国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

植物水通道蛋白的干旱應(yīng)答機(jī)制研究進(jìn)展

2018-09-10 21:51:41江林娟陳春華顏旭楊世民
廣西植物 2018年5期
關(guān)鍵詞:干旱脅迫功能

江林娟 陳春華 顏旭 楊世民

摘 要:干旱脅迫是嚴(yán)重影響全球作物生產(chǎn)的非生物脅迫之一,研究植物耐旱機(jī)制已成為一個(gè)重要領(lǐng)域。水通道蛋白是一類特異、高效轉(zhuǎn)運(yùn)水及其它小分子底物的膜通道蛋白,在植物中具有豐富的亞型,參與調(diào)節(jié)植物的水分吸收和運(yùn)輸。近10年來(lái),水通道蛋白在植物不同生理過(guò)程中的作用,一直受到研究人員的關(guān)注,特別是在非生物脅迫方面,而研究表明水通道蛋白在干旱脅迫下對(duì)植物的耐旱性起著至關(guān)重要的作用,能維持細(xì)胞水分穩(wěn)態(tài)和調(diào)控環(huán)境脅迫快速響應(yīng)。水通道蛋白在植物耐旱過(guò)程中的調(diào)控機(jī)制及功能較復(fù)雜,而關(guān)于其應(yīng)答機(jī)制和不同亞型功能性研究的報(bào)道甚少。該文綜述了植物水通道蛋白的分類、結(jié)構(gòu)、表達(dá)調(diào)控和活性調(diào)節(jié),分別從植物水通道蛋白響應(yīng)干旱表達(dá)調(diào)控機(jī)制、水通道蛋白基因表達(dá)的時(shí)空特異性、水通道蛋白基因的表達(dá)與蛋白豐度,水通道蛋白基因的耐旱轉(zhuǎn)化四個(gè)方面闡明干旱脅迫下植物水通道蛋白的表達(dá),重點(diǎn)闡述其參與植物干旱脅迫應(yīng)答的作用機(jī)制,并提出水通道蛋白研究的主要方向。

關(guān)鍵詞:水通道蛋白,干旱脅迫,功能,水分平衡,調(diào)控機(jī)制

中圖分類號(hào):Q945.78

文獻(xiàn)標(biāo)識(shí)碼:A

文章編號(hào):1000-3142(2018)05-0672-09

Abstract:As the whole growth process of plants is closely related to water conduction in plants,drought stress is one of the abiotic stresses severely affecting global crop production,and it is necessary to study drought tolerance mechanism of plants. Aquaporins (AQPs),major intrinsic proteins (MIPs) present in plasma and intracellular membranes,are ubiquitously present in all kingdoms of life,and show their highest diversities in plants. Their roles in facilitating the transport of small neutral molecules across cell membranes in higher plants are now well established. Rich in subfamilies,AQPs regulate water absorption and transport in plants and count much in maintaining water balance in plants. During the recent decade,researchers have focused on the role of AQPs in different physiological processes of plants,especially in abiotic stress. According to the previous research,AQPs are critical for drought tolerance of plants under drought stress. The regulation via AQPs is reported as an important way for plants to keep cell water stable and maintain rapid response to environmental stresses. Numerous studies have identified AQPs as important targets for improving plant performance under drought stress. However,the regulation mechanism and function of AQPs are quite complicated in the process of drought tolerance. In addition,the response mechanism and the function of different subfamilies have rarely been reported. In this review,we provide a brief synopsis of the classification,structure,expression and activity regulation of AQP superfamily across the green plants. Specifically,the expression of AQPs under drought stress is expounded from the following four aspects:The expression regulation mechanism of response to drought,the temporal and spatial specificity,the gene expression and protein abundance,and the gene transformation for drought tolerance. Numerous studies of plant AQPs under osmotic stress conditions have revealed their importance in regulating plant stress responses. With emphasis placed on the mechanism of AQPs involved in response to drought stress in plants,the author tentatively proposed a main research direction. Responsive mechanism of AQPs in plants exposing to drought stress should be further investigated in the coming exploration to provide scientific supports and molecular materials for application of AQPs in molecular breeding.

Key words:aquaporin,drought stress,function,water balance,regulation mechanism

干旱脅迫是導(dǎo)致作物減產(chǎn)的非生物脅迫之一,通常干旱等各種逆境脅迫會(huì)使植物水分失衡而導(dǎo)致逆境傷害,因此逆境脅迫下植物維持水分平衡的機(jī)理一直是抗逆研究的熱點(diǎn)。水通道蛋白(aquaporins,AQPs),又稱水孔蛋白,主要的內(nèi)在蛋白(major intrinsic proteins,MIPs),位于細(xì)胞膜上的一類膜通道蛋白(26~34 kDa),具有底物特異雙向通透能力,能通透水、不帶電小分子(硅酸、尿素、甘油、硼酸)或氣體(CO2、氨氣)等。Maurel et al(1993)從擬南芥(Arabidopsis thaliana)中分離出第1個(gè)植物水通道蛋白,并證明其轉(zhuǎn)運(yùn)水分的功能。在共質(zhì)體途徑,水分通過(guò)細(xì)胞質(zhì)和細(xì)胞膜進(jìn)入細(xì)胞。流經(jīng)根中的水有70%~90%是通過(guò)細(xì)胞膜上的AQPs來(lái)傳輸?shù)模˙arrowclough et al,2000)。在1MPa壓力下,AQPs每秒能運(yùn)輸109個(gè)水分子(Fujiyoshi et al,2002)。AQPs能依賴滲透勢(shì)高效介導(dǎo)水分跨膜轉(zhuǎn)運(yùn),是細(xì)胞內(nèi)和細(xì)胞間水分運(yùn)輸?shù)闹饕ǖ?,在維持細(xì)胞滲透平衡和調(diào)節(jié)植物生理過(guò)程中發(fā)揮重要作用(Maurel et al,2008)。

本研究從分類、結(jié)構(gòu)、表達(dá)調(diào)控與活性調(diào)節(jié)及干旱脅迫下植物AQPs的表達(dá)四個(gè)方面詳細(xì)介紹植物AQPs。此外,還重點(diǎn)概述了與AQPs相關(guān)的植物干旱脅迫應(yīng)答機(jī)制的最新研究進(jìn)展,并探討了一些轉(zhuǎn)AQPs基因植物的抗旱試驗(yàn)結(jié)果。

1 植物AQPs分類

迄今已發(fā)現(xiàn)100多種AQPs(Srivastava et al,2016),根據(jù)AQPs序列同源性、亞細(xì)胞定位及結(jié)構(gòu)特征,可歸納為七類:質(zhì)膜內(nèi)在蛋白PIPs(plasma membrane intrinsic proteins)、液泡膜內(nèi)在蛋白TIPs(tonoplast intrinsic proteins)、類NOD26膜內(nèi)在蛋白NIPs(nodulin 26-like intrinsic proteins)、小分子堿性膜內(nèi)在蛋白SIPs(small basic intrinsic proteins)、類GlpF膜內(nèi)在蛋白GIPs(glycerol facilitator-like intrinsic proteins)(Gustavsson et al,2005)、混合內(nèi)在蛋白HIPs(hybrid intrinsic proteins)及X內(nèi)在蛋白XIPs(uncategorized X intrinsic proteins)(Danielson & Johanson,2008; Javot,2002; Siefritz et al,2002)。目前除苔蘚和卷柏外,其它植物的AQPs都無(wú)GIPs,苔蘚和卷柏存在GIPs是否與其喜歡生長(zhǎng)在潮濕環(huán)境有關(guān),可進(jìn)一步研究。某些雙子葉植物、原核生物及真菌存在XIPs,但在高等植物中至今未發(fā)現(xiàn)HIPs(表1)。植物AQPs(XIPs、HIPs和GIPs)在系統(tǒng)進(jìn)化過(guò)程中丟失,需進(jìn)一步通過(guò)序列分析及鑒定XIPs、HIPs和GIPs功能,為系統(tǒng)研究AQPs的生物多樣性及進(jìn)化過(guò)程提供依據(jù)。

2 植物AQPs結(jié)構(gòu)特點(diǎn)

AQPs的一級(jí)結(jié)構(gòu)包含6個(gè)α跨膜螺旋(TM1-TM6),且有5個(gè)環(huán)(LA-LE)相連,其中有2個(gè)胞內(nèi)環(huán)(LB、LD)和3個(gè)胞外環(huán)(LA、LC、LE),分別位于膜的兩側(cè)(圖1:A)。疏水性環(huán)LB和LE各含有一段高度保守的氨基酸序列Asn-Pro-Ala,即NPA盒,直接參與運(yùn)輸水的通道形成,是植物AQPs的重要序列特征,E環(huán)對(duì)外界環(huán)境敏感,能啟動(dòng)AQP的功能,同時(shí)B環(huán)和E環(huán)各形成半個(gè)跨膜螺旋(HB、HE)參與AQPs活性調(diào)控,其余環(huán)是親水性環(huán)。AQP的雙向運(yùn)輸水分子孔道是由2個(gè)NPA基序與6個(gè)跨膜螺旋形成,其收縮芳香族化合物/精氨酸(aromatic/Arg,ar/R)四聚體結(jié)構(gòu)存在于NPA盒外側(cè)0.8 nm處,分別由LE上的2個(gè)氨基酸殘基和HB、HE上各1個(gè)氨基酸殘基組成,有1個(gè)AEF(Ala-Glu-Phe)或AEFXXT在N端結(jié)構(gòu)域(Sui et al,2001)。一些AQPs的N端存在“DXE”基序是其從內(nèi)質(zhì)網(wǎng)外運(yùn)的信號(hào),而C端存在負(fù)責(zé)AQPs內(nèi)化的保守磷酸化位點(diǎn)(師恭曜等,2012)。AQPs的選擇性主要來(lái)源于排阻效應(yīng),由NPA序列、ar/R結(jié)構(gòu)、弱相互作用3個(gè)因素決定(De et al,2003; Fujiyoshi et al,2002; Robinson et al,1996)。每個(gè)AQP單體都可形成獨(dú)立的水通道(Fetter et al,2004)。 AQPs的四聚體結(jié)構(gòu),對(duì)于形成AQPs的穩(wěn)定結(jié)構(gòu)和準(zhǔn)確的功能表達(dá)起重要作用(圖1:B,C)。蛋白質(zhì)結(jié)構(gòu)構(gòu)象多樣性可導(dǎo)致不同的生物體對(duì)環(huán)境適應(yīng)性差異。Berny et al (2016)認(rèn)為相比于細(xì)胞單獨(dú)表達(dá)PIP2s,推測(cè)可能是異聚化引起的玉米原生質(zhì)體上共表達(dá)ZmPIP1和ZmPIP2s的直接互作,導(dǎo)致細(xì)胞導(dǎo)水率的增加。因此,不同植物水通道蛋白單體的拓?fù)浣Y(jié)構(gòu)和聚合角度存在差異,導(dǎo)致每種植物AQPs具有其獨(dú)特的功能。

3 植物AQPs表達(dá)調(diào)控與活性調(diào)節(jié)

植物AQPs調(diào)節(jié)方式分為轉(zhuǎn)錄水平和轉(zhuǎn)錄后水平調(diào)節(jié)。轉(zhuǎn)錄過(guò)程中,AQPs活性受AQPs合成速度調(diào)節(jié),這種方式調(diào)節(jié)速度較慢,調(diào)節(jié)方式受植物生長(zhǎng)因素影響。轉(zhuǎn)錄后水平調(diào)控主要包括AQPs活性的門控機(jī)制和蛋白酶的降解。影響AQPs門控行為包括磷酸化(Trnroth-Horsefield et al,2005)、去磷酸化(Yaaran & Moshelion,2016)、基因異源化、pH、Ca2+、活性氧(ROS)等因素。目前對(duì)植物AQPs表達(dá)調(diào)控與活性調(diào)節(jié)的研究多集中在PIPs上。調(diào)控PIPs表達(dá)與活性主要表現(xiàn)在轉(zhuǎn)錄水平受環(huán)境因素(干旱等)和內(nèi)源性信號(hào)(脫落酸等)影響,在轉(zhuǎn)錄后水平受翻譯后膜轉(zhuǎn)運(yùn)水平和門控水平影響。PIPs翻譯后膜轉(zhuǎn)運(yùn)水平包括翻譯后修飾、再循環(huán)利用(內(nèi)吞和外排)、自噬降解、蛋白酶降解。PIPs門控水平包括胞質(zhì)酸化、Ca2+、活性氧(ROS),最終調(diào)節(jié)膜的導(dǎo)水率(Zargar et al,2017)。

4 干旱脅迫下植物AQPs的表達(dá)

干旱下,植物氣孔關(guān)閉,胞間CO2分壓降低,光合作用減弱,增加氣孔導(dǎo)度來(lái)補(bǔ)償細(xì)胞間CO2可用性(Groszmann et al,2016),大部分AQPs基因表達(dá)量下調(diào),使AQPs活性降低,植物抗旱性提高,從而穩(wěn)定植物體水分含量,提高植物水分利用率。干旱下植物木質(zhì)部薄壁組織細(xì)胞增加大量AQPs,加強(qiáng)質(zhì)外體和共質(zhì)體間的水分交換來(lái)響應(yīng)水分脅迫(Secchi et al,2017)。AQPs在植物根、莖、葉中均有表達(dá),一般根中表達(dá)量最高,且不同基因家族、不同基因間的組織表達(dá)模式存在差異,具有透水能力的AQPs多集中于PIPs和TIPs。在細(xì)胞水平,PIPs負(fù)責(zé)水分的吸收與外排,TIPs負(fù)責(zé)調(diào)節(jié)膨壓,使細(xì)胞結(jié)構(gòu)的完整性得以維持(Fotiadis et al,2001)。干旱破壞細(xì)胞滲透平衡時(shí),PIPs和TIPs調(diào)節(jié)根系導(dǎo)水率和蒸騰速率。PIP1和PIP2亞型高度表達(dá)主要集中在根和葉的維管組織,且PIP2亞家族似乎比PIP1運(yùn)輸水分的效率更高(urbanovski et al,2013),表明PIP2家族在脅迫條件下受到異位蛋白影響比PIP1家族大。

4.1 植物AQPs響應(yīng)干旱表達(dá)調(diào)控機(jī)制

迄今為止,植物耐旱過(guò)程中調(diào)控機(jī)制研究最為廣泛的一類AQPs是PIPs。干旱下,PIPs膜轉(zhuǎn)運(yùn)調(diào)控PIPs表達(dá)和活性,從而減少植物水分流失和提高植物水勢(shì)。干旱誘導(dǎo)脫落酸(abscisic acid, ABA)直接或間接調(diào)控多數(shù)PIPs活性,但ABA對(duì)PIPs的調(diào)控有爭(zhēng)議。有研究提出ABA能使PIPs表達(dá)上調(diào),但也有研究者認(rèn)為ABA會(huì)抑制PIPs的表達(dá)。本研究ABA和HgCl2預(yù)處理下,啟動(dòng)子中AuxRE和ABRE元件可能是誘導(dǎo)番茄葉片AQPs上調(diào)表達(dá)的主要因素(Liu et al,2016)。ABA分別通過(guò)自噬降解途徑 (Hachez et al,2014)和蛋白體降解途徑(Liu et al,2016)減少富含色氨酸的感受蛋白或轉(zhuǎn)運(yùn)蛋白(tryptophan-rich sensory protein/translocator,TSPO )和膜錨定泛素連接酶E3(a RING membrane anchor E3 ubiquitin ligase,Rma1H1),調(diào)控某些PIPs表達(dá)。ABA同時(shí)能調(diào)節(jié)Ca2+、胞質(zhì)pH值,活性氧,通過(guò)引導(dǎo)內(nèi)化或封閉構(gòu)象作用于PIPs膜轉(zhuǎn)運(yùn)調(diào)控(Prado & Maurel,2013)(圖2)。Vinnakota et al (2016)研究發(fā)現(xiàn)水稻耐旱與不耐旱品種保衛(wèi)細(xì)胞的PIP1和PIP2基因表達(dá)一致,而兩個(gè)耐旱品種的氣孔保衛(wèi)細(xì)胞滲透性存在明顯差異。氣孔保衛(wèi)細(xì)胞利用磷酸化,調(diào)節(jié)ABA引起氣孔關(guān)閉的水通道蛋白顯著(Assmann & Jegla,2016)。暗示可從不同抗旱品種氣孔保衛(wèi)細(xì)胞PIPs來(lái)研究AQPs有效門控機(jī)制。

4.2 AQPs表達(dá)的時(shí)空特異性

植物AQPs的表達(dá)不僅與植物的種類有關(guān),還與干旱時(shí)間、發(fā)育階段以及環(huán)境條件有關(guān)。在干旱脅迫下,擬南芥和水稻葉片中AQPs的轉(zhuǎn)錄調(diào)控較復(fù)雜,大多數(shù)AQPs的表達(dá)有下降的趨勢(shì),但有些卻增加。擬南芥AtPIP2;1和AtPIP2;2在干旱脅迫下表達(dá)下調(diào)(Jin,2015),但也有AtPIP1;3、AtPIP1;4等少數(shù)AtPIPs表達(dá)量增加(Alexandersson et al,2010,2005)。絕大多數(shù)被抑制擬南芥AQPs表達(dá)會(huì)逐漸恢復(fù)到脅迫前水平,但缺乏功能性PIP明顯復(fù)蘇緩慢(Secchi & Zwieniecki,2014)。AQPs有利于植物適應(yīng)干旱環(huán)境,特別是促進(jìn)植物干旱后的復(fù)水,但仍不清楚其具體作用機(jī)制。AQPs是水稻水分利用效率的主要決定因素(Nada & Abogadallah,2014)。Grondin et al (2016)發(fā)現(xiàn)干旱脅迫下6個(gè)水稻品種根中PIP2;1,PIP1;3,PIP2;2,PIP1;1,PIP1;2,PIP2;8表達(dá)量明顯降低。Li et al (2008)用15% PEG-6000處理水稻,發(fā)現(xiàn)OsTIP1;1、OsTIP1;2和OsTIP4;2在葉子部分初始上調(diào),而在10 h時(shí)開(kāi)始下調(diào);OsTIP2;2,OsTIP4;1初始下調(diào),之后升高,OsTIP4;2也先升后降??梢?jiàn)水稻TIPs基因表達(dá)比PIPs更復(fù)雜,猜測(cè)干旱下水稻AQPs表達(dá)增強(qiáng),可能與干旱初期根能夠生成大量ABA,ABA能調(diào)節(jié)Ca2+、胞質(zhì)pH值,活性氧,通過(guò)引導(dǎo)內(nèi)化或封閉構(gòu)象作用于PIPs膜轉(zhuǎn)運(yùn)調(diào)控,從而根系土壤中吸收更多水分。

4.3 AQPs的表達(dá)和蛋白豐度

植物AQPs的表達(dá)與蛋白豐度對(duì)干旱脅迫會(huì)產(chǎn)生不同的應(yīng)答。Jang et al (2017)認(rèn)為擬南芥AQPs豐度的調(diào)控對(duì)干旱條件下的吸水能力沒(méi)有明顯的影響。一般來(lái)說(shuō),在干旱條件下,PIP2豐度會(huì)下降,同時(shí)PIP1蛋白會(huì)積累,但PIP蛋白豐度與吸水能力沒(méi)有明顯聯(lián)系。然而,NtTIP1在煙草中的表達(dá)豐度與煙草的抗旱性密切相關(guān),其表達(dá)量在干旱敏感品種中明顯下調(diào),而在耐旱品種中明顯上調(diào)(夏宗良等,2013)。在干旱條件下,耐旱和干旱敏感品種中的NtTIP1表現(xiàn)出不同的響應(yīng)模式,表明每個(gè)水通道蛋白基因有不同的作用。NtTIP1在耐旱品種中能提高植物抗旱性,可能是因?yàn)槠浔磉_(dá)上調(diào)使通道活性增強(qiáng),從而促進(jìn)細(xì)胞或液泡的水分運(yùn)輸,平衡體內(nèi)外的滲透壓。轉(zhuǎn)錄水平上的基因表達(dá)調(diào)控主要受轉(zhuǎn)錄因子與啟動(dòng)子的影響。在不同耐旱品種中,AQPs對(duì)干旱脅迫的響應(yīng)有差異,暗示該基因的轉(zhuǎn)錄調(diào)控因子或啟動(dòng)子在敏感品種、耐旱品種中可能存在不同,有待進(jìn)一步研究。當(dāng)使用不同AQPs抑制劑處理時(shí),AQPs的表達(dá)和蛋白豐度影響植物導(dǎo)水率(Devi et al,2016)??梢?jiàn)AQPs基因表達(dá)和蛋白豐度與逆境條件下的水分狀況間的內(nèi)在聯(lián)系尚不明確。

4.4 AQPs基因的耐旱轉(zhuǎn)化

通過(guò)轉(zhuǎn)AQPs基因來(lái)改善植物逆境下的表現(xiàn),觀察到大部分AQPs過(guò)表達(dá)可提高植物的耐旱性,但其效應(yīng)在不同植物和不同AQPs基因并不一致。干旱脅迫時(shí),NtPIP1;1和NtPIP2;1在煙草(Nicotiana tabacum)中表達(dá)下調(diào),使煙草根部滲透導(dǎo)水率下降。而在體外表達(dá)中,各自單獨(dú)表達(dá)的水通道活性明顯低于兩者共表達(dá)的水通道活性,表明NtPIP1;1和NtPIP2;1以異源四聚體的形式組成水通道(Mahdieh et al,2008)。說(shuō)明可能異源水通道蛋白基因在植物中過(guò)表達(dá),它在植物中不能準(zhǔn)確調(diào)控,甚至有可能影響自身環(huán)境脅迫應(yīng)答機(jī)制。Lian et al (2006)發(fā)現(xiàn)將響應(yīng)脅迫的啟動(dòng)子和表達(dá)顯著地受到水分脅迫誘導(dǎo)山地抗旱水稻中的OsPIP1;3基因一起轉(zhuǎn)化低地不抗旱水稻品種,可明顯提高水稻抗旱性,表明在干旱脅迫下,相同物種的不同植物品種AQPs基因的表達(dá)可能不同。Zhuang et al (2015)研究發(fā)現(xiàn)FaPIP2;1在擬南芥中過(guò)表達(dá),干旱下轉(zhuǎn)基因植物比野生型保持更高的葉片相對(duì)含水量、葉綠素含量、凈光合速率和更低的葉片質(zhì)膜透性,其抗旱性提高。Martins et al (2017)研究發(fā)現(xiàn)柑橘CsTIP2;1在煙草中過(guò)表達(dá),轉(zhuǎn)基因植物在干旱下脅迫下的抗氧化和適應(yīng)環(huán)境生長(zhǎng)能力提高。但Li et al (2015)研究發(fā)現(xiàn)AcPIP2在擬南芥中過(guò)表達(dá),反而加劇其敏旱性。Lee et al (2009)研究發(fā)現(xiàn)干旱脅迫誘導(dǎo)轉(zhuǎn)基因擬南芥Rma1H,膜錨定泛素連接酶E3,通過(guò)泛素調(diào)節(jié)AQPs表達(dá)水平。干旱下大部分AQPs過(guò)表達(dá)能觀察到提高植物耐旱性,可能由于AQPs提高根系水分運(yùn)輸,穩(wěn)定光合作用??梢?jiàn)AQPs基因的耐旱轉(zhuǎn)化調(diào)控機(jī)制比預(yù)想的要復(fù)雜。

5 展望

近年來(lái),AQPs表達(dá)特征及其與干旱環(huán)境的關(guān)系報(bào)道日益增多,是未來(lái)的研究焦點(diǎn)。AQPs干旱應(yīng)答機(jī)制研究,可考慮以下幾點(diǎn):(1) 迄今對(duì)于干旱脅迫下AQPs 的研究多數(shù)在轉(zhuǎn)錄調(diào)控上,而聚合調(diào)控、門控機(jī)制及重新定位等對(duì)其活性影響更直接的作用機(jī)制的認(rèn)識(shí),尚不十分明確,闡明這些機(jī)理將有助于進(jìn)一步認(rèn)識(shí)AQPs。例如,AQPs參與保衛(wèi)細(xì)胞氣孔關(guān)閉,可從抗旱品種氣孔保衛(wèi)細(xì)胞AQPs來(lái)研究門控功能。

(2) 迄今干旱條件下,AQPs研究主要集中在PIPs和TIPs,其它亞型基因功能研究甚少,比如只在苔蘚和卷柏中存在的GIPs與抗旱機(jī)制有無(wú)關(guān)系。(3)通常逆境條件下,AQPs只能短暫平衡植物細(xì)胞水分,如果能把AQPs基因工程與抗旱滲透調(diào)節(jié)物質(zhì)(甘露糖醇、6-磷酸海藻糖)結(jié)合起來(lái)研究,可能會(huì)提高作物抵御嚴(yán)重干旱和長(zhǎng)期干旱的能力,將有助于改良和調(diào)控非抗旱植物的抗旱性。(4) 研究啟動(dòng)子的順式作用元件和反式作用因子相互作用調(diào)控基因時(shí)空表達(dá)模式差異化機(jī)制。(5) 隨著測(cè)序技術(shù)的發(fā)展,在基因組、轉(zhuǎn)錄組和蛋白質(zhì)組水平上的探求,將為轉(zhuǎn)基因技術(shù)培育優(yōu)良抗旱作物提供依據(jù),對(duì)于深入認(rèn)識(shí)、系統(tǒng)闡述AQPs在植物干旱脅迫下的生理功能及其作用機(jī)制具有重要意義。

參考文獻(xiàn):

AFZAL Z,HOWTON T,SUNY,et al,2016. The roles of aquaporins in plant stress responses [J]. J Dev Biol,4(1):9.

ALEXANDERSSON E,DANIELSON JH,RDA J,et al,2010. Transcriptional regulation of aquaporins in accessions of Arabidopsis in response to drought stress [J]. Plant J,61(4):650-660.

ALEXANDERSSON E,F(xiàn)RAYSSE L,SJOVALL-LARSEN S,et al,2005. Whole gene family expression and drought stress regulation of aquaporins [J]. Plant Mol Biol,59(3):469-484.

ANDERBERG HI,KJELLBOM P,JOHANSON U,2012. Annotation of Selaginella moellendorffii major intrinsic proteins and the evolution of the protein family in terrestrial plants [J]. Front Plant Sci,3:33.

ARIANI A,GEPTS P,2015. Genome-wide identification and characterization of aquaporin gene family in common bean (Phaseolus vulgaris L.) [J]. Mol Genet Genom,290(5):1771-1785.

ASSMANN SM,JEGLA T,2016. Guard cell sensory systems:recent insights on stomatal responses to light,abscisic acid,and CO2 [J]. Curr Opin Plant Biol,33:157-167.

BARROWCLOUGH DE,PETERSON CA,STEUDLE E,2000. Radial hydraulic conductivity along developing onion roots [J]. J Exp Biol,51(51):547-557.

BERNY MC,GILIS D,ROOMAN M,et al,2016. Single mutation in the transmembrane domains of maize plasma membrane aquaporins affect the activity of monomers within a heterotetramer [J]. Mol Plant,9(7):986-1003.

CHAUMONT F,BARRIEU F,WOJCIK E,et al,2001. Aquaporins constitute a large and highly divergent protein family in maize [J]. Plant Physiol,125(3):1206-1215.

CHRISPEELS MJ,1997. The major intrinsic protein family of Arabidopsis has 23 members that form three distinct groups with functional aquaporins in each group [J]. Plant Physiol,114(4):1347-1357.

DANIELSON J,JOHANSON U,2008. Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens [J]. BMC Plant Biol,8(1):45.

DA YZ,ALI Z,CHANG BW,et al,2013. Genome-wide sequence characterization and expression analysis of major intrinsic proteins in soybean (Glycine max L.) [J]. PLoS ONE,8(2):e56312.

DIEHN TA,POMMERRENING B,BERNHARDT N,et al,2015. Genome-wide identification of aquaporin encoding genes in Brassica oleracea and their phylogenetic sequence comparison to Brassica crops and Arabidopsis [J]. Front Plant Sci,6:166.

DEVI MJ,SINCLAIR TR,JAIN M,et al,2016. Leaf aquaporin transcript abundance in peanut genotypes diverging in expression of the limited-transpiration trait when subjected to differing vapor pressure deficits and aquaporin inhibitors [J]. Physiol Plant,156(4):387-396.

FETTER K,WILDER VV,MOSHELION M,et al,2004. Inte-ractions between plasma membrane aquaporins modulate their water channel activity [J]. Plant Cell,16(1):215-228.

FORREST KL,BHAVE M,2008. The PIP and TIP aquaporins in wheat form a large and diverse family with unique gene structures and functionally important features [J]. Funct Integr Genom,8(2):115-133.

FOTIADIS D,JENO P,MINI T,et al,2001. Structural characterization of two aquaporins isolated from native spinach leaf plasma membranes [J]. J Biol Chem,276(3):1707-1714.

FUJIYOSHI Y,MITSUOKA K,DEGROOT BL,et al. 2002. Structure and function of water channels [J]. Curr Opin Struc Biol,12(4):509-515.

GRGOIRE C,RMUS-BOREl W,VIVANCOS J,et al. 2012. Discovery of a multigene family of aquaporin silicon transporters in the primitive plant Equisetum arvense [J]. Plant J,72(2):320-330.

GRONDIN A,MAULEON R,VADEZ V,et al,2016. Root aquaporins contribute to whole plant water fluxes under drought stress in rice (Oryza sativa L.) [J]. Plant Cell Environ,39(2):347-365.

GROOT BL,F(xiàn)RIGATO T,HELMS V,et al,2003. The mechanism of proton exclusion in the aquaporin-1 water channel [J]. J Mol Biol,333(2):279-293.

GROSZMANN M,OSBORN HL,EVANS JR,2016. Carbon dioxide and water transport through plant aquaporins [J]. Plant Cell Environ,40(6):938-961.

GUPTA AB,SANKARARAMAKRISHNAN R,2009. Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa:characterization of XIP subfamily of aquaporins from evolutionary perspective [J]. BMC Plant Biol,9(1):134.

GUSTAVSSON S,LEBRUN AS,NORDEN K,et al. 2005. A novel plant major intrinsic protein in Physcomitrella patens most similar to bacterial glycerol channels [J]. Plant Physiol,139(1):287-295.

HACHEZ C,VELJANOVSKI V,REINHARDT H,et al. 2014. The Arabidopsis abiotic stress-induced TSPO-related protein reduces cell-surface expression of the aquaporin PIP2;7 through protein-protein interactions and autophagic degradation [J]. Plant Cell,26(12):4974-4990.

HOVE RM,ZIEMANN M,BHAVE M,2015. Identification and expression analysis of the barley (Hordeum vulgare L.) aquaporin gene family [J]. PLoS ONE,10(6):e0128025.

HU W,HOU X,HUANG C,et al,2015. Genome-wide identification and expression analyses of aquaporin gene family during development and abiotic stress in banana [J]. Int J Mol Sci,16(8):19728-19751.

JAVOT H,2002. The role of aquaporins in root water uptake [J]. Ann Bot,90(3):301-313.

JANG JY,LEE SH,RHEE JY,et al,2007. Transgenic Arabidopsis and tobacco plants over expressing an aquaporin respond differently to various abiotic stresses [J]. Plant Mol Biol,64 (6):621-632.

JIN M,2015. The role of PIP aquaporins in response to various environmental scenarios in Arabidopsis thaliana [D]. Hohhot:Inner Mongolia University:1-191.

LAUR J,HACKE UG,2014. Exploring Picea glauca aquaporins in the context of needle water uptake and xylem refilling [J]. New Phytol,203(2):388-400.

LEE HK,CHO SK,SON O,et al,2009. Drought stress-induced Rma1H1,a RING membrane-anchor E3 ubiquitin ligase homolog,regulates aquaporin levels via ubiquitination in transgenic Arabidopsis plants [J]. Plant Cell,21(2):622-641.

LI G,PENG Y,YU X,et al,2008. Transport functions and expression analysis of vacuolar membrane aquaporins in response to various stresses in rice [J]. J Plant Physiol,165(18):1879-1888.

LI J,YU G,SUN X,et al,2015. AcPIP2, a plasma membrane intrinsic protein from halophyte Atriplex canescens,enhances plant growth rate and abiotic stress tolerance when overexpressed in Arabidopsis thaliana [J]. Plant Cell Rep,34(8):1401-1415.

LIAN HL,YU X,LANE D,et al,2006. Upland rice and lowland rice exhibited different PIP expression under water deficit and ABA treatment [J]. Cell Res,16(7):651-660.

LIU X,DONG X,LIU Z,et al,2016. Repression of ARF10 by microRNA160 plays an important role in the mediation of leaf water loss [J]. Plant Mol Biol,92(3):313-336.

LIU J,ZHANG C,WEI C,et al,2016. The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice [J]. Plant Physiol,170(1):429-443.

MAHDIEH M,MOSTAJERAN A,HORIE T,et al,2008. Drought stress alters water relations and expression of PIP-type aquaporin genes in Nicotiana tabacum plants [J]. Plant Cell Physiol,49(5):801-813.

MARTINS CPS,PEDROSA AM,DU D,et al,2015. Genome-wide characterization and expression analysis of major intrinsic proteins during abiotic and biotic stresses in sweet orange (Citrus sinensis L. Osb.) [J]. PLoS ONE,10(9):e138786.

MARTINS CPS,NEVES DM,CIDADE LC,et al,2017. Expression of the citrus CsTIP2;1 gene improves tobacco plant growth,antioxidant capacity and physiological adaptation under stress conditions [J]. Planta,245(5):951-963.

MAUREL C,REIZER J,SCHROEDER JI,et al,1993. The vacuolar membrane protein gamma-TIP creates water specific channels in Xenopus oocytes [J]. Embo J,12(6):2241-2247.

MAUREL C,2007. Plant aquaporins:Novel functions and regulation properties [J]. Febs Lett,581(12):2227-2236.

MAUREL C,VERDOUCQ L,LUU DT,et al,2008. Plant aquaporins:membrane channels with multiple integrated functions [J]. Ann Rev Plant Biol,59:595-624.

NADA RM,ABOGADALLAH GM,2014. Aquaporins are major determinants of water use efficiency of rice plants in the field [J]. Plant Sci,227:165-180.

PANDEY B,SHARMA P,PANDEY DM,et al,2013. Identification of new aquaporin genes and single nucleotide polymorphism in bread wheat [J]. Evol Bioinform Onl,9(9):437-452.

PARK W,SCHEFFLER BE,BAUER PJ,et al,2010. Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.) [J]. BMC Plant Biol,10(1):142.

PRADO K,MAUREL C,2013. Regulation of leaf hydraulics:from molecular to whole plant levels [J]. Front Plant Sci,4(2):58-60.

QUIGLEY F,ROSENBERG JM,SHACHAR-HILL Y,et al,2001. From genome to function:the Arabidopsis aquaporins [J]. Genome Biol,3(1):858-871.

REDDY PS,RAO TSRB,SHARMA KK,et al,2015. Genome-wide identification and characterization of the aquaporin gene family in Sorghum bicolor (L.) [J]. Plant Gene,1:18-28.

REUSCHER S,AKIYAMA M,MORI C,et al,2013. Genome-wide identification and expression analysis of aquaporins in tomato [J]. PLoS ONE,8(11):e79052.

ROBINSON DG,SIEBER H,KAMMERLOHER W,et al,1996. PIPl aquaporins are concentrated in plasmalemmasomes of Arabidopsis thaliana mesophy II [J]. Plant Physiol,111:645-649.

SAKURAI J,2005. Identification of 33 rice aquaporin genes and analysis of their expression and function [J]. Plant Cell Physiol,46(9):1568-1577.

SECCHI F,PAGLIARANI C,ZWIENIECKI MA,2017. The functional role of xylem parenchyma cells and aquaporins during recovery from severe water stress [J]. Plant Cell Environ,40(6):858-871.

SECCHI F,ZWIENIECKI MA,2014. Down-regulation of plasma intrinsic protein1 aquaporin in poplar trees is detrimental to recovery from embolism [J]. Plant Physiol,164(4):1789-1799.

SHELDEN MC,HOWITT SM,KAISER BN,et al,2009. Identification and functional characterisation of aquaporins in the grapevine,Vitis vinifera [J]. Funct Plant Biol,36:1065-1078.

SHIVARAJ SM,DESHMUKH RK,RAI R,et al,2017. Genome-wide identification,characterization,and expression profile of aquaporin gene family in flax (Linum usitatissimum) [J]. Sci Rep,7:46137.

SIEFRITZ F,TYREE MT,LOVISOLO C,et al,2002. PIP1 plasma membrane aquaporins in tobacco:from cellular effects to function in plants [J]. Plant Cell,14(4):869-876.

SRIVASTAVA AK,PENNA S,DONG VN,et al,2016. Multifaceted roles of aquaporins as molecular conduits in plant responses to abiotic stresses [J]. Crit Rev Biotechnol,36(3):389-398.

SUI H,HAN BG,LEE JK,et al,2001. Structural basis of water-specific transport through the AQP1 water channel [J]. Nature,414(6866):872-878.

URBANOVSKI N,SARGENT DJ,ELSE MA,et al,2013. Expression of Fragaria vesca PIP aquaporins in response to drought stress:PIP down-regulation correlates with the decline in substrate moisture content [J]. PLoS ONE,8(9):e74945.

TAO P,ZHONG X,LI B,et al,2014. Genome-wide identification and characterization of aquaporin genes (AQPs) in Chinese cabbage (Brassica rapa ssp. pekinensis) [J]. Mol Genet Genom,289(6):1131-1145.

TORNROTH-HORSEFIELD S,WANG Y,HEDFALK K,et al,2005. Structural mechanism of plant aquaporin gating [J]. Nature,439(7077):688-694.

SHI GY,WANG YM,HUA JP,2012. Aquaporins and salt tolerance of higher plants [J]. J Agric Sci Technol,14(4):31-38. [師恭曜,王玉美,華金平,2012. 水通道蛋白與高等植物的耐鹽性 [J]. 中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào),14(4):31-38.]

VENKATESH J,YU J,PARK SW,2013. Genome-wide analysis and expression profiling of the Solanum tuberosum aquaporins [J]. Plant Physiol Biochem,73(6):392-404.

VINNAKOTA R,RAMAKRISHNAN AM,SAMDANI A,et al,2016. A comparison of aquaporin function in mediating stomatal aperture gating among drought-tolerant and sensitive varieties of rice (Oryza sativa L.) [J]. Protoplasma,253(6):1593-1597.

XIA ZL,LI JQ,LIU JJ,et al,2013. Cloning of an aquaporin gene NtTIP1 from tobacco and its expression under drought stress [J]. J Henan Agric Univ, 47(5):509-513. [夏宗良,李軍旗,劉劍君,等,2013. 煙草水通道蛋白NtTIP1基因的克隆及其在干旱脅迫下的表達(dá)分析 [J]. 河南農(nóng)業(yè)大學(xué)學(xué)報(bào),47(5):509-513.]

YAARAN A,MOSHELION M,2016. Role of aquaporins in a composite model of water transport in the leaf [J]. Int J Mol Sci,17(7):1045.

ZARGAR SM,NAGAR P,DESHMUKH R,et al,2017. Aquaporins as potential drought tolerance inducing proteins:toward instigating stress tolerance [J]. J Proteomics:233-238.

ZHI Z,YANG L,GONG J,et al,2016. Genome-wide identification of Jatropha curcas aquaporin genes and the comparative analysis provides insights into the gene family expansion and evolution in Hevea brasiliensis [J]. Front Plant Sci,7:395.

ZHUANG L,LIU M,YUAN X,et al,2015. Physiological effects of aquaporin in regulating drought tolerance through overexpressing of Festuca arundinacea aquaporin gene FaPIP2;1 [J]. J Am Soc Hortic Sci,140(5):404-412.

ZOU Z,GONG J,F(xiàn)ENG A,et al,2015. Genome-wide identification of rubber tree (Hevea brasiliensis Muell. Arg.) aquaporin genes and their response to ethephon stimulation in the laticifer,a rubber-producing tissue [J]. BMC Genom,16:1001.

ZOU Z,GONG J,HUANG Q,et al,2015. Gene structures,evolution,classification and expression profiles of the aquaporin gene family in castor bean (Ricinus communis L.) [J]. PLoS ONE,10(10):e141022.

猜你喜歡
干旱脅迫功能
也談詩(shī)的“功能”
關(guān)于非首都功能疏解的幾點(diǎn)思考
懷孕了,凝血功能怎么變?
媽媽寶寶(2017年2期)2017-02-21 01:21:24
硝普鈉浸種對(duì)干旱脅迫下玉米種子萌發(fā)及幼苗生長(zhǎng)的影響
一氧化氮參與水楊酸對(duì)玉米幼苗根系抗旱性的調(diào)控
一氧化氮參與水楊酸對(duì)玉米幼苗根系抗旱性的調(diào)控
“簡(jiǎn)直”和“幾乎”的表達(dá)功能
干旱脅迫對(duì)扁豆生長(zhǎng)與生理特性的影響
不同水分條件下硫肥對(duì)玉米幼苗葉片光合特性的影響
干旱脅迫對(duì)金花茶幼苗光合生理特性的影響
连平县| 洱源县| 肃宁县| 大同县| 叶城县| 广宁县| 舟曲县| 江川县| 繁峙县| 赤水市| 循化| 靖江市| 长宁县| 百色市| 楚雄市| 麻阳| 安岳县| 荔波县| 江安县| 宁远县| 井冈山市| 潍坊市| 桦甸市| 师宗县| 安乡县| 保亭| 连云港市| 攀枝花市| 望奎县| 扶绥县| 澎湖县| 高密市| 云龙县| 宜兰县| 祁门县| 九龙坡区| 大港区| 石楼县| 涡阳县| 临海市| 威宁|