国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

濕地松×洪都拉斯加勒比松遺傳多樣性的ISSR分析(英文)

2018-09-10 02:21李義良趙奮成李福明鐘歲英譚志強吳惠姍郭文冰廖仿炎
廣西植物 2018年6期
關(guān)鍵詞:遺傳多樣性

李義良 趙奮成 李福明 鐘歲英 譚志強 吳惠姍 郭文冰 廖仿炎

摘 要:雜交育種是產(chǎn)生遺傳變異、表型變異及選擇新變異的重要方法。然而系統(tǒng)發(fā)育不清晰,選擇較近的親緣關(guān)系親本用于雜交子代往往表現(xiàn)出較低的遺傳多樣性。為探究濕地松、洪都拉斯加勒比松種間雜交后代遺傳多樣性水平,對8個濕地松×洪都拉斯加勒比松家系進行ISSR分析。利用10條引物共產(chǎn)生60個表達清晰可用于分析的標記,其中48個標記表現(xiàn)為多態(tài)性,占總標記數(shù)的80%;濕加松各個家系多態(tài)位點百分率在5%~23.33%之間;各個家系基因多樣性指數(shù)在 0.015 2~0.087 2之間,Shannon指數(shù)的范圍在 0.021 6~0.129 4之間(家系水平為 0.293 4)。8個家系間的基因分化系數(shù)Gst為

0.743 5,即總的遺傳變異中有74.35%的變異存在于家系間,家系內(nèi)的遺傳變異占總遺傳變異的25.65%。采用UPGMA法對濕加松的8個家系進行了聚類分析,確定了各個家系之間的遺傳親緣關(guān)系。8個家系間的基因流Nm為 0.172 5,表明基因流處于較低水平。

關(guān)鍵詞:濕加松,家系,遺傳多樣性,ISSR標記

Abstract:Crossbreeding is an important method for generating genetic and phenotypic variation for selecting new varieties. However,because of an uncertainty of phylogenetic relationships,the parents selected for crosses may have a close genetic relationship resulting in hybrid progeny that shows low genetic diversity. Analysis of interfamily genetic diversity was undertaken among eight Pinus elliottii × P. caribaea var. hondurensis fullsib families using intersequence simple repeat (ISSR) markers. A total of 480 individuals were analyzed using 10 ISSR primers. Neis unbiased gene diversity in the families ranged from 0.015 2 to 0.087 2. Shannon genetic diversity index values ranged from 0.021 6 to 0.129 4. Only a small proportion (25.65%) of genetic variation resided within families,whereas the majority of genetic variation (74.35%) accounted for the interfamily genetic differentiation index of Gst=0.743 5. On the basis of estimated genetic distance and UPGMA clustering analysis,the genetic differentiation among the eight families was indicated to be relatively high with low gene flow (Nm=0.172 5). The low interfamily gene flow may be related to the high genetic heterozygosity of slash pine and Caribbean pine. These findings are expected to provide a foundation for genetic breeding of Pinus elliottii × P. caribaea var. hondurensis hybrids.

Key words:Pinus elliottii × P. caribaea var. hondurensis,families,genetic diversity,ISSR marker

CLC number:Q949

Document code:A

Article ID:10003142(2018)06081206

Pinus elliottii,commonly known as the slash pine,is native to Southeast America,from southern South Carolina west to Southeast Louisiana,and south to Florida Keys. The Caribbean pine,P. caribaea,is a hard pine,native to Central America,Cuba,Bahamas,Turks and Caicos Islands. Both species are widely used for building,pulpwood and resin production. P. elliottii × P. caribaea hybrid was firstly bred in Australia in 1955 and exhibited better growth traits than either parent while combining several complementary characteristics of the parents (Nikles,1995). In China,slash pine and Caribbean pine were introduced to Guangdong in 1933 and 1964,respectively. Since the early 1990s,more than 600 fullsib families of P. elliottii × P. caribaea were introduced from the Hongling Seed Orchard to the Guangdong Academy of Forestry. Currently,26 F1 families were selected with average annual growth of 1 m height,1.7 cm diameter at breast height (dbh),and 0.018 5 m3 volume,and growth rate 100%-240% higher than that of P. elliottii and 10%-70% higher than that of P. caribaea var. hondurensis. In addition,a comparative analysis confirmed that the growth performance of superior selected hybrid pedigrees is similar to that of F1 hybrids bred in Australia (Zhao et al,2009) and the selections exhibited many superior characteristics,such as fast growth rate,straight trunk,perfect branching pattern,and high yield of oleoresin. Often there is a reduction in genetic variation because of inbreeding and decrease in effective population size during the process of artificial selection. Therefore,there is a need to ascertain the degree of genetic variation and genetic differentiation between hybrids of superior families to aid selection during breeding and promote genetic diversity among hybrid families. Crossbreeding is the main method for enhancing genetic and phenotypic variation from which new varieties may be selected. However,because phylogenetic relationships are often uncertain,the parents in crosses may have a close genetic relationship,and consequently the hybrid progeny may show low genetic diversity. Therefore,it is essential to reveal the phylogenetic relationships between the parents and the hybrids. In the assessment of genetic diversity of pines,attention has been focused on populations (Hamelin et al,1995; Szmidt et al,1996; Lerceteau & Szmidt,1999; Mariette et al,2001; Shao et al,2007; Zhou et al,2008; Dvorak et al,2009; brahám et al,2010),seed sources (Feng et al,2001; Shui et al,2005; Yang et al,2005),seed orchards (Ai et al,2006; Zhang et al,2008),and hybrids (Tang et al,2003; Zhang et al,2011).

Intersimple sequence repeat (ISSR)PCR is a technique to generate multilocus markers. ISSR markers arehighly polymorphic,and are useful in studies on genetic diversity,phylogenetic relationships,gene tagging,genome mapping,and evolutionary biology (Godwin et al,1997; Reddy et al,2002). In the present study,ISSR markers were used to reveal the genetic variation,relationship,differentiation and gene flow among different P. elliottii × P. caribaea var. hondurensis families.

1 Materials and Methods

1.1 Plant material

Seeds of P. elliottii × P. caribaea var. hondurensis from eight fullsib families-B102 × H7,B118 × Q22,B118 × R6,B2 × CM64,B2 × H3,B2H7 × S9520,B97H32 × S9315 and B106H3 × EHA01 were collected in South China. The B102 × H7,B118 × Q22,B118 × R6,B2 × CM64,and B2 × H3 families were the F1 generation and the other families were the F2 generation. The seedlings were planted in Guangdong Academy of Forestry in 2010. A total of 60 hybrid offsprings were selected randomly from each family. Fifteen hybrid offsprings were mixed as samples,and a total of 32 samples. Oneyearold needles were collected in March 2011 and stored at -20 ℃ for DNA isolation.

1.2 DNA isolation

Genomic DNA was isolated from the needles using the modified CTAB method of Li (2010). Ground fresh tissue (0.2 g) was suspended in 800 μL CTAB and incubated at 65 ℃ for 30-60 min. The suspension was centrifuged at 11 000 r·min1 for 10 min and the supernatant was extracted twice with 600 μL chloroform and precipitated with double volumes of ethanol at -20 ℃. The DNA pellet formed after centrifugation at 10 000 r·min1 for 10 min was washed twice with 75% ethanol. The DNA was then suspended in 100 μL H2O. Equal amounts of DNA from fifteen individuals of the same family were mixed.

1.3 ISSRPCR

PCR amplification was performed in a 25 μL reaction volume. The mixture contained 40 ng template DNA (2 μL DNA stock),2.5 μL of 10 mmol·L1 TrisHCl buffer,500 μmol·L1 of each dNTP (1 μL stock),1.0 U Taq DNA polymerase,and 1 μL of 10 μmol·L1 primers. To make up the volume to 25 μL,2.5 μL of sterile H2O was added to each reaction mixture. Ten ISSR primers,named UBC811,UBC817,UBC818,UBC830,UBC846,UBC850,UBC851,UBC873,UBC881 and UBC891,were selected for the analysis. Amplification was carried out in a PTC200 thermocycler with the following program:4 min of denaturation at 94 ℃,then 35 cycles of three steps,which were 50 s of denaturation at 94 ℃,50 s annealing at a temperature specific for each primer (Table 1),and 2 min of elongation at 72 ℃,with a final elongation step of 7 min at 72 ℃ and storage at -20 ℃. The PCR products were separated in a 2.0% agarose gel and fragments sizes were estimated with the DL 2000 ladder marker. A digital image was captured and analyzed using an ultraviolet analysis imaging system.

1.4 Data analysis

Amplified DNA banding patterns generated by ISSRPCR were scored as (1) for presence or (0) for absence. Using Popgene 32 software,percentage of polymorphic loci,percentage band polymorphism (PBP),Shannons information index (I),observed number of alleles (na),effective number of alleles (ne),gene differentiation coefficient (Gst),gene flow (Nm),Neis genetic distance,and Neis unbiased gene diversity (h),which is equivalent to expected heterozygosity (HE) of a population,were calculated. A cluster analysis using the unweighted pair group method with arithmetic mean (UPGMA) algorithm was performed based on Neis genetic distances with NTYSIS 2.01 software.

2 Results and Analysis

2.1 ISSR profiles

For the 32 mixed samples of P. elliottii × P. caribaea var. hondurensis from the eight fullsib families,a total of 60 replicated bands were amplified with the ten primers,of which 30 were polymorphic. The number of bands produced ranged from two to eleven per reaction,with an average six. The size of the amplified fragments ranged from 250-1 800 bp.

2.2 Genetic variation

At the family level,the percentage of polymorphic loci (PBP) was 50.00%,whereas that of a single family ranged from 3.33%-23.33%,with an average of 13.75%. At the family level,the average effective number of alleles per locus was 1.083 6. The average expected heterozygosity was estimated to be 0.049 4 within populations (h). Shannons index (I) ranged from 0.021 6-0.129 4,with an average of 0.074 1 at the family level. Among the eight families investigated,the B02 × CM64 family revealed higher variability (PPB,23.33%; na,1.1508; ne,0.087 2; I,0.129 4),whereas the B02 × H3 family revealed the lowest variability (PPB,3.33%; na,1.028 5; ne,0.015 2; I,0.021 6; Table 2).

2.3 Genetic relationship and cluster analysis

On the basis of analysis with Popgene 32 software,the genetic identity coefficient among the eight families ranged from 0.655 1-0.954 2. The minimum genetic distance was observed between B118 × Q22 and B118 × R6,and the maximum was observed between B102 × H7 and B97H32 × S9315. The result suggested that there was a high genetic similarity among P. elliottii × P. caribaea var. hondurensis families (Table 3).

Neis genetic identity and distance analysis among the eight families of P. elliottii × P. caribaea var. hondurensis showed that the highest Neis genetic distance (0.423 0) was between B102 × H7 and B97H32 × S9315,whereas the lowest value (0.046 9) was between B118 × Q22 and B118 × R6 (Table 3). A dendrogram representing relationships among the eight families was constructed using the UPGMA clustering method (Fig. 1). The eight families were divided into three groups with a genetic distance of 0.151. One group included B118 × Q22,B118 × R6,B102 × H7 and B106H3 × EHA01. Another group included B2 × CM64,B2 × H3 and B2H7 × S9520. B97H32 × S9315 alone made up the third group. These results indicated that families with the same female parent were genetically similar as thus a partial female parent genetic effect was apparent.

2.4 Genetic differentiation and gene flow

Analysis with Popgene 32 software of the genetic differentiation of P. elliottii × P. caribaea var. hondurensis families indicated that the majority of the genetic variation was represented between the families,accounting for 74.35% of the total familylevel variation,whereas 25.65% of the total variation occurred within families. The genetic differences among the eight families were high and relatively independent of strain. Gene flow (Nm) is a major factor impacting on the genetic structure and genetic differentiation among families. The gene flow among the P. elliottii × P. caribaea var. hondurensis families was 0.172 5,which indicated there was strong genetic differentiation among families.

3 Discussion and Conclusion

Compared with other Pinus species,the PBP (50.00%) at the family level for P. elliottii × P. caribaea is much lower than that reported for P. massoniana (80.37%:Zhu et al,2007) and P. koraiensi (61.17%) (Feng et al,2007),and is only higher than that of families of P. taiwanensis (PBP = 24.10%)(Tang et al,2 003). Similarly,the I value (0.074 1) at the family level for P.elliottii × P. caribaea var. hondurensis is lower than that of P. massoniana (0.355 8) and P. koraiensi (0.267 4),and is only higher than that of families of P. taiwanensis (0.028 6). The study by Tang et al (2003) showed that the levels of genetic diversity among ten families of P. taiwanensis were low. Similarly,in the present study a low level of genetic diversity was observed among P. elliottii × P. caribaea var. hondurensis families. However,families generated by artificial pollination are relatively independent of strain and may have certain genetic differentiation.

Analysis of molecular variation indicated high genetic variation among P. elliottii × P. caribaea var. hondurensis families rather than within families (Gst = 0.743 5). This might be caused by artificial selection rather than pollen pollution. The Nm of P. elliottii × P. caribaea var. hondurensis was 0.172 5,which indicated gene flow among families was limited. Wright (1931) proposed that gene can flow among the populations. At Nm>1 populations would be homogenized,at Nm<1 populations may be strongly differentiated,and at Nm>4 populations would become a random unit. On the basis of these criteria,strong genetic differentiation among the P. elliottii × P. caribaea var. hondurensis families is indicated. Controlled pollination of the P. elliottii × P. caribaea var. hondurensis hybrids and parental species accessions resulted in limited gene flow among families. The low interfamily gene flow may be related to the high genetic heterozygosity of slash pine and caribbean pine. The results will be helpful for selective breeding of P. elliottii × P. caribaea var. hondurensis hybrids.

參考文獻:

AI C,XU L,LAI HL,et al,2006. Genetic diversity and paternity analysis of a seed orchard in Pinus massoniana [J]. Sci Silv Sin,42:146-150.

BRAHM B,MIKLSSY I,KOVCS E,et al,2010. Genetic analysis of Pinus sylvestris L. and Pinus sylvestris forma turfosa L. using RAPD markers [J]. Not Sci Biol,2(1):129-132.

DVORAK WS,POTTER KM,HIPKINS VD,et al,2009. Genetic diversity and gene exchange in Pinus oocarpa,a Mesoamerican pine with resistance to the pitch canker fungus (Fusarium circinatum) [J]. Inter J Plant Sci,170(5):609-626.

FENG FJ,CHEN MM,ZHANG DD,et al,2009. Application of SRAP in the genetic diversity of Pinus koraiensis of different provenances [J]. Afr J Biotechnol,8(6):1000-1008.

FENG FJ,ZHANG DD,HAN SJ,2007. Genetic diversity of superior clones from Pinus koraiensis seed orchard [J]. J NE For Univ,35(9):9-11. [馮富娟,張冬東,韓士杰,2007. 紅松種子園優(yōu)良無性系的遺傳多樣性 [J]. 東北林業(yè)大學(xué)學(xué)報,35(9):9-11.]

GODWIN ID,AITKEN EAB and SMITH LW,1997. Application of inter simple sequence repeat ( ISSR) markers to plant genetics [J]. Electrophoresis,18:1524-1528.

HAMELIN RC,BEAULICU J,PLOURDE A,1995. Genetic diversity in populations of cronartium ribicola in plantations and natural stands of Pinus strobes [J]. Theor Appl Genet,91(8):1214-1221.

LERCETEAU E,SZMIDT AE,1999.Properties of AFLP markers in inheritance and genetic diversity studies of Pinus sylvestris L. [J]. Heredity,82:252-260.

LI YL,ZHAO FC,ZHANG YZ,et al,2010. Rapid DNA extraction method suitable for SSR analysis in slash pine and caribbean pine [J]. Biotechnol Bull,1:83-86. [ 李義良,趙奮成,張應(yīng)中,等,2010. 適用于微衛(wèi)星標記的濕地松、加勒比松DNA快速提取法 [J]. 生物技術(shù)通報,1:83-86.]

MARIETTE S,CHAGND,LZIER,et al,2001. Genetic diversity within and among Pinus pinaster populations:comparison between AFLP and microsatellite markers [J]. Heredity,86:469-479.

NIKLES DG,1995. Hybirds of the SlashCaribbeanCentral American pine complex:characteristics,bases of superiority and potential utility in South China and elsewhere [M]// SHEN XH. Forest Tree Improvement in the AsiaPacific Region. China Forestry Publishing House:168-186.

REDDY MP,SARLA N,SIDDIQ EA,2002. Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding [J]. Euphytica,128:9-17.

SHAO D,PEI Y,ZHANG HQ,2007. CpSSR Analysis of variation of genetic diversity in temporal dimension of natural population of Pinus koraiensis in liangshui national nature reserve [J]. Bull Bot Res,93(4):969-980.

SHUI J,HUANG SW,CHEN BQ,2005. RAPD analysis on the genetic diversity of original provenances and internal populations of Pinus taeda [J]. J S Chin Agric Univ,26(3):74-76,81. [ 稅珺,黃少偉,陳炳銓,2005. 火炬松原生種源和引種群體RAPD遺傳多樣性 [J]. 華南農(nóng)業(yè)大學(xué)學(xué)報,26(3):74-76,81.]

SZMIDT AE,WANG XR,LU MZ,1996. Empirical assessment of allozyme and RAPD variation in Pinus sylvestris (L.) using haploid tissue analysis [J]. Heredity,76:412-420.

TANG JJ,F(xiàn)AN YR,ZHU MY,2003.Analysis of the genetic diversity of Pinus taiwanensis populations [J]. J Zhejiang For Coll,20(1):23-26. [唐娟娟,范義榮,朱睦元,2003. 黃山松群體遺傳多樣性分析 [J]. 浙江林學(xué)院學(xué)報,20(1):3-26.]

WRIGHT S,1931. Evolution in Mendelian population [J] . Genetics,16:97-159.

YANG CP,WEI L,JIANG J,et al,2005. Analysis of genetic diversity for nineteen populations of Pinus sibirica du tour with technique of ISSR [J]. J NE For Univ,33(1):1-3. [楊傳平,魏利,姜靜,等,2005. 應(yīng)用ISSRPCR對西伯利亞紅松19個種源的遺傳多樣性分析 [J]. 東北林業(yè)大學(xué)學(xué)報,33(1):1-3.]

ZHANG HG,ZHANG L,ZHU H Y,et al,2011. ISSR idetification technology of hybrid larch progenies and their parents [J]. J NE For Univ,39(7):1-4. [張含國,張磊朱,航勇,等,2011. 落葉松雜種與親本ISSR鑒別技術(shù) [J]. 東北林業(yè)大學(xué)學(xué)報,39(7):1-4]

ZHANG W,GONG J,JI KS,2008. Genetic diversity for seedling orchard of massons pine [J]. Mol Plant Breed,6:717-723.

ZHAO FC,LI XZ,ZHANG YZ,et al,2009. Research results and prospects of crossing breeding of slash pine × caribbean pine [J]. Chin Sci Technol Achiev,10(8):21-23. [趙奮成,李憲政,張應(yīng)中,等,2009. 濕地松×加勒比松雜交育種研究成果與展望 [J]. 中國科技成果,10 (8) :21-23.]

ZHOU FM,F(xiàn)AN JF,HOU WW,2008. Genetic diversity in Pinus tabulaeformis natural population in Shaanxi by RAPD markers [J]. J NE For Univ,36(12):1-3. [周飛梅,樊軍鋒,侯萬偉,2008. 陜西地區(qū)油松天然群體遺傳結(jié)構(gòu)的RAPD分析 [J]. 東北林業(yè)大學(xué)學(xué)報,36(12):1-3.]

ZHU BF,CHEN DX,CHEN YL,et al,2007. Study on the genetic diversity of seed orchard of Pinus massoniana in Guangdong Province [J]. J Fujian For Sci Technol,34(3):1-5,22. [朱必鳳,陳德學(xué),陳虞祿,等,2007. 廣東韶關(guān)馬尾松種子園遺傳多樣性分析 [J]. 福建林業(yè)科技,34(3):1-5,22.]

猜你喜歡
遺傳多樣性
從葉綠體DNA角度分析云南省砂梨地方品種遺傳多樣性
寧夏外引水稻種質(zhì)資源表型性狀遺傳多樣性分析
寧夏外引水稻種質(zhì)資源表型性狀遺傳多樣性分析
茄子種質(zhì)資源農(nóng)藝性狀遺傳多樣性分析
金魚起源及遺傳多樣性研究進展
楊梅種質(zhì)資源遺傳多樣性研究進展
金銀花SSR指紋圖譜的構(gòu)建及遺傳多樣性分析
山西大豆自然群體遺傳多樣性的研究
2個鯉魚群體遺傳多樣性的RAPD分析
扎囊县| 肇东市| 武陟县| 彭泽县| 扶沟县| 安新县| 揭西县| 佛教| 宁波市| 中西区| 建始县| 迭部县| 南汇区| 武汉市| 井陉县| 湘潭县| 石渠县| 汉阴县| 宁陕县| 库尔勒市| 深水埗区| 二手房| 镇安县| 潼南县| 涞源县| 八宿县| 孝感市| 法库县| 临夏县| 泸西县| 蒙阴县| 报价| 台州市| 宜良县| 齐齐哈尔市| 屏边| 兴海县| 玉屏| 福泉市| 来宾市| 长沙县|