孫珊珊 劉元敏 李光宇 吳志勇
摘 要 不同堿基的DNA分子空間占位和帶電狀態(tài)存在差異,其通過(guò)單個(gè)納米孔時(shí)可引起特征性的電流脈沖變化,有望成為新一代單分子測(cè)序方法。然而,常規(guī)條件下DNA分子穿過(guò)納米孔的速度很快(102 s),引起的電流變化?。╬A級(jí)),因此分子亞結(jié)構(gòu)信息的準(zhǔn)確獲取對(duì)現(xiàn)有儀器設(shè)備的性能提出了極高要求。本研究在α-溶血素納米孔的兩端分別引入高粘度和離子導(dǎo)電性較好的離子液體支持電解質(zhì),以構(gòu)建粘度梯度體系,并對(duì)溶液的酸度進(jìn)行優(yōu)化,以期對(duì)ssDNA穿孔行為進(jìn)行調(diào)控。初步的研究結(jié)果表明,在trans端為純離子液體BmimPF6,cis端為1 mol/L BmimCl、10 mmol/L Tris-HCl緩沖液(pH 5.5)的條件下,poly(dC)15、poly(dC)20、poly(dC)30和poly(dC)50均出現(xiàn)高抑制比的長(zhǎng)阻斷電流脈沖信號(hào),長(zhǎng)阻斷事件的阻斷深度達(dá)95%以上,持續(xù)時(shí)間達(dá)102~101 s;同時(shí),基線噪音峰峰值也降低約30%。對(duì)可能的機(jī)理進(jìn)行了探討。本研究結(jié)果表明,采用離子液體粘度梯度支持電解質(zhì)體系可以有效調(diào)控ssDNA的遷移行為。
關(guān)鍵詞 單個(gè)納米孔; α-溶血素; 單鏈DNA; 離子液體
1 引 言
由于不同堿基的空間占位和帶電狀態(tài)不同,在電場(chǎng)力驅(qū)動(dòng)下,DNA分子通過(guò)單個(gè)納米孔時(shí)產(chǎn)生電流脈沖變化,依據(jù)其阻斷深度和阻斷時(shí)間特征有望獲得分子的帶電情況以及構(gòu)象等信息,因而可能成為基于單分子的第三代測(cè)序技術(shù)[1]?;趩蝹€(gè)納米孔電流脈沖的傳感和檢測(cè)方法具有成本低、速度快和數(shù)據(jù)分析相對(duì)簡(jiǎn)單等優(yōu)勢(shì)。在常規(guī)的支持電解質(zhì)條件下,DNA分子穿孔速度快(4~10 μs/base),這對(duì)單個(gè)堿基的精準(zhǔn)檢測(cè)提出了挑戰(zhàn)[2]。
常用的調(diào)控穿孔速度的方法有增加納米孔內(nèi)壁與DNA分子間的相互作用,如納米孔內(nèi)壁修飾正電荷增強(qiáng)其與DNA分子間的靜電作用[3,4]、在納米孔內(nèi)壁共價(jià)連接環(huán)糊精減小納米孔孔徑以增加DNA分子穿孔時(shí)的摩擦力[5,6]或是采用光鑷[7]、磁鑷[8]、分子馬達(dá)[9]等方法增加DNA分子遷移時(shí)的機(jī)械阻力。另一類(lèi)方法則是通過(guò)改變緩沖介質(zhì)條件,如降低溫度[10]、調(diào)節(jié)溶液酸度[11]、使用谷氨酸鹽[12]等高粘度的支持電解質(zhì),以增加DNA分子遷移時(shí)的流體阻力,降低DNA分子的遷移速度。離子液體(IL)是一類(lèi)在室溫或接近室溫下呈現(xiàn)液態(tài)的低溫熔融鹽。其咪唑鹽離子Bmim+與DNA分子之間存在靜電和疏水性締合作用[13~16],從而形成穩(wěn)定的復(fù)合物。α-溶血素納米孔的限制孔徑僅略大于ssDNA分子直徑[17],而B(niǎo)mim+與DNA分子形成的復(fù)合物體積變大,因而有望產(chǎn)生更加明顯的阻斷信號(hào)。2009年,de Zoysa等[18]以突變體(M113F)7 α-溶血素(α-HL)蛋白通道為傳感器,在120 mV偏置電壓和1 mol/L氯化1-丁基-3-甲基咪唑(BmimCl)均勻電解質(zhì)條件下觀測(cè)到ssDNA產(chǎn)生長(zhǎng)短兩種阻斷信號(hào),長(zhǎng)阻斷信號(hào)的停留時(shí)間比常用的KCl電解質(zhì)增加了近兩個(gè)數(shù)量級(jí)。2015年,F(xiàn)eng等[19]以1-甲基-3-丁基六氟磷酸鹽(BmimPF6)和KCl為支持電解質(zhì),在二硫化鉬單個(gè)固態(tài)納米孔兩端構(gòu)建了粘度梯度體系,基于Bmim+與DNA分子之間及DNA分子與孔內(nèi)壁之間的相互作用,實(shí)現(xiàn)了不同堿基的單核苷酸的識(shí)別。
4 結(jié) 論
基于集成電流脈沖檢測(cè)系統(tǒng)(eONE)和α-HL蛋白孔研究了含有離子液的支持電解質(zhì)、粘度梯度以及酸度對(duì)ssDNA遷移行為的影響。咪唑類(lèi)離子液體中Bmim+與DNA分子中磷酸基團(tuán)上的氧負(fù)離子發(fā)生鍵合作用,使得ssDNA的有效體積變大,其在納米通道內(nèi)的阻斷深度和遷移時(shí)間明顯增加。同時(shí),在α-HL納米孔的trans端引入高粘度的BmimPF6離子液體,建立粘度梯度,增大了DNA分子穿孔時(shí)的能壘。初步研究結(jié)果表明,在優(yōu)化的粘度梯度體系和優(yōu)化酸度條件下,體系表現(xiàn)出對(duì)不同鏈長(zhǎng)DNA的停留時(shí)間和不同堿基捕獲率的區(qū)分能力。對(duì)于長(zhǎng)鏈DNA(poly(dC)50),其阻斷時(shí)間相比于常規(guī)介質(zhì)條件增加了3個(gè)數(shù)量級(jí)。采用離子液體粘度梯度支持電解質(zhì)體系可以有效地調(diào)控ssDNA的遷移行為。
References
1 Mathe J, Visram H, Viasnoff V, Rabin Y, Meller A. Biophys. J., 2004, 87(5): 3205-3212
2 Feng Y, Zhang Y C, Ying C F, Wang D Q, Du C L. Genomics Proteom. Bioinformatics, 2015, 13(1): 4-16
3 Butler T, Pavlenok, Derrington I M, Niederweis M, Gundlach J H. Proc. Natl. Acad. Sci. USA, 2008, 105(52): 20647-20652
4 Rincon R M, Mikhailova E, Bayley H, Maglia G. Nano Lett., 2011, 11(2): 746-750
5 Cao C, Ying Y L, Hu Z L, Liao D F, Tian H, Long Y T. Nat. Nanotechnol., 2016, 11(8): 713-718
6 Clarke J, Wu H C, Jayasinghe L, Patel A, Reid S, Bayley H. Nat. Nanotechnol., 2009, 4(4): 265-270
7 Keyser U F, van Der Does J, Dekker C, Dekker N. H. Rev. Sci.Instrum., 2006, 77(10): 105105
8 Peng H, Ling X S. Nanotechnology, 2009, 20(18): 185101
9 Wallace E V, Stoddart D, Heron A J, Mikhailova E, Maglia G, Donohoe T J, Bayley H. Chem. Commun., 2010, 46(43): 8195-8197
10 Fologea D, Uplinger J, Thomas B, Mcnabb D S, Li J L. Nano Lett., 2005, 5(9): 1734-1737
11 de Zoysa R S, Krishantha D M, Zhao Q, Gupta J, Guan X. Electrophoresis, 2011, 32(21): 3034-3041
12 Plesa C, Van Loo N, Dekker C. Nanoscale, 2015, 7(32): 13605-13609
13 Wang J H, Cheng D H, Chen X W, Du Z, Fang Z L. Anal. Chem., 2007, 79(2): 620-625
14 Xie Y N, Wang S F, Zhang Z L, Pang D W. J. Phys. Chem. B, 2008, 112(32): 9864-9868
15 Ding Y H, Zhang L, Xie J, Guo R. J. Phys. Chem. B, 2010, 114(5): 2033-2043
16 Singh P K, Sujana J, Mora A K, Nath S. J. Photochem. Photobiol. A, 2012, 246: 16-22
17 Marziali A, Akeson M. Annul. Rev. Biomed. Eng., 2001, 3(1): 195-223
18 de Zoysa R S S, Jayawardhana D A, Zhao Q T, Wang D Q, Armstrong D W, Guan X Y. J. Phys. Chem. B, 2009, 113(40): 13332-13336
19 Feng J D, Liu K, Bulushev R D, Dumcenco D, Kis A, Radenovic A. Nat. Nano., 2015, 10(12): 1070-1076
20 Benz R, Frhlich O, Luger P, Montal M. BBA-Biomembranes, 1975, 394(3): 323-334
21 Gu Z, Ying Y L, Yan B Y, Wang H F, He P G, Long Y T. Chinese Chem. Lett., 2014, 25(7): 1029-1032
22 Shen X M, Xu G Y, Shao C M. Solid State Commun., 2009, 149(21-22): 852-854
23 Berthod A, Kozak J J, Anderson J L, Ding J, Armstrong D W. Theor. Chem. Acc., 2006, 117(1): 127-135
24 de Haan H W, Slater G W. Phys. Rev. E, 2013, 87(4): 042604
Abstract Due to the difference in spatial configuration and charge of the bases in a DNA molecule, characteristic translocation current pulses through a single nanopore could be obtained. This could become the basis of DNA sequencing method. However, due to the fast translocation speed (sub-micro seconds) and the small current change (about pA), it is still a challenge to obtain the accurate molecular substructure with present electronic techniques. In this work, in order to control the translocation behavior of ssDNA, two kinds of ionic liquids with high viscosity and conductivity were introduced to establish a viscosity gradient with the α-hemolysin single nanopore interface and the acidity of the solution was optimized. The trans chamber contained pure BmimPF6 and the cis chamber contained 1 mol/L BmimCl and 10 mmol/L Tris-HCl (pH 5.5). Preliminary experiment results under this electrolyte configuration showed that poly(dC)15, poly(dC)15, poly(dC)30 and poly(dC)50 exhibited obvious long duration pulses with high current suppression ratio. The blocking depth reached more than 95% of long blocking events. The duration time of long blocking events prolonged to tens or hundreds of milliseconds. Meanwhile, the peak-peak of baseline noise was reduced by about 30%.
Keywords Single nanopore; α-Hemolysin; Single-stranded DNA; Ionic liquid
(Received 17 November 2017; accepted 25 April 2018)