素法分析仿真[M].武漢:武漢理工大學(xué)出版社,2010.
[29] 單粒(精密)播種機(jī)試驗(yàn)方法:GB/T 6973-2005[S].北京:中國(guó)標(biāo)準(zhǔn)出版社,2005.
[30] 石林榕,吳建民,孫偉,等.基于離散單元法的水平圓盤(pán)式精量排種器排種仿真試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2014,30(8):40—48. Shi Linrong, Wu Jianmin, Sun Wei, et al. Simulation test for metering process of horizontal disc precision metering device based on discrete element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(8): 40—48. (in Chinese with English abstract)
[31] 張順,夏俊芳,周勇,等.氣力滾筒式水稻直播精量排種器排種性能分析與田間試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2017,33(3):14—23. Zhang Shun, Xia Junfang, Zhou Yong, et al. Field experiment and seeding performance analysis of pneumatic cylinder-type precision direct seed-metering device for rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 14—23. (in Chinese with English abstract)
[32] 易軍鵬,朱文學(xué),馬海樂(lè),等.牡丹籽油超聲波輔助提取工藝的響應(yīng)面法優(yōu)化[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2009,40(6):103—110. Yi Junpeng, Zhu Wenxue, Ma Haile, et al. Optimization on ultrasonic-assisted extraction technology of oil from Paeonia Suffruticosa Andr. seeds with response surface analysis[J]. Transactions of the Chinese Society for Agricultural Machinery. 2009, 40(6): 103—110. (in Chinese with English abstract)
[33] 張黎驊,徐中明,茍文,等.滾筒-柵條式銀杏脫殼機(jī)結(jié)構(gòu)參數(shù)的優(yōu)化[J].農(nóng)業(yè)工程學(xué)報(bào),2012,28(10):39—45. Zhang Lihua, Xu Zhongming, Gou Wen, et al. Optimization of structure parameters of cylinder-bar type shelling device for ginkgo biloba[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2012,28(10): 39—45. (in Chinese with English abstract)
[34] 鋪膜穴播機(jī)作業(yè)質(zhì)量:NY/T 987-2006[S].北京:中國(guó)標(biāo)準(zhǔn)出版社,2006.
[35] 水稻覆土直播機(jī):GB/T 25418-2010[S].北京:中國(guó)標(biāo)準(zhǔn)出版社,2010.
Numerical simulation and experiment on seeding performance of slide hole-wheel precision seed-metering device for rice
Zhu Dequan1, Li Lanlan1, Wen Shichang1, Zhang Shun1※, Jiang Rui1, Wu Liquan2
(1.230036,; 2.230036,)
Precision planting is the advanced technology that sows seeds in the predetermined position of soil accurately and quantitatively by precision planter. Precision seed-metering device is the key component of precision planter and its seeding performance directly affects the quality of rice sowing, which divided into two types according to the working principle. The one is the mechanical metering device, and the other type is the pneumatic seed-metering device. The hole-wheel precision seed-metering device is a kind of mechanical seed-metering device and its seed-filling performance directly affects the seeding quality, which has been increasingly widespread due to its advantages of high planting quality when sowing rice seeds. But it has disadvantages of bad uniformity not to meet the seeding requirement of different size rice seeds. There are many dry direct seeding varieties rice and the sizes of their seeds are different. The adaptability of the seed-metering device to different sizes rice seeds is different. High speed work will also have a great influence on the seed-filling of the seed-metering device. For the problems of poor adaptability and low precision of the current rice drought direct seeding machine, a slide hole-wheel seed-metering device was designed to improve the direct seeding performance for rice. The sphericity was selected as the indicator of 3-dimension size of rice seeds. According to the simulation test by EDEM software for seeding process in 3 varieties of rice seeds with different sphericity (Gangyou 898, Guofeng No.1 and Gangyou 3551) under 6 seed-metering device rotational speeds, the changing laws of seeding performance of rice seeds with different sphericity under different rotational speeds were obtained and the influences of rotational speeds and seed sphericity on seeding performance were analyzed. The simulation results showed that the seeding performance of rice seeds of Gangyou 898 was better than other 2 varieties of rice seeds when the rotational speed of seeding wheel was between 15 to 40 r/min, when the rotational speed of seeding wheel was between 15 to 30 r/min, the seeding qualified rate of those 3 varieties rice seeds floated between 84.01% to 87.91%, and the seeding qualified rate had a increasing trend of overall presentation as the rotational speed of seeding wheel increases, when the rotational speed of seeding wheel was faster than 30 r/min, the seeding qualified rate declined significantly with the increasing of rotational speed. 5 varieties of rice seeds with different sphericity (Guofeng No.1, Liangyou 628, Gangyou 898, Gangfeng 188 and Gangyou 3551) were selected as experimental materials. The rotational speeds of seeding wheel and seed sphericity were selected as influence factors, and seeding qualified rate, missing rate and replay rate were taken as evaluation standards. The bench test was done with the quadratic regression orthogonal combination design method. The regression equation and response surface between the performance index and the rotational speed and seed sphericity were acquired to verify the simulation results after analyzing those data by Design-Expert 8.0.6 software. Finally, the optimal parameter combination was obtained through the regression equation: the rotational speed of seeding wheel was 27.12 r/min and seed sphericity was 44.61%. In this case, the qualified rate is 83.90%, the missing rate is 5.43% and the replay rate is 10.67%, which is the best seeding performance for the seed-metering devices. The results from bench test were in accordance with that from simulation. The changing trends of seeding performance in bench test with rotational speed and seed sphericity were also basically consistent with that in simulation experiments. The field test result showed that, when the average rotational speed was 27.12 r/min and the forward velocity was 5.85 km/h, the seeding performance of seed-metering device could meet the requirements of precision sowing for all size grades of rice seeds. The research results provide a reference for structure optimization and performance improvement of slide hole-wheel precision seed-metering device.
agricultural machinery; numerical simulation; crops; rice; seed-metering device; seeding performance; slide hole-wheel
10.11975/j.issn.1002-6819.2018.21.003
S223. 91+1
A
1002-6819(2018)-21-0017-10
2018-04-10
2018-08-29
安徽省科技重大專(zhuān)項(xiàng)(17030701045);國(guó)家自然科學(xué)基金項(xiàng)目(51805005);安徽農(nóng)業(yè)大學(xué)青年科學(xué)基金重點(diǎn)項(xiàng)目(2016ZR009)
朱德泉,男,教授,博士生導(dǎo)師,主要從事現(xiàn)代農(nóng)業(yè)裝備技術(shù)研究。E-mail:dqzhu@sina.com
張 順,男,講師,博士,主要從事現(xiàn)代農(nóng)業(yè)裝備設(shè)計(jì)及測(cè)控研究。Email:shunzhang@ahau.edu.cn
中國(guó)農(nóng)業(yè)工程學(xué)會(huì)高級(jí)會(huì)員:朱德泉(E041200232S)
朱德泉,李蘭蘭,文世昌,張 順,蔣 銳,武立權(quán). 滑片型孔輪式水稻精量排種器排種性能數(shù)值模擬與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(21):17-26. doi:10.11975/j.issn.1002-6819.2018.21.003 http://www.tcsae.org
Zhu Dequan, Li Lanlan, Wen Shichang, Zhang Shun, Jiang Rui, Wu Liquan. Numerical simulation and experiment on seeding performance of slide hole-wheel precision seed-metering device for rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(21): 17-26. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.21.003 http://www.tcsae.org
農(nóng)業(yè)工程學(xué)報(bào)2018年21期