馬子清,段亞楠,沈向,陳學(xué)森,尹承苗,毛志泉
?
不同作物與再植蘋(píng)果幼樹(shù)混栽對(duì)再植植株及土壤環(huán)境的影響
馬子清,段亞楠,沈向,陳學(xué)森,尹承苗,毛志泉
(山東農(nóng)業(yè)大學(xué)園藝科學(xué)與工程學(xué)院/作物生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,山東 泰安 271018)
【目的】以老齡蘋(píng)果園土壤為對(duì)象,研究不同作物與再植蘋(píng)果幼樹(shù)混栽對(duì)再植植株及土壤環(huán)境的影響,篩選更有效的混栽作物以減輕蘋(píng)果連作障礙,為老果園更新提供技術(shù)支持?!痉椒ā吭囼?yàn)設(shè)置老齡蘋(píng)果園土對(duì)照(CK)、溴甲烷熏蒸老齡蘋(píng)果園土(T1)、蘋(píng)果幼樹(shù)與蔥混栽(T2)、蘋(píng)果幼樹(shù)與小麥混栽(T3)、蘋(píng)果幼樹(shù)與芥菜混栽(T4)共5個(gè)處理,測(cè)定不同處理對(duì)再植幼樹(shù)地上部生物量、土壤酶活性、土壤微生物數(shù)量以及土壤中酚酸類(lèi)物質(zhì)含量的影響,采用qPCR技術(shù)檢測(cè)老果園土壤中主要有害真菌拷貝數(shù)的變化?!窘Y(jié)果】3種作物和蘋(píng)果幼樹(shù)的混栽均可顯著增加蘋(píng)果幼樹(shù)的株高、地徑、鮮重、干重、新稍平均長(zhǎng)度和新梢總長(zhǎng),其中與蔥混栽(T2)處理效果最好,其株高、地徑、鮮重、干重、新稍平均長(zhǎng)度和新梢總長(zhǎng)分別是對(duì)照的 1.12、1.31、1.71、1.65、1.25和2.09倍。與蔥、小麥、芥菜3種作物混栽處理均可增加土壤細(xì)菌數(shù)量,減少土壤真菌的數(shù)量,其中與蔥混栽較對(duì)照細(xì)菌數(shù)量增加了37.93%、真菌數(shù)量下降了41.33%,混栽小麥細(xì)菌總量增加了31.03%,混栽芥菜細(xì)菌總量增加了13.79%,混栽蔥、小麥、芥菜使土壤細(xì)菌/真菌比值分別提高了135.11%、128.55%和89.66%;與老齡蘋(píng)果園土對(duì)照(CK)相比,與蔥混栽(T2)、與小麥混栽(T3)、與芥菜混栽(T4)處理的鐮孢菌屬基因拷貝數(shù)均有所降低,且表現(xiàn)出顯著性差異,與蔥混栽處理的串珠鐮孢的數(shù)量降低了61.01%,尖鐮孢的數(shù)量降低了37.11%,腐皮鐮孢的數(shù)量降低了40.97%,層出鐮孢的數(shù)量降低了53.11%;3種作物與蘋(píng)果幼樹(shù)混栽提高了土壤中主要酶的活性,其中混栽芥菜處理較對(duì)照脲酶活性提高最為明顯,提高了44.59%;混栽小麥處理磷酸酶、蔗糖酶活性比對(duì)照分別提高了59.26%、50.37%;混栽蔥、小麥、芥菜土壤中根皮苷的含量明顯降低,分別降低了81.23%、20.56%、86.11%;與老果園土壤對(duì)照相比,混栽蔥使土壤中酚酸類(lèi)物質(zhì)總量較對(duì)照降低了28.27%,與其他處理相比效果較好?!窘Y(jié)論】混栽蔥、小麥、芥菜3種作物對(duì)連作土壤環(huán)境和再植幼樹(shù)生物量影響較大,3種作物與再植幼樹(shù)混栽均能提高蘋(píng)果幼樹(shù)生物量,優(yōu)化微生物群落結(jié)構(gòu),提高連作土壤主要酶活性,降低土壤中根皮苷含量,減輕蘋(píng)果連作障礙。其中,與蔥混栽效果最佳。
混栽;蔥;小麥;芥菜;蘋(píng)果連作障礙
【研究意義】蘋(píng)果連作障礙嚴(yán)重阻礙了我國(guó)蘋(píng)果老果園生產(chǎn)及更新?lián)Q代[1],尤其是25年以上的老果園蘋(píng)果產(chǎn)區(qū),蘋(píng)果連作障礙危害越來(lái)越嚴(yán)重[2-4]。蘋(píng)果連作障礙的主要表現(xiàn)有幼樹(shù)死亡率高、果樹(shù)長(zhǎng)勢(shì)參差不齊、果實(shí)品質(zhì)和產(chǎn)量低等。果樹(shù)連作障礙的原因復(fù)雜,被公認(rèn)的主要因素有土壤微生物群落結(jié)構(gòu)失衡、土壤中酚酸類(lèi)物質(zhì)的積累以及土壤營(yíng)養(yǎng)物質(zhì)缺乏等?;煸宰魑锊粌H可以提高土地的利用效率,還可以通過(guò)混栽作物的根系分泌物,改變微生物原有的生存環(huán)境,從而增加有益微生物的數(shù)量,緩解蘋(píng)果連作障礙的危害。【前人研究進(jìn)展】研究表明,造成蘋(píng)果連作障礙的主要因素為土壤有害真菌的增加,合理的土壤微生物群落結(jié)構(gòu)和較高的微生物活性不僅能夠減輕連作障礙,還能夠優(yōu)化土壤環(huán)境[5-7]。王曉寶等[8]研究表明,鐮孢菌屬()是引起蘋(píng)果連作障礙的主要真菌,且串珠鐮孢()、尖鐮孢()、層出鐮孢()和腐皮鐮孢() 4種鐮孢菌是其主要有害種。蔥與平邑甜茶幼苗混栽可以有效降低連作危害,其原因之一即為減少了尖鐮孢的基因拷貝數(shù)[9]。輪作可以有效減輕連作障礙,輪作蔥可以顯著減輕黃瓜連作障礙的危害,并促進(jìn)其生長(zhǎng)和提高產(chǎn)量[10]。小麥根系分泌物不僅有利于黃瓜幼苗的株高和地徑,還可以改善土壤真菌群落結(jié)構(gòu)[11]。呂毅等[12]研究表明,輪作小麥、小蔥可以增加土壤細(xì)菌數(shù)量,同時(shí)還可以降低土壤中一些酚酸類(lèi)物質(zhì)含量;Smolinska等[13]研究表明,埃塞俄比亞芥菜、黑芥子和芥菜對(duì)土壤鐮孢菌有很好的抑制作用?!颈狙芯壳腥朦c(diǎn)】利用輪作可以防控蘋(píng)果連作障礙的原理,研究再植幼樹(shù)與不同作物混栽對(duì)減輕蘋(píng)果連作障礙的效果,目前尚未見(jiàn)報(bào)道。【擬解決的關(guān)鍵問(wèn)題】以老齡蘋(píng)果園土壤為對(duì)象,研究混栽不同作物對(duì)連作土壤環(huán)境及再植蘋(píng)果幼樹(shù)的影響,篩選出最有效的混栽作物以緩解蘋(píng)果連作障礙,為老果園更新提供技術(shù)支撐。
試驗(yàn)于2016年在山東農(nóng)業(yè)大學(xué)園藝科學(xué)與工程學(xué)院國(guó)家蘋(píng)果中心試驗(yàn)基地完成。
老果園土壤取自山東省泰安市滿莊鎮(zhèn)31年生老齡蘋(píng)果園,于樹(shù)干周?chē)? m,40 cm深處挖取土壤,土壤為棕壤土,土壤基本特征為pH 5.67,EC 0.46 mS·cm-1(25℃),硝態(tài)氮含量為13.75 mg·kg-1,銨態(tài)氮含量為4.32 mg·kg-1,速效磷含量為8.32 mg·kg-1,速效鉀含量為107.67 mg·kg-1,有機(jī)質(zhì)含量為4.78 g·kg-1。采用盆栽試驗(yàn),盆高為26.5 cm,上直徑為38 cm,下直徑為28 cm。供試材料為兩年生煙富3/T337。
將處理好的老齡果園土壤裝盆,每盆35 kg。2016年4月20日將兩年生嫁接苗栽于盆中并進(jìn)行定干、傷口涂抹凡士林,5月20日分別在盆中播種蔥(T2)、小麥種子(T3)、芥菜(T4),密度參照大田確定,生長(zhǎng)期至8月25日。溴甲烷熏蒸(T1),連作土對(duì)照(CK),正常管理。每處理3次重復(fù)。2016年8月25日,每處理取土樣裝于無(wú)菌密封塑料袋中,植株整株帶回實(shí)驗(yàn)室。
1.3.1 蘋(píng)果幼樹(shù)生物量指標(biāo)的測(cè)定 蘋(píng)果幼樹(shù)株高、地徑、枝長(zhǎng)、幼樹(shù)干重及鮮重采用常規(guī)方法測(cè)定,干樣需將樣品置于信封袋中,在108℃的烘箱中殺青30 min,然后在80℃放至樣品恒重[10]。
1.3.2 土壤微生物的測(cè)定 土壤中細(xì)菌、真菌、放線菌的數(shù)量均采用平板稀釋涂布法測(cè)定。細(xì)菌采用酵母膏蛋白胨培養(yǎng)基,真菌采用馬鈴薯葡萄糖培養(yǎng)基,放線菌采用高氏一號(hào)培養(yǎng)基[14]。
1.3.3 實(shí)時(shí)熒光定量PCR技術(shù) 土壤中鐮孢菌屬的基因拷貝數(shù)使用CFX96TMThermal Cycler(Bio-Rad)進(jìn)行定量分析。首先創(chuàng)建ITS基因片段的標(biāo)準(zhǔn)曲線,培養(yǎng)擴(kuò)增含有正確基因片段,提取質(zhì)粒DNA,純化并定量;并根據(jù)SYBR Premix Ex TaqTMKit(TaKaRa)試劑盒步驟完成。試驗(yàn)所需引物:層出鐮孢正向引物序列:GATCGGCGAGCCCTTGCGGCAAG,反向引物序列:CGCCGCGTACCAGTTGCGAGGGT;串珠鐮孢正向引物序列:GACTCGCGAGTCAAATCGCG T,反向引物序列:GGGGTTTAACGGCGTGGCC;腐皮鐮孢正向引物序列:CGAGTTATACAACTCAT CAAXC,反向引物序列:GGCCTGAGGGTTGTAAT G;尖鐮孢正向引物序列:CATACCACTTGTTGTCT CGGC,反向引物序列:GAACGCGAATTAACGCGA GTC。通過(guò)熔解曲線和瓊脂糖電泳驗(yàn)證PCR產(chǎn)物,以證實(shí)其特異性和有效性。根據(jù)基因拷貝數(shù)、循環(huán)閾值(CT)的線性方程以及環(huán)境樣品的CT值,使用外延方法計(jì)算環(huán)境樣品中相應(yīng)基因片段的拷貝數(shù)。
1.3.4 土壤酶活性的測(cè)定 土壤脲酶和蔗糖酶的測(cè)定采用比色法,磷酸酶的測(cè)定采用磷酸苯二鈉比色法,具體方法參照文獻(xiàn)[15]。
1.3.5 土壤酚酸類(lèi)物質(zhì)含量 先將風(fēng)干的土壤過(guò)12目篩,用電子天平準(zhǔn)確稱(chēng)取土壤80 g于研缽中,加入適量石英砂混合均勻后倒入萃取池中,儀器具體操作方法參照文獻(xiàn)[16]。
采用Excel 2003完成試驗(yàn)數(shù)據(jù)的處理。通過(guò)SPSS 19.0進(jìn)行方差分析,采用鄧肯氏新復(fù)極差法進(jìn)行差異顯著性檢測(cè)。
由表1可以得出,3種作物和嫁接蘋(píng)果幼樹(shù)混栽均能提高其生物量,具體表現(xiàn)為溴甲烷熏蒸老齡蘋(píng)果園土>與蔥混栽>與芥菜混栽>與小麥混栽>老齡蘋(píng)果園土對(duì)照。溴甲烷滅菌處理的蘋(píng)果幼樹(shù)的株高、地徑、鮮重、干重、新稍平均長(zhǎng)度、新梢總長(zhǎng)度分別為對(duì)照的1.14、1.35、2.43、2.35、1.43、6.97倍,與蔥混栽處理分別為對(duì)照的1.12、1.31、1.71、1.65、1.25、2.09倍,與小麥混栽處理分別為對(duì)照的1.04、1.22、1.43、1.41、1.14、1.91倍,與芥菜混栽處理分別為對(duì)照的1.10、1.29、1.48、1.59、1.12、1.88倍。由此可見(jiàn),與蔥進(jìn)行混栽處理效果最佳。
由圖1可見(jiàn),嫁接蘋(píng)果幼樹(shù)與3種作物混栽均能增加土壤細(xì)菌的數(shù)量,減少土壤真菌的數(shù)量。溴甲烷滅菌、混栽蔥、混栽小麥、混栽芥菜與對(duì)照相比,土壤中真菌分別降低了81.33%、41.33%、42.67%、40.00%;溴甲烷滅菌與對(duì)照相比,土壤細(xì)菌數(shù)量降低了50.00%,而混栽蔥、小麥、芥菜與對(duì)照相比,細(xì)菌數(shù)分別增加了37.93%、31.03%、13.79%;溴甲烷滅菌與對(duì)照相比,土壤中放線菌數(shù)量降低了32.00%,而混栽蔥、小麥、芥菜與對(duì)照相比,土壤放線菌分別增加了40.00%、48.00%、52.00%,土壤中細(xì)菌與真菌的比值為溴甲烷熏蒸老齡蘋(píng)果園土>混栽蔥>混栽小麥>混栽芥菜>老齡蘋(píng)果園土對(duì)照??梢?jiàn)蘋(píng)果幼樹(shù)與這3種作物混栽能有效改變土壤微生物環(huán)境且混栽蔥后效果最優(yōu)。
表1 不同處理對(duì)兩年生嫁接苗生物量的影響
Table 1 Effect of different treatments on seedling biomass of two-year grafted seedling
不同小寫(xiě)字母表示在0.05水平差異顯著(Duncan’s檢測(cè))。下同
Different letters indicate significantly different at 5% level by Duncan’s new multiple range test. The same as below
圖1 不同處理對(duì)土壤微生物的影響
由圖2可見(jiàn),嫁接蘋(píng)果幼樹(shù)與蔥、小麥、芥菜混栽,均能提高土壤酶活性,脲酶活性與對(duì)照相比分別增加了31.80%、24.92%、44.59%,溴甲烷滅菌與對(duì)照相比則減少了26.56%;磷酸酶活性對(duì)照相比分別增加了35.13%、59.26%、37.67%,溴甲烷滅菌與對(duì)照相比則減少了30.07%;蔗糖酶與對(duì)照相比分別增加了23.55%、50.37%、34.31%,溴甲烷滅菌與對(duì)照相比則減少了30.57%??傮w表明,溴甲烷熏蒸處理抑制了土壤酶活性,與蔥進(jìn)行混栽處理的效果較好。
土壤鐮孢菌屬基因拷貝數(shù)采用實(shí)時(shí)熒光定量PCR技術(shù)進(jìn)行定量分析。由圖3可見(jiàn),與對(duì)照相比,溴甲烷滅菌、混栽蔥、小麥、芥菜的鐮孢菌基因拷貝數(shù)均有所降低,且表現(xiàn)出顯著性差異。各處理均能有效減少有害鐮孢菌的數(shù)量;與對(duì)照相比,溴甲烷滅菌、混栽蔥、小麥、芥菜的串珠鐮孢分別降低了68.55%、61.01%、37.74%、57.23%;尖鐮孢分別降低了48.11%、37.11%、5.11%、35.34%;腐皮鐮孢分別降低了62.88%、40.97%、41.70%、29.68%;層出鐮孢分別降低了68.67%、53.11%、18.30%、61.47%。溴甲烷熏蒸能有效降低土壤中鐮孢菌的數(shù)量,但由于溴甲烷的危害性,可選擇混栽處理代替,其中混栽蔥的效果較好。
圖2 不同處理對(duì)土壤酶活性的影響
圖3 不同處理對(duì)土壤鐮孢菌基因拷貝數(shù)的影響
由表2可見(jiàn),混栽蔥、小麥、芥菜土壤中根皮苷的含量明顯降低,分別降低了81.23%、20.56%、86.11%;與老果園土壤對(duì)照相比,混栽蔥能明顯減少土壤中兒茶素、香豆酸、香蘭素、阿魏酸、根皮苷和咖啡酸的含量,酚酸總量與對(duì)照相比減少了28.27%,與其他處理相比效果較好。由此可見(jiàn),與蔥進(jìn)行混栽處理的效果較好。
表2 不同混栽處理對(duì)土壤酚酸類(lèi)物質(zhì)的影響
Table 2 The influence of different mixed treatments on phenolic acids content of soil
在中國(guó)主要的蘋(píng)果栽植區(qū)域,傳統(tǒng)老果園蘋(píng)果連作障礙普遍發(fā)生。隨著蘋(píng)果樹(shù)生命周期的縮短和更新品種加快,輪作耗時(shí)太長(zhǎng),滿足不了蘋(píng)果產(chǎn)業(yè)的需求,這使蘋(píng)果連作障礙的問(wèn)題越來(lái)越顯著[16]。蘋(píng)果連作障礙的原因復(fù)雜多樣,主要包括土壤營(yíng)養(yǎng)物質(zhì)缺乏,微生物群落結(jié)構(gòu)的改變以及酚酸類(lèi)化感物質(zhì)積累[16-17]。前人研究發(fā)現(xiàn),輪作、間作和套作不僅可以提高土地的利用效率,還能夠防治病、蟲(chóng)、草對(duì)單一栽培作物產(chǎn)生的危害,從而提高作物的單位面積產(chǎn)量[15]。本試驗(yàn)采用蔥、小麥、芥菜與果樹(shù)混栽的方式,不僅能夠提高土地利用率,還可促進(jìn)果樹(shù)生長(zhǎng)。
土壤酶直接參與土壤中養(yǎng)分的轉(zhuǎn)化,能量代謝和營(yíng)養(yǎng)物質(zhì)的釋放和固定過(guò)程,與土壤肥力狀況密切相關(guān),土壤酶活性的高低可以反映土壤的質(zhì)量[18-20]。蔗糖酶活性的強(qiáng)度反映了底物的成熟程度和生育水平,并且在營(yíng)養(yǎng)生長(zhǎng)中起著重要作用;脲酶是對(duì)尿素轉(zhuǎn)化起關(guān)鍵作用的酶,其酶促反應(yīng)產(chǎn)物是可供植物利用的氮源,活性可以用來(lái)顯示土壤的氮供應(yīng)能力[21];磷酸酶是植物根系和微生物的分泌物,它可以促進(jìn)有機(jī)磷化合物或無(wú)機(jī)磷酸鹽轉(zhuǎn)化為植物可利用的無(wú)機(jī)磷,是衡量土壤肥力的重要指標(biāo)[22]。本試驗(yàn)表明,與老果園土壤相比,與蔥、小麥和芥菜混栽的處理均能提高土壤相關(guān)酶活性,并且與蔥混栽處理時(shí)土壤的酶活性顯著增加。
果樹(shù)連作后土壤微生物結(jié)構(gòu)發(fā)生明顯變化,主要表現(xiàn)為有益微生物減少、致病微生物增加,打破了原有的根際微生態(tài)平衡[23-24]。土壤中細(xì)菌、真菌和放線菌的組成和比例在一定程度上反映了土壤肥力的水平。通常,細(xì)菌含量越高,土壤肥料和水分條件越好[25]。而病原真菌的積累能顯著降低農(nóng)作物產(chǎn)量,增加病蟲(chóng)害[26]。土壤微生物在植物殘?bào)w降解,營(yíng)養(yǎng)轉(zhuǎn)化周期等方面起著重要作用[27-28]。有研究表明,蘋(píng)果連作障礙的發(fā)生主要是生物因素引起的,其中有害真菌的積累是主要原因,如鐮孢菌、腐霉和絲核菌[29-32]。本試驗(yàn)采用平板稀釋涂布法和實(shí)時(shí)熒光定量PCR技術(shù)研究老果園土壤中的微生物數(shù)量和鐮孢菌屬的基因拷貝數(shù)。結(jié)果表明,蘋(píng)果幼樹(shù)與3種作物混栽均能增加土壤的細(xì)菌數(shù)量,減少有害真菌的數(shù)量。其中與蔥混栽效果最為顯著,說(shuō)明其可以優(yōu)化微生物群落體系。
土壤中酚酸類(lèi)物質(zhì)的積累是導(dǎo)致蘋(píng)果連作障礙的一個(gè)重要發(fā)生原因,其主要來(lái)源于植物和土壤生物的分泌,并具有很強(qiáng)的生物活性[33]。王青青等[34]研究表明,適量的根皮苷會(huì)降低與TCA循環(huán)相關(guān)酶的活性,導(dǎo)致蘋(píng)果幼苗呼吸速率下降。本試驗(yàn)中老果園土壤經(jīng)過(guò)混栽蔥后,土壤中的根皮苷含量顯著下降,這可能與混栽后土壤微生物群落結(jié)構(gòu)優(yōu)化有關(guān),在微生物的作用下,一些酚酸類(lèi)物質(zhì)可以轉(zhuǎn)化為其他無(wú)害物質(zhì),減少了其對(duì)蘋(píng)果幼樹(shù)的毒害作用。
蔥、小麥、芥菜3種作物與再植幼樹(shù)混栽均能提高蘋(píng)果幼樹(shù)生物量,優(yōu)化微生物群落結(jié)構(gòu),提高連作土壤主要酶活性,降低土壤中根皮苷含量,從而減輕蘋(píng)果連作障礙。且蘋(píng)果幼樹(shù)與蔥混栽效果明顯好于蘋(píng)果幼樹(shù)與小麥、芥菜混栽。
[1] St Laurent A, Merwin I A, Fazio G, Thies J E, Brown M G. Rootstock genotype succession influences apple replant disease and root-zone microbial community composition in all orchard soil., 2010, 337: 259-272.
[2] Bai R, Ma F W, Liang D, Zhao X. Phthalic acid induces oxidative stress and alters the activity of some antioxidant enzymes in roots of., 2009, 35: 488-494.
[3] Tewoldemedhin T Y, Mazzola M, Mostert L, Mcleod A.species associated with apple tree roots in South Africa and their quantification using real-time PCR., 2011, 129: 637-651.
[4] 王闖, 徐公義, 葛長(zhǎng)城, 毛志泉. 酚酸類(lèi)物質(zhì)和植物連作礙的研究進(jìn)展. 北方園藝, 2009(3): 134-137.
Wang C, Xu G Y, Ge C C, Mao Z Q. Progress on the phenolic acid substances and plant soil sickness., 2009(3): 134-137. (in Chinese)
[5] Cardinale B J, Srivastava d S, Duffy J E, Wright J P, Downing A L, Sankaran M, Jouseau C. Effects of biodiversity on the functioning of trophic groups and ecosystems, 2006, 443 (7114): 989-992.
[6] Enwall K, Nyberg K, Bertilsson S, Cederlund H, Stenstr?m J, Hallin S. Long-term impact of fertilization on activity and composition of bacterial communities and metabolic guilds in agricultural soil., 2007, 39(1): 106-115.
[7] 耿士均, 劉刊, 商海燕, 權(quán)俊嬌, 陸小平, 王波. 專(zhuān)用微生物肥對(duì)不同連作障礙強(qiáng)度土壤上番茄生長(zhǎng)的影響. 湖北農(nóng)業(yè)科學(xué), 2012, 51(22): 5008-5011, 5033.
Geng S J, Liu K, Shang H y, Quan J j, lu x p, wang b. Effect of special microbial fertilizer on the growth of tomato in different continuous cropping obstacle soil., 2012, 51(22): 5008-5011, 5033. (in Chinese)
[8] 王曉寶, 王功帥, 劉宇松, 陳學(xué)森, 沈向, 尹承苗, 毛志泉. 西北黃土高原地區(qū)蘋(píng)果連作障礙與土壤真菌群落結(jié)構(gòu)的相關(guān)性分析. 園藝學(xué)報(bào), 2018, 45(5): 855-864.
Wang X B, Wang G S, Liu Y S, Chen X S, Shen X, Yin C M, Mao Z Q. Correlation analysis of apple replant disease and soil fungal community structure in the Northwest Loess Plateau aera, 2018, 45(5): 855-864. (in Chinese)
[9] 李家家, 相立, 潘鳳兵, 陳學(xué)森, 沈向, 尹承苗, 毛志泉. 平邑甜茶幼苗與蔥混作對(duì)蘋(píng)果連作土壤環(huán)境的影響. 園藝學(xué)報(bào), 2016, 43(10): 1853-1862.
Li J J, Xiang L, Pan F B, Chen X S, Shen X, Yin C M, Mao Z Q. Effects ofseedlings andmixed cropping on replanted soil environment., 2016, 43(10): 1853-1862. (in Chinese)
[10] 吳煥濤, 魏珉, 楊鳳娟, 王秀峰. 輪作和休茬對(duì)日光溫室黃瓜連作土壤的改良效果. 山東農(nóng)業(yè)科學(xué), 2008(5): 59-63.
Wu H T, Wei M, Yang F J, Wang X F. Improving effects of crop rotation and fallowing on continuous cucumber cropping soil in solar greenhouse., 2008(5): 59-63. (in Chinese)
[11] 吳鳳芝, 李敏, 曹鵬, 馬亞飛, 王麗麗. 小麥根系分泌物對(duì)黃瓜生長(zhǎng)及土壤真菌群落結(jié)構(gòu)的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2014, 25(10): 2861-2867.
Wu F Z, Li M, Cao P, MA Y F, WANG L L. Effects of wheat root exudates on cucumber growth and soil fungal community structure., 2014, 25(10): 2861-2867. (in Chinese)
[12] 呂毅, 宋富海, 李園園, 沈向, 陳學(xué)森, 吳樹(shù)敬, 毛志泉. 輪作不同作物對(duì)蘋(píng)果園連作土壤環(huán)境及平邑甜茶幼苗生理指標(biāo)的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2014, 47(14): 2830-2839.
Lü Y, Song F H, Li Y Y, Shen X, Chen X S, Wu S J, Mao Z Q. The influence of different crops rotation on the environment of soil and physiological characteristics ofRehd. seedlings., 2014, 47(14): 2830-2839. (in Chinese)
[13] Smolinska U, Morra M J, Knudsen G R. Isothiocyanates produced by Brassicaceae species as inhibitors of., 2003, 87(4): 407-412.
[14] 沈萍, 范秀容, 李廣武. 微生物學(xué)實(shí)驗(yàn). 北京: 高等教育出版社, 1999: 81.
Shen P, Fan X R, Li G W..Beijing: Higher Education Press, 1999: 81. (in Chinese)
[15] 楊友瓊, 吳伯志. 作物間套作種植方式間作效應(yīng)研究. 中國(guó)農(nóng)學(xué)通報(bào), 2007, 23(11): 192-195.
Yang Y Q, Wu B Z. Research of intercropping benefit of crop intercropping systems., 2007, 23(11): 192-195. (in Chinese)
[16] 王艷芳, 潘鳳兵, 展星, 王功帥, 張國(guó)棟, 胡艷麗, 陳學(xué)森, 毛志泉. 連作蘋(píng)果土壤酚酸對(duì)平邑甜茶幼苗的影響. 生態(tài)學(xué)報(bào), 2015, 35(19): 6566-6573.
Wang Y F, Pan F B, Zhan X, Wang G S, Zhang G D, Hu Y L, Chen X S, Mao Z Q. Effects of five kinds of phenolic acid on the function of mitochondria and antioxidant systems in roots ofRehd. seedlings., 2015, 35(19): 6566-6573. (in Chinese)
[17] Guo H, Mao Z Q, Jiang H X, Liu P, Zhou B Q, Bao Z Z, Sui J K, Zhou X Y, LIu X L. Community analysis of plant growth promoting rhizobacteria for apple trees., 2014, 62: 1-9.
[18] Daniel H.. Oxford: Academic Press, 2005: 448-450.
[19] Menon P, GOPAL M, PARSAD R. Effects of chlorpyrifos and quinalphos on dehydrogenase activities and reduction of Fe3+in the soils of two semi-arid fields of tropical India., 2005, 108(1): 73-83.
[20] 陳恩鳳, 武冠云, 周禮愷. 關(guān)于土壤肥力研究的幾點(diǎn)認(rèn)識(shí). 土壤通報(bào), 1989(4): 163, 187-188.
Chen E F, Wu G Y, Zhou L K. Some understandings on soil fertility research., 1989(4): 163, 187-188. (in Chinese)
[21] 和文祥, 朱銘莪. 陜西土壤脲酶活性與土壤肥力關(guān)系分析. 土壤學(xué)報(bào), 1997, 34(4): 392-398.
He W X, Zhu M Y. relationship between urease activity and fertility of soils in shaanxi province., 1997, 34(4): 392-398. (in Chinese)
[22] 陳立新. 落葉松土壤有機(jī)磷形態(tài)與林木生長(zhǎng)量的關(guān)系. 應(yīng)用生態(tài)學(xué)報(bào), 2003,14(12): 2157-2161.
Chen L X. Relationship between soil organic phosphorus forms in larch plantations and tree growth., 2003, 14(12): 2157-2161. (in Chinese)
[23] 薛超, 黃啟為, 凌寧, 高雪蓮, 曹云, 趙青云, 何欣, 沈其榮. 連作土壤微生物區(qū)系分析、調(diào)控及高通量研究方法. 土壤學(xué)報(bào), 2011, 48(3): 612-618.
Xue C, Huang Q W, Ling N, GAO X L, CAO Y, ZHAO Q Y, HE X, SHEN Q R. Analysis, regulation and high-throughput sequencing of soil microflora in mono-cropping system., 2011, 48(3): 612-618. (in Chinese)
[24] 馬云華, 王秀峰, 魏珉, 亓延鳳, 李天來(lái). 黃瓜連作土壤酚酸類(lèi)物質(zhì)積累對(duì)土壤微生物和酶活性的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2005, 16(11): 2149-2153.
Ma Y H, Wang X F, Wei M, Qi Y F, Li T L. Accumulation of phenolic acids in continuously cropped cucumber soil and their effects on soil microbes and enzyme activities., 2005, 16(11): 2149-2153. (in Chinese)
[25] 周麗霞, 丁明懋. 土壤微生物學(xué)特性對(duì)土壤健康的指示作用. 生物多樣性, 2007, 15(2): 162-171.
Zhou L X, Ding M M. Soil microbial characteristics as bioindicators of soil health., 2007, 15(2): 162-171. (in Chinese)
[26] 張晶, 張惠文, 李新宇, 張成剛. 土壤真菌多樣性及分子生態(tài)學(xué)研究進(jìn)展. 應(yīng)用生態(tài)學(xué)報(bào), 2004, 15(10): 1958-1962.
Zhang J, Zhang H W, Li X Y, Zhang C G. Research advances in soil fungal diversity and molecular ecology., 2004, 15(10): 1958-1962. (in Chinese)
[27] Kennydy A C, Smith K L. Soil microbial diversity index and the sustainability of agricultural soils., 1995, 170(1): 75-86.
[28] Schutter M E, Sandeno J M, Dick R P. Seasonal, soil type, alternative management influences on microbial communities of vegetable cropping systems., 2001, 34(6): 397-410.
[29] Manici L M, Ciavatta C, Kelderer M, Erschbaumer G. Replant problems in South Tyrol: role of fungal pathogens and microbial population in conventional and organic apple orchards, 2003, 256(2): 315-324.
[30] Braun P G. Effects ofandspecies on apple seedlings and potential role in apple replant disease., 1995, 17(4): 336-341.
[31] Rumberger A, Yao S, Merwin I A, Nelson E B, Thies J E. Rootstock genotype and orchard replant position rather than soil fumigation or compost amendment determine tree growth and rhizosphere bacterial community composition in an apple replant soil., 2004, 264(1/2): 247-260.
[32] Mazzola M. Transformation of soil microbial community structure and-suppressive potential in response to apple roots., 1999, 89(10): 920-927.
[33] 馬瑞霞, 劉秀芬, 袁光林, 孫思恩. 小麥根區(qū)的化感物質(zhì)及其生物活性的研究. 生態(tài)學(xué)報(bào), 1997, 17(4): 449-451.
Ma R X, Liu X F, Yuan G L, Sun S E. Study on the allelochmicals produced by bacteria and fungi in rhizosphere and their bioactivity., 1997, 17(4): 449-451. (in Chinese)
[34] 王青青, 胡艷麗, 周慧, 展星, 毛志泉, 朱樹(shù)華. 根皮苷對(duì)平邑甜茶根系TCA循環(huán)酶的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2012, 45(15): 3108-3114.
WANG Q Q, HU Y L, ZHOU H, ZHAN X, MAO Z Q, ZHU S H. Effects of phloridzin on the tricarboxylic acid cycle enzymes of roots ofRehd., 2012, 45(15): 3108-3114. (in Chinese)
(責(zé)任編輯 岳梅)
Effect of Different intercropping types on the growth of replanted apple tree and soil environment
MA ZiQing, DUAN YaNan, SHEN Xiang, CHEN XueSen, YIN ChengMiao, MAO ZhiQuan
(College of Horticulture Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology, Taian 271018, Shandong)
【Objective】Taking the soil of the old apple orchard as the object, this study is to explore the effects of mixed planting of different crops and replanted young apple trees on replanting plants and soil environment, select the more effective mixed plant to reduce the apple replant disease, and to provide technical support for the renewal of old orchards.【Method】The experiment included 5 treatments, which were CK (the old apple orchard soil), T1 (the methyl bromide fumigation old apple orchard soil), T2 (grafted apple seedlings mixed with), T3 (grafted apple seedlings mixed with), T4 (grafted apple seedlings mixed with). the effect of mixed planting of different crops on the aboveground biomass, soil enzymes activity, soil microbial quantity, and soil phenolic acid content was detected. The copy number of the major harmful fungi in soil of old orchard was detected by real-time quantitative PCR technology.【Result】Mixed the three kinds of crops and young apple tree obviously enhanced the young apple tree plant height, ground diameter, fresh weight, dry weight, average fresh shoot length, and total fresh shoot length, and the treatment of mixed planting with(T2) had the most beneficial effect, which plant height, ground diameter, fresh weight, dry weight, average fresh shoot length, and total fresh shoot length were 1.12, 1.31, 1.71, 1.65, 1.25 and 2.09 times of the control, respectively. mixed planting three crops could increase the number of soil bacteria and reduce the number of soil fungi. Compared with the control, the number of soil bacteria increased by 37.93%, and the number of soil fungi reduced by 41.33% under the treatment of mixed planting with, the number of soilbacteria increased by 31.03% under the treatment of mixed, the number of soil bacteriaincreased by 13.79% under the treatment of mixed. The ratio of bacteria to fungus in the soil increased by 135.11%, 128.55% and 89.66% when mixed,,, respectively. Compared with the control, the gene copy number ofgenus in the mixed three kinds of crops decreased, and showed significant differences. The gene copy number of,,anddeclined by 61.01%, 37.11%, 40.97% and 53.11% under the treatment of mixed planting with, respectively. Mixed the three kinds of crops and young apple tree could increase the activity of main soil enzymes, among which the mixed planting ofhad the obvious promotion effect of urease activity compared with the control, which increased by 44.59%. the mixed planting ofincreased the activity of phosphatase and sucrose by 59.26% and 50.37%, respectively. The content of phlorzin in mixed planting,crops andsoil decreased by 81.23%, 20.56% and 86.11%, respectively, the total amount of phenolic acid in the soil of the mixed planting ofdecreased by 28.27% compared with the control, and the effect was better than other treatments.【Conclusion】Mixed planting of,andhas great influence on soil environment and biomass of replanted young trees. All of the three mixed crops can promote the growth of replanted young trees, optimize the structure of microbial community and increase the activity of main enzymes in replanted soil, decrease the content of phlorzin in soil, and reduce the apple replant disease. Among them, the effect of mixed withis the best.
mixed planting;;;; apple continuous cropping obstacle
2018-04-18;
2018-06-15
國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFD0201114)、國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專(zhuān)項(xiàng)(CARS-28)、國(guó)家自然科學(xué)基金(31672104,31501720)
馬子清,E-mail:541560589@qq.com。 通信作者毛志泉,Tel:0538-8241984;E-mail:mzhiquan@sdau.edu.cn。通信作者尹承苗,E-mail:yinchengmiao@163.com
10.3864/j.issn.0578-1752.2018.19.018