陳燦明,何建新,蘇曉棟,王曦鵬,黃衛(wèi)蘭
(1. 南京水利科學(xué)研究院水利部水科學(xué)與水工程重點實驗室,江蘇南京 210029; 2. 中國能源建設(shè)集團(tuán)江蘇省電力設(shè)計院有限公司,江蘇南京 211102)
加翼樁作為新型海上風(fēng)電基礎(chǔ),通過在泥面下的樁身設(shè)置翼板增加樁前土抗力,減小水平位移,以提高基礎(chǔ)水平承載力[1]。由于目前有關(guān)加翼樁的研究甚少,更缺乏實測數(shù)據(jù),為深入研究加翼樁的水平承載性能,通過海上風(fēng)電大直徑單樁與加翼樁水平承載性能數(shù)值模擬計算結(jié)果的對比分析,基于樁身土壓力分布特點和受力機理,參考規(guī)范中的P-Y曲線模式對相關(guān)參數(shù)擬合修正,分析了加翼樁翼板參數(shù)對水平承載力的影響規(guī)律[2-4],提出了適用于海上風(fēng)電大直徑加翼樁水平承載力經(jīng)驗式,為加翼樁研究和運用提供參考。
以某5mW級海上風(fēng)電機組為模型,鋼管樁樁徑5m,壁厚0.08m,樁長73m,入土深度55m。加翼樁采用一樁四翼對稱布置,翼板與鋼管樁雙面焊接,壁厚0.08m,豎向為長度,水平向為寬度。按50年一遇荷載組合考慮風(fēng)、浪、流等荷載,計算時將水平荷載簡化為集中力、沿一組翼板中心線作用于泥面上18m的樁頂橫截面中心。
采用三維實體有限元模型,水平向樁周土體取25倍樁徑寬度,土層總厚度取1.3倍樁基入土深度。網(wǎng)格沿深度方向按0.1~1.0m間距劃分,樁周環(huán)向按0.5m間距加密網(wǎng)格。鋼管樁和翼板采用線彈性本構(gòu)模型,地基土(C=25 kPa,φ=14°,ν=0.30,Es=7.5mPa)采用Mohr-Coulomb彈塑性本構(gòu)模型,樁-土接觸面采用主面-從面接觸對算法計算,摩擦系數(shù)μ按罰剛度法計算[5-6]。
計算時當(dāng)加翼樁最大應(yīng)力達(dá)到材料允許強度250mPa或泥面處樁身傾斜率達(dá)到4‰時,認(rèn)為加翼樁達(dá)到極限水平承載力狀態(tài)[7-8]。
分別選取翼板面積、形狀、埋深和剛度等4種翼板參數(shù)下加翼樁水平承載能力最優(yōu)的工況,分別以FPA,F(xiàn)PJ,F(xiàn)PT,F(xiàn)PZ和FPEI表示,與同條件單樁(MP)從破壞形式、樁身彎矩、樁身位移、樁身應(yīng)力和水平極限承載力等方面分析翼板對基樁水平承載力的影響。各工況翼板參數(shù)見表1。
表1 基樁模型翼板參數(shù)Tab.1 Wing plate parameters of pile foundation
1.2.1破壞形式 根據(jù)單樁與加翼樁水平極限荷載作用下位移云圖(圖1~2),單樁與加翼樁在水平荷載作用下的破壞規(guī)律相似,加翼樁的破壞形式介于樁頂自由和樁頂受約束的單樁之間。樁前土體受擠壓隆起變形直至開裂破壞,樁后土體發(fā)生樁土脫離形成空洞;兩側(cè)翼板出現(xiàn)較大扭曲變形。
加翼樁破壞既取決于樁周土體強度,也受樁身材料強度控制,隨著翼板對基樁水平位移約束增強,樁身強度破壞逐漸由樁后側(cè)受拉破壞轉(zhuǎn)化為樁前上緣處受壓破壞,樁前土體剪切破壞范圍逐漸變大。
圖1 極限荷載作用下單樁水平位移云圖(單位:m)Fig.1 Horizontal displacement cloud diagram ofmonopile under ultimate load(unit:m)
圖2 極限荷載作用下加翼樁水平位移云圖(單位:m)Fig.2 Horizontal displacement cloud diagram of wing-monopile under ultimate load(unit:m)
圖3 水平荷載與樁身最大彎矩曲線Fig.3 Horizontal loads andmaximum bendingmoment curves of pile body
1.2.2樁身彎矩 加翼樁最大彎矩位置高于單樁,且隨荷載增加越趨明顯。水平荷載為1.5~12.0mN時,單樁樁身最大彎矩位于泥面下0.85D~1.68D,加翼樁樁身最大彎矩位于泥面下0.63D~1.59D。
水平荷載與樁身最大彎矩曲線見圖3,加翼樁較單樁樁身最大彎矩值的降幅隨荷載增大而增大,增速逐級趨緩。最大翼板面積加翼樁FPA(面積2.56D2)和最優(yōu)梯形翼板加翼樁FPT(面積D2)較單樁樁身最大彎矩降低效果最顯著,12.0mN荷載作用時兩種加翼樁樁身最大彎矩較單樁分別降低9.7%和10.2%,說明翼板面積和翼板形狀是提升加翼樁水平承載力的主要因素。
圖4 水平荷載與泥面處水平位移曲線Fig.4 Horizontal loads and horizontal displacement curves atmud surface of pile
1.2.3樁身位移 水平荷載與基樁泥面處水平位移曲線見圖4。計算結(jié)果表明:水平荷載作用下加翼樁水平位移明顯小于單樁,加翼樁較單樁水平位移的降低幅度隨水平荷載增大先顯著增大后逐漸趨于穩(wěn)定。
最大翼板面積加翼樁FPA和最優(yōu)梯形翼板加翼樁FPT對于樁身泥面處水平位移降低效果最顯著,12.0mN荷載作用下兩種加翼樁泥面處水平位移與單樁比分別降低49.8%和47.4%,說明翼板面積和翼板形狀是影響加翼樁水平位移的最敏感因素。
加翼樁翼板可有效降低基樁的水平位移,其對水平位移的影響大于對樁身彎矩的影響。
1.2.4樁身應(yīng)力 在9.0mN水平荷載作用下單樁與加翼樁的樁身應(yīng)力云圖見圖5。計算結(jié)果顯示,加翼樁翼板周圍樁身區(qū)域形成應(yīng)力集中,應(yīng)力集中程度最高在樁前側(cè)上翼緣附近的最大壓應(yīng)力區(qū)和樁后側(cè)上翼緣附近最大拉應(yīng)力區(qū)。翼板以下深度范圍加翼樁樁身應(yīng)力小于單樁,并隨深度增加逐漸趨于一致。
加翼樁樁身最大應(yīng)力位置高于單樁,同級荷載條件下的最大應(yīng)力值相差較小。
圖5 水平荷載作用下樁身應(yīng)力云圖(H=9.0mN )(單位:Pa)Fig.5 Stress cloud chart of wing-monopile body under horizontal loads (H=9.0mN )(unit: Pa)
Tab.2 Horizontal ultimate bearing capacity and stresses ofmonopile and wing-monopile
基樁編號極限水平承載力/MN加翼樁/單樁/%泥面處傾斜率/‰樁身最大應(yīng)力/MPaMPFPAFPJFPTFPZFPEI8.8814.9713.8314.6013.1212.65100168.58155.74164.41147.75142.454.004.004.004.004.004.00150.64144.05221.77248.04213.42199.70
1.2.5基樁極限水平承載力 單樁與加翼樁水平極限承載力及相應(yīng)應(yīng)力計算結(jié)果見表2。
單樁水平極限承載力一般由樁身泥面處的傾斜率控制,加翼樁水平極限承載力則根據(jù)翼板參數(shù)不同由樁身泥面處的傾斜率或樁身材料強度控制。當(dāng)加翼樁翼板參數(shù)合理時,極限荷載時樁身泥面處的傾斜率達(dá)到4‰,樁身應(yīng)力基本接近材料強度。
相同荷載作用時加翼樁樁身最大應(yīng)力和樁基傾斜率小于單樁,說明翼板可有效減小樁身位移和樁身最大應(yīng)力。
加翼樁水平極限承載力遠(yuǎn)大于單樁,最大翼板面積加翼樁FPA和最優(yōu)梯形翼板加翼樁FPT比單樁MP水平極限承載力增幅最大,達(dá)68.6%和64.41%。由于梯形翼板面積僅為最大翼板面積的39.06%,因此倒梯形翼板對提升樁基承載力效果最好,翼板利用率最高。
圖6 水平極限承載力時單樁和加翼樁接觸壓應(yīng)力云圖(單位:Pa)Fig.6 Contact compress stress cloud chart ofmonopile under horizontal ultimate bearing capacity(unit: Pa)
樁側(cè)土壓力源于水平荷載作用下樁身水平位移[9-10],選擇長寬比0.39的矩形翼板加翼樁FPJ1為研究對象,與單樁MP進(jìn)行樁身土壓力分布對比分析,文中所述土壓力均為節(jié)點CPRESS值,圖6為水平極限荷載作用時單樁和加翼樁的接觸壓應(yīng)力云圖,圖7和8為極限荷載作用下單樁和加翼樁泥面下1.5m深度處土壓力系數(shù)分布。
單樁和加翼樁的土壓力均沿荷載作用方向?qū)ΨQ分布,樁前土壓力較大且變幅較小,樁后側(cè)土壓力為零,說明樁土已發(fā)生分離。單樁最大土壓力為203.94 kPa,位于樁前端;加翼樁樁身最大土壓力為230.53 kPa,位于樁身兩側(cè)45°位置,翼板部分最大土壓力為209.83 kPa,位于翼板與樁身連接處。翼板上土壓力從近樁身端向遠(yuǎn)樁身逐漸減小。加翼樁翼板范圍內(nèi)土壓力隨深度增加而先增大達(dá)到最大值后逐漸減小,翼板下樁身土壓力隨深度的變化規(guī)律與單樁相同,但變幅小于單樁,說明加翼樁有效限制了樁身位移和轉(zhuǎn)動。
圖7 單樁土壓力系數(shù)分布Fig.7 Distribution of earth pressure coefficients onmonopile
圖8 加翼樁土壓力系數(shù)分布Fig.8 Distribution of earth pressure coefficients on wing-monopile
P-Y曲線法計算樁基水平承載力是現(xiàn)行規(guī)范推薦的方法之一[11-13],主要適用于小直徑樁基,它能對樁、土體作非線性分析,橫向荷載作用下土的反應(yīng)可由土體沿深度的應(yīng)力-位移曲線(P-Y曲線)來表達(dá),各深度處的P-Y曲線互不干擾,并共同構(gòu)成一個曲線簇來表達(dá)樁土體系的應(yīng)力應(yīng)變性狀。為推求大直徑單樁極限水平承載力Hu.MP,參考現(xiàn)行規(guī)范中P-Y曲線模式,根據(jù)單樁數(shù)值模擬結(jié)果對相關(guān)系數(shù)進(jìn)行修正。
提取單樁泥面及以下0.5, 1.0, 1.5, 2.0和2.5m深度,在1.5, 3.0, 4.5, 6.0, 7.5和9.0mN水平荷載作用下的樁身位移和土抗力,繪制土抗力與樁身位移曲線見圖9,修正后適用大直徑樁的P-Y曲線見圖10。
圖10 修正后適用于大直徑樁的P-Y曲線Fig.10 Modified P-Y curve for large diameter pile
修正后樁側(cè)單位面積極限土抗力標(biāo)準(zhǔn)值Pu可按式(1)計算,并取較小值;修正后的P-Y曲線關(guān)系式見式(2)~(4)。
(1)
(1)當(dāng)y/y50<3.58時,
(2)
y50=ρε50d
(3)
(2)當(dāng)y/y50≥3.58時,
P=Pu
(4)
式中:Cu為原狀黏性土不排水抗剪強度標(biāo)準(zhǔn)值(Cu≤96 kPa);γ為土重度(kN/m3);d為樁徑(m);ξ為系數(shù),取4.5~5.5;z為泥面以下深度(m);Zr為極限水平土抗力轉(zhuǎn)折點的深度(m);P為泥面以下z深度處作用于樁上的水平土抗力標(biāo)準(zhǔn)值(kPa);y50為樁周土達(dá)到極限水平土抗力之半時相應(yīng)樁的側(cè)向水平變形(mm);ρ為相關(guān)系數(shù),取8.0;ε50為三軸儀試驗中最大主應(yīng)力差一半時的應(yīng)變值,取0.010。
圖11 水平荷載與泥面處水平位移Fig.11 Horizontal load and displacement of pile atmud surface
ABAQUS數(shù)值模型、規(guī)范P-Y曲線和修正的P-Y曲線3種算法計算大直徑樁基泥面處水平位移與荷載關(guān)系曲線見圖11。計算結(jié)果顯示,修正的P-Y曲線法與實體模型計算結(jié)果吻合較好,說明基于地勘資料或現(xiàn)場原位試驗數(shù)據(jù)修正的P-Y曲線法能較準(zhǔn)確推求大直徑單樁水平承載力,規(guī)范P-Y曲線法用于大直徑單樁水平承載力計算時存在較大誤差。
由于水平荷載作用下大直徑單樁和加翼樁的受力機理基本相同,最大區(qū)別在于加翼樁由于翼板的存在,增加了土抗力,限制了樁身泥面處的位移和傾斜率,從而提高總體承載力。以相同基樁條件的單樁水平極限承載力為基礎(chǔ),考慮加翼樁翼板面積、形狀、埋深和剛度等因素的影響,推導(dǎo)加翼樁水平極限承載力的經(jīng)驗式。
根據(jù)加翼樁翼板參數(shù)對承載力影響的研究結(jié)果,提出基于大直徑單樁水平極限承載力、考慮翼板參數(shù)影響的軟黏土地基大直徑加翼樁極限承載力經(jīng)驗式和翼板參數(shù)影響系數(shù):
Hu.FP=αk1k2k3k4Hu.MP
(5)
k1=0.005 2(S/D2)3-0.099 2(S/D2)2+0.452 9(S/D2)+1.077,S/D2∈[0.09,3.24]
(6)
k2.J=-0.068ln(L/W)+1.024 2,L/W∈[0.39,2.56]
(7)
k2.T=8.418 7(θ/π)3-10.411(θ/π)2+3.480 4(θ/π)+0.797 4,θ/π∈[0.15,0.62]
(8)
k3=-0.011(EI/(E0I0))2+0.038 7(EI/(E0I0))+0.974,EI/(E0I0)∈[0.6,4.0]
(9)
k4=-1.731 7(Z/D)4+4.141 1(Z/D)3-3.184 2(Z/D)2+0.709 4(Z/D)+1,Z/D∈[0,0.8]
(10)
式中:Hu.FP為加翼樁極限承載力;Hu.MP為單樁極限承載力;α為綜合影響系數(shù);k1為翼板面積影響系數(shù);k2為翼板形狀影響系數(shù),考慮矩形和梯形兩種形狀,分別為k2.J和k2.T;k3為翼板剛度影響系數(shù);k4為翼板埋深影響系數(shù)。
翼板面積影響系數(shù)中,S/D2為翼板面積與樁徑平方比,擬合曲線與實體模型計算點相關(guān)度為0.970。
矩形翼板形狀影響系數(shù)中L/W為翼板長寬比,擬合曲線與實體模型計算點相關(guān)度為0.917。梯形翼板形狀影響系數(shù)中θ為梯形斜邊與上緣內(nèi)夾角(單位rad),擬合曲線與實體模型計算點相關(guān)度為0.973。
翼板剛度影響系數(shù)中,EI/(E0I0)為翼板剛度與鋼管樁等厚翼板的剛度比,擬合曲線與實體模型計算點相關(guān)度為0.997,根據(jù)擬合曲線計算,翼板剛度比EI/(E0I0)為1.768時,加翼樁水平極限承載力最大。
翼板埋深影響系數(shù)中,Z/D表示翼板埋深與樁徑比,擬合曲線與實體模型計算點相關(guān)度為0.998,根據(jù)擬合曲線計算,翼板埋深Z/D為0.153時,加翼樁水平極限承載力最大。
基于ABAQUS三維數(shù)值仿真模型,針對海上風(fēng)電大直徑單樁與加翼樁水平承載性能開展研究,得出如下結(jié)論:
(1)加翼樁與單樁在相同水平荷載作用下,最大彎矩可降低10%左右,泥面處最大水平位移可降低40%左右。極限承載力可提高60%左右。
(2)大直徑單樁水平極限承載力一般由樁身泥面處的傾斜率控制,加翼樁水平極限承載力則根據(jù)翼板參數(shù)不同由樁身泥面處的傾斜率或樁身材料強度控制。當(dāng)加翼樁翼板參數(shù)合理時,極限荷載時樁身泥面處的傾斜率達(dá)到4‰,樁身應(yīng)力基本接近材料強度。
(3)水平極限承載力狀態(tài)時,加翼樁樁前土體受擠壓隆起變形,樁后土體出現(xiàn)樁土脫離形成空洞;土壓力沿荷載作用方向?qū)ΨQ分布,樁前土壓力較大,樁后側(cè)土壓力為零。樁身最大土壓力位于樁身兩側(cè)45°位置,翼板土壓力從近樁身端向遠(yuǎn)樁身逐漸減小,最大土壓力位于翼板與樁身連接處。
(4)基于地勘資料或現(xiàn)場原位試驗、參考規(guī)范P-Y曲線模式,對相對系數(shù)進(jìn)行修正的P-Y曲線法能較準(zhǔn)確推求大直徑單樁水平承載力。規(guī)范P-Y曲線法計算大直徑單樁水平承載力時誤差相對較大。
(5)以相同條件單樁水平極限承載力為基礎(chǔ),根據(jù)研究成果提出考慮加翼樁翼板面積、形狀、埋深和剛度等因素的加翼樁水平極限承載力的經(jīng)驗公式和翼板參數(shù)影響系數(shù)計算式,影響系數(shù)擬合曲線與實體模型計算點相關(guān)度為0.917~0.997。