国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

大豆GmbZIP16的抗旱功能驗(yàn)證及分析

2018-08-17 03:02:12趙婉瑩于太飛楊軍峰劉沛陳雋陳明周永斌馬有志徐兆師閔東紅
中國農(nóng)業(yè)科學(xué) 2018年15期
關(guān)鍵詞:毛狀鋅指復(fù)合體

趙婉瑩,于太飛,楊軍峰,劉沛,陳雋,陳明,周永斌,馬有志,徐兆師,閔東紅

?

大豆的抗旱功能驗(yàn)證及分析

趙婉瑩1,2,于太飛2,楊軍峰3,劉沛2,陳雋2,陳明2,周永斌2,馬有志2,徐兆師2,閔東紅1

(1西北農(nóng)林科技大學(xué)/旱區(qū)作物逆境生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室,陜西楊凌 712100;2中國農(nóng)業(yè)科學(xué)院作物科學(xué)研究所/農(nóng)作物基因資源與 基因改良國家重大科學(xué)工程/農(nóng)業(yè)部麥類生物學(xué)與遺傳育種重點(diǎn)實(shí)驗(yàn)室,北京 100081;3河北旺豐種業(yè)有限公司,河北邢臺(tái) 054900)

【目的】通過分析干旱條件下大豆的轉(zhuǎn)錄組數(shù)據(jù),篩選獲得大豆鋅指蛋白GmbZIP16,對(duì)其進(jìn)行功能驗(yàn)證,確定參與大豆抵抗干旱的分子機(jī)理?!痉椒ā看蠖垢珊缔D(zhuǎn)錄組數(shù)據(jù)分析得到上調(diào)倍數(shù)較高的鋅指蛋白GmbZIP16,以大豆cDNA為模板克隆獲得。并通過In-Fusion連接酶技術(shù),構(gòu)建pCAMBIA1302- GmbZIP16和pCAMBIA3301-GmbZIP16表達(dá)載體。通過液氮冷凍法將重組載體pCAMBIA1302- GmbZIP16和pCAMBIA3301-GmbZIP16分別轉(zhuǎn)入農(nóng)桿菌GV3101和大豆發(fā)根農(nóng)桿菌K599的感受態(tài)細(xì)胞中,通過農(nóng)桿菌侵染擬南芥花序以及大豆子葉節(jié)技術(shù),產(chǎn)生過表達(dá)擬南芥植株以及過表達(dá)大豆毛狀根復(fù)合體植株。通過半定量RT-PCR和qRT-PCR分析,確定在轉(zhuǎn)基因擬南芥和大豆毛狀根中能夠超表達(dá)。分別將正常條件下生長2周齡的轉(zhuǎn)基因和野生型擬南芥植株轉(zhuǎn)移至含有不同PEG濃度(6% PEG和8% PEG)的MS0培養(yǎng)基上繼續(xù)培養(yǎng)7 d,觀察轉(zhuǎn)基因擬南芥和對(duì)照野生型擬南芥之間的生物量差異;利用qRT-PCR分析轉(zhuǎn)基因擬南芥和野生型擬南芥植物體中脅迫相關(guān)的基因表達(dá)情況。將生長良好的轉(zhuǎn)大豆毛狀根復(fù)合體施加25% PEG處理1周后,分別采取轉(zhuǎn)大豆毛狀根復(fù)合體和轉(zhuǎn)空載體大豆毛狀根復(fù)合體的葉片,用酶標(biāo)儀測(cè)定植株的脯氨酸、丙二醛和葉綠素的含量?!窘Y(jié)果】通過PCR技術(shù)擴(kuò)增得到正確的序列,通過農(nóng)桿菌轉(zhuǎn)化技術(shù)得到2個(gè)穩(wěn)定過表達(dá)的轉(zhuǎn)擬南芥株系。通過對(duì)轉(zhuǎn)基因擬南芥的表型鑒定發(fā)現(xiàn)轉(zhuǎn)基因擬南芥在干旱處理下的生物量(鮮重和根長)及存活率比野生型顯著提高。在過表達(dá)擬南芥植株中,一些與脅迫相關(guān)的基因的表達(dá)要高于在野生型,如、和。轉(zhuǎn)大豆毛狀根復(fù)合體植株在25% PEG處理1周后,大豆毛狀根復(fù)合體葉片中葉綠素和脯氨酸的含量要顯著高于轉(zhuǎn)空載體大豆毛狀根復(fù)合體葉片中葉綠素和脯氨酸的含量,而轉(zhuǎn)大豆毛狀根復(fù)合體葉片中丙二醛的含量顯著低于轉(zhuǎn)空載體大豆毛狀根復(fù)合體葉片中丙二醛的含量。【結(jié)論】在擬南芥中過表達(dá)大豆提高了轉(zhuǎn)基因擬南芥的抗旱性。過表達(dá)可以提高轉(zhuǎn)基因大豆毛狀根復(fù)合體對(duì)干旱的抗性。提高植物的抗旱性主要是通過影響與抗逆相關(guān)基因的表達(dá)來實(shí)現(xiàn)的。

大豆;GmbZIP16;抗旱性;實(shí)時(shí)熒光定量PCR

0 引言

【研究意義】細(xì)菌和真菌等病原微生物引起的生物脅迫以及干旱、高鹽和低溫等引起的非生物脅迫給作物的產(chǎn)量和品質(zhì)造成的損失越來越引起人們的關(guān)注,這些環(huán)境因素嚴(yán)重影響了作物的生長和發(fā)育。植物在長期適應(yīng)環(huán)境變化的過程中進(jìn)化出自己的防御系統(tǒng),主要是通過改變其基因表達(dá)和代謝途徑來抵抗外界環(huán)境的變化。因此,研究植物的抗逆機(jī)制、培育抗逆新品種對(duì)提高作物產(chǎn)量有著重要的意義[1]?!厩叭搜芯窟M(jìn)展】轉(zhuǎn)錄因子在植物抵抗生物及非生物脅迫的過程中發(fā)揮著至關(guān)重要的作用。鋅指蛋白轉(zhuǎn)錄因子在其蛋白內(nèi)部含有一個(gè)具有手指狀的結(jié)構(gòu)域,該結(jié)構(gòu)域由若干個(gè)半胱氨酸殘基組成,并通過與Zn2+結(jié)合折疊成穩(wěn)定的手指狀結(jié)構(gòu),鋅指轉(zhuǎn)錄因子蛋白通過該區(qū)域?qū)崿F(xiàn)與DNA的結(jié)合[2]。bZIP類轉(zhuǎn)錄因子識(shí)別DNA順式作用元件的核心序列為ACGT,一些受ABA及光誘導(dǎo)的基因的啟動(dòng)子區(qū)域都含有這些元件[3],Choi等[4]和Fujita等[5]報(bào)道bZIP類轉(zhuǎn)錄因子能夠激活啟動(dòng)子中含有ABRE元件的基因的表達(dá)。鋅指蛋白也廣泛存在于植物體中,且在植物體中擁有龐大的家族。1996年,Berg等[6]依據(jù)鋅指蛋白的序列以及功能的不同將其分為9類,分別為C4、C6、C8、CCCH、C2H2、C2HC、C2HC5、C3HC4和C4HC3(C和H分別代表半胱氨酸和組氨酸),其中關(guān)于C2H2類鋅指蛋白的研究最多。鋅指蛋白在植物體中參與許多重要的調(diào)控過程,如花粉發(fā)育[7]、花形態(tài)建成以及胚發(fā)育等。近年來,越來越多的文章報(bào)道鋅指蛋白在植物抵抗非生物脅迫過程中發(fā)揮著重要的作用。例如,將馬絆草()鋅指蛋白基因在煙草中過表達(dá)可增強(qiáng)轉(zhuǎn)基因煙草的耐旱性,并且在干旱條件下轉(zhuǎn)基因煙草能夠存活并完成整個(gè)生活史,產(chǎn)生可育的種子,然而野生型煙草卻不能在干旱條件下存活[8-9];在水稻中過表達(dá)水稻鋅指蛋白基因,能增強(qiáng)轉(zhuǎn)基因水稻對(duì)干旱脅迫的抵抗能力[10-11]。郭書巧等[12]和Huang等[13]從水稻中得到2個(gè)鋅指蛋白基因和,二者屬于C2H2型鋅指蛋白,研究中通過組織特異性分析顯示和在根、莖、葉以及幼穗中均有表達(dá),能夠被高鹽、干旱、低溫和ABA誘導(dǎo)上調(diào)表達(dá),而的表達(dá)只被高鹽和干旱誘導(dǎo),不被低溫和ABA誘導(dǎo)。將轉(zhuǎn)入煙草或水稻都能增強(qiáng)轉(zhuǎn)基因植株的耐鹽性?!颈狙芯壳腥朦c(diǎn)】大豆(L. Merr)是中國重要的油料作物之一,近年來,干旱等一些非生物脅迫嚴(yán)重影響中國大豆的產(chǎn)量和品質(zhì)。目前,ZIP家族基因功能挖掘的研究已成為熱點(diǎn)。ZIP家族基因在水稻、玉米等作物受到脅迫時(shí)的研究機(jī)理比較深入,對(duì)于大豆ZIP基因在干旱脅迫下如何發(fā)揮功能還未形成完整的體系。通過對(duì)大豆抗逆機(jī)制研究,挖掘大豆抗逆相關(guān)基因,應(yīng)用基因工程培育大豆新品種對(duì)解決中國糧食安全具有重要的意義?!緮M解決的關(guān)鍵問題】本研究從大豆干旱轉(zhuǎn)錄組數(shù)據(jù)中發(fā)現(xiàn)一個(gè)被干旱誘導(dǎo)上調(diào)表達(dá)的鋅指蛋白轉(zhuǎn)錄因子GmbZIP16,并從大豆cDNA中克隆出,通過對(duì)過表達(dá)擬南芥和過表達(dá)大豆毛狀根復(fù)合體植株的表型鑒定,確定該基因具有增強(qiáng)植物體抵抗非生物脅迫的功能,為進(jìn)一步研究驗(yàn)證在植物抵抗干旱過程中的作用奠定基礎(chǔ)。

1 材料與方法

1.1 植物及菌株材料

植物材料:普通大豆(L. Merr)William 82栽培品種及野生型擬南芥(Col-0)是由中國農(nóng)業(yè)科學(xué)院作物科學(xué)研究所提供。文中WT(Wild Type)代表野生型擬南芥(Col-0)。菌株材料:農(nóng)桿菌感受態(tài)GV3101由北京博邁德生物科技有限公司提供,K599發(fā)根農(nóng)桿菌由中國農(nóng)業(yè)科學(xué)院作物科學(xué)研究所張輝課題組提供。

1.2 大豆干旱轉(zhuǎn)錄組測(cè)序

剪取生長2周齡的William82大豆幼苗葉片1—2 g,將葉片放在濾紙上模擬干旱處理4 h。同時(shí)剪取正常生長下的大豆葉片作為對(duì)照,樣品利用液氮速凍保存。樣品由華大基因公司進(jìn)行測(cè)序。后續(xù)對(duì)轉(zhuǎn)錄組測(cè)序結(jié)果進(jìn)行差異表達(dá)基因聚類分析和代謝通路分析。

1.3 大豆GmbZIP16的擴(kuò)增

利用Trizol方法,提取大豆葉片的總RNA,按照反轉(zhuǎn)錄試劑盒(Takara,北京)說明書的具體操作步驟,合成大豆cDNA。通過Primer Premier 5軟件設(shè)計(jì)的特異性引物(bZIP16-F:5′-ATCCAATC TTCACTCACTCTCTAAT-3′;bZIP16-R:5′-CAATAA TAAGAAAAGAAGCCAAGGA-3′)。以大豆cDNA為模板,PCR擴(kuò)增得到

1.4 過表達(dá)載體的構(gòu)建

酶切載體:選擇限制性內(nèi)切酶Ⅰ對(duì)載體pCAMBIA1302進(jìn)行酶切,用限制性內(nèi)切酶Ⅰ和EⅡ?qū)d體pCAMBIA3301進(jìn)行酶切,并對(duì)酶切后的產(chǎn)物進(jìn)行膠回收,合成含有載體酶切位點(diǎn)上端15 bp和下端15 b的載體序列的引物序列bZIP16-1302F:5′-GGGACTCTTGACCATGATGAGTAGTGTTTTTTCA-3′;bZIP16-1302R:5′-TCAGATCTACCCATGGC TACATCAGTAATTCATT-3′;bZIP16-3301F:5′-GGA CTCTTGACCATGATGAGTAGTGTTTTTTCA-3′;bZIP16-3301R:5′-ATTCGAGCTGGTCACCCTACAT CAGTAATTCATT-3′,通過DNA聚合酶的作用將載體酶切位點(diǎn)兩端的序列插入到的兩端,并對(duì)其PCR產(chǎn)物進(jìn)行膠回收,將回收的目的基因片段及酶切的載體片段進(jìn)行連接、轉(zhuǎn)化后挑取單克隆進(jìn)行測(cè)序,篩選陽性克隆,并通過DNAMAN軟件比對(duì)驗(yàn)證重組質(zhì)粒pCAMBIA1302-和pCAMBIA3301-連接正確。

1.5 轉(zhuǎn)GmbZIP16擬南芥的獲得

將重組的質(zhì)粒pCAMBIA1302-轉(zhuǎn)入農(nóng)桿菌GV3101感受中,并通過擬南芥花序侵染法侵染野生型擬南芥。收取T0代種子后利用具有潮霉素抗性的MS培養(yǎng)基篩選陽性株系。陽性株生長4周后,提取其葉片的RNA反轉(zhuǎn)錄為cDNA,以WT的模板為對(duì)照,設(shè)計(jì)引物(:5′-GCACAAGTACCT TCCCCACA-3′::5′-AGTAATGAAAC CGGCGAGGG-3′)進(jìn)行PCR檢測(cè),確定能夠在轉(zhuǎn)基因擬南芥中超表達(dá)。繼續(xù)繁殖到T3代。

1.6 轉(zhuǎn)GmbZIP16擬南芥的表型鑒定

將T3代轉(zhuǎn)基因擬南芥的種子和野生型經(jīng)過清洗和春化后,移入MS培養(yǎng)基上,在正常條件下生長9 d左右,將擬南芥幼苗移入含有不同濃度PEG(6% PEG和8% PEG)的MS固體培養(yǎng)基上繼續(xù)生長1周,觀察轉(zhuǎn)基因擬南芥和野生型擬南芥在不同PEG濃度處理下的表型,并對(duì)其生物量進(jìn)行測(cè)定分析。

將T3代轉(zhuǎn)基因擬南芥的種子和野生型經(jīng)過清洗和春化后,移入MS培養(yǎng)基上,在正常條件下生長2周左右,將擬南芥幼苗移入土中繼續(xù)生長1周后??厮幚?周,觀察轉(zhuǎn)基因擬南芥和野生型擬南芥的表型,記錄控水1周后的存活率。并剪取轉(zhuǎn)基因擬南芥和野生型擬南芥葉片測(cè)量其相對(duì)電導(dǎo)率。

1.7 葉片相對(duì)電導(dǎo)率的測(cè)定

剪取上述試驗(yàn)中控水1周和在正常條件下生長的轉(zhuǎn)基因擬南芥和野生型擬南芥的葉片0.2 g,將其沖洗干凈后,剪成0.5 cm左右的小長條,放入到含有6 mL去離子水的試管中,待室溫靜置25 min后,用電導(dǎo)儀分別測(cè)量6 mL去離子水的電勢(shì)即為V0及含有葉片的去離子水試管中的電勢(shì)即為Vm,再用沸水將含有葉片的去離子水煮沸30 min,待冷卻至室溫后在測(cè)量含有葉片的離心管中的電勢(shì)即為Vn。相對(duì)電導(dǎo)率的計(jì)算公式為:(Vm-V0)×100/(Vn-V0)。

1.8 轉(zhuǎn)GmbZIP16擬南芥中脅迫響應(yīng)基因的表達(dá)

選取正常生長4周齡的轉(zhuǎn)擬南芥和野生型,用清水沖洗根部后,放到濾紙上分別在速旱0 h和4 h時(shí)進(jìn)行取樣,利用Trizol方法,提取大豆葉片的總RNA,將其反轉(zhuǎn)錄為cDNA。以上述不同時(shí)間段不同樣品cDNA為模板,對(duì)脅迫響應(yīng)基因進(jìn)行qRT-PCR分析。

1.9 轉(zhuǎn)GmbZIP16大豆復(fù)合體植株的產(chǎn)生

將大豆種子種入土中大約生長1周齡左右對(duì)大豆幼苗進(jìn)行農(nóng)桿菌侵染。在大豆種子萌發(fā)生長期間準(zhǔn)備農(nóng)桿菌材料。將方法1.4中構(gòu)建的重組載體pCAMBIA3301-及空載體pCAMBIA3301通過液氮冷凍的方法轉(zhuǎn)入發(fā)根農(nóng)桿菌K599的感受態(tài)細(xì)胞中,并將其涂于含有卡那霉素和鏈霉素的二抗固體培養(yǎng)基中讓其生長2—3 d。用注射器針頭挑取在上述培養(yǎng)基中生長的農(nóng)桿菌菌落,并將其扎入大豆子葉節(jié)中,將已轉(zhuǎn)入農(nóng)桿菌的大豆幼苗在黑暗中培養(yǎng)12 h,黑暗培養(yǎng)過后,將已侵染的大豆幼苗放置在高溫高濕的環(huán)境中生長,大約生長1周左右,覆土至蓋過大豆的侵染部位,充分澆水,至大豆毛狀根生長至5—10 cm,采取少許的大豆毛狀根,提取總RNA并反轉(zhuǎn)錄cDNA,對(duì)其進(jìn)行qRT-PCR檢測(cè)分析。確定能夠在大豆毛狀根中過表達(dá)。將大豆幼苗取出,剪去侵染部位以下的大豆真根,并將剩余地含有大豆毛狀根復(fù)合體植株繼續(xù)移入土中,生長1周,待大豆植株能夠恢復(fù)正常生長時(shí),進(jìn)行后續(xù)試驗(yàn)。

1.10 轉(zhuǎn)GmbZIP16大豆復(fù)合體植株的表型鑒定及生理指標(biāo)的測(cè)定

使用25% PEG處理上述方法中得到的大豆復(fù)合體(轉(zhuǎn)大豆復(fù)合體植株和轉(zhuǎn)空載體大豆復(fù)合體植株),處理2周,觀察其在25% PEG處理下的表型。在25% PEG處理1周時(shí),采取大豆復(fù)合體的葉片,并通過試劑盒對(duì)大豆葉片的脯氨酸、丙二醛及葉綠素進(jìn)行提取,并通過酶標(biāo)儀測(cè)量其在不同波長下的吸光值。通過計(jì)算得出在不同處理下的葉片中脯氨酸、丙二醛及葉綠素的含量。

2 結(jié)果

2.1 干旱脅迫處理?xiàng)l件下大豆的轉(zhuǎn)錄組數(shù)據(jù)分析

將干旱處理的大豆與在正常生長條件生長的大豆進(jìn)行轉(zhuǎn)錄組測(cè)序分析,聚類分析結(jié)果顯示,當(dāng)大豆植株遇到干旱脅迫時(shí),其體內(nèi)許多轉(zhuǎn)錄因子家族出現(xiàn)差異表達(dá)(圖1-A),在這些差異表達(dá)的轉(zhuǎn)錄因子數(shù)據(jù)庫中,進(jìn)行了數(shù)據(jù)統(tǒng)計(jì)分析結(jié)果顯示有60種類型的轉(zhuǎn)錄因子在干旱脅迫下出現(xiàn)了差異表達(dá)(圖1-B),數(shù)據(jù)統(tǒng)計(jì)顯示,大量MYB和AP2-EREBP類型的轉(zhuǎn)錄因子的在干旱處理前后表達(dá)量發(fā)生了改變,在轉(zhuǎn)錄組數(shù)據(jù)中發(fā)現(xiàn)了與激素ABA合成相關(guān)的一些轉(zhuǎn)錄因子的表達(dá)量同樣發(fā)生了變化,如ABI3。在這些轉(zhuǎn)錄因子中,報(bào)道最多的與干旱脅迫相關(guān)的轉(zhuǎn)錄因子家族有WRKY類型轉(zhuǎn)錄因子、MYB類型轉(zhuǎn)錄因子、AP2/EREBP類型的轉(zhuǎn)錄因子及bZIP家族類型的轉(zhuǎn)錄因子。以上多種轉(zhuǎn)錄因子在植物抵抗非生物脅迫過程中扮演著重要角色。

將這些差異表達(dá)轉(zhuǎn)錄因子及其所在的調(diào)控網(wǎng)絡(luò)途徑進(jìn)行統(tǒng)計(jì)發(fā)現(xiàn),這些轉(zhuǎn)錄因子主要富集于30種植物調(diào)控網(wǎng)絡(luò)途徑中(圖2),在這30種途徑中,涉及到植物激素信號(hào)傳導(dǎo)途徑的轉(zhuǎn)錄因子最多,其次是涉及甘油脂代謝和生物周期節(jié)律途徑的轉(zhuǎn)錄因子。在這些轉(zhuǎn)錄因子家族中,鋅指蛋白類轉(zhuǎn)錄因子在干旱脅迫下表達(dá)量在干旱處理前后的log2(FoldChange)值達(dá)到10左右。說明,在大豆干旱處理下誘導(dǎo)表達(dá)倍數(shù)較高(電子附表1,其中加粗為,表中提供部分轉(zhuǎn)錄組數(shù)據(jù)內(nèi)容,且按照差異表達(dá)量由高到低的順序依次排列)。因此,將鋅指轉(zhuǎn)錄因子作為進(jìn)一步研究的對(duì)象。

2.2 轉(zhuǎn)GmbZIP16擬南芥的獲得

通過對(duì)轉(zhuǎn)基因擬南芥T1代苗期取樣進(jìn)行RT-PCR檢測(cè)(圖3-A)。并通過熒光定量PCR進(jìn)行陽性株系相對(duì)表達(dá)量進(jìn)行定量(圖3-B)。說明外源的成功轉(zhuǎn)化到野生型擬南芥中,相對(duì)表達(dá)量最高達(dá)到10倍左右。繼續(xù)種子繁殖,得到T3代純合植株,進(jìn)行后續(xù)試驗(yàn)。

2.3 轉(zhuǎn)GmbZIP16擬南芥的表型鑒定

對(duì)T3代轉(zhuǎn)基因擬南芥和野生型使用不同濃度PEG處理進(jìn)行表型鑒定(圖4)。結(jié)果顯示,在6% PEG和8% PEG處理?xiàng)l件下,轉(zhuǎn)基因擬南芥的長勢(shì)要優(yōu)于野生型擬南芥。PEG處理?xiàng)l件下轉(zhuǎn)基因擬南芥的總根長要長于野生型擬南芥,分別增長了39.6%(6% PEG,2個(gè)株系的平均值)和74.2%(8% PEG,2個(gè)株系的平均值);鮮重分別增加了35.4%(6% PEG,2個(gè)株系的平均值)和57.9%(8% PEG,2個(gè)株系的平均值)。

A:轉(zhuǎn)錄組數(shù)據(jù)中差異表達(dá)的轉(zhuǎn)錄因子家族的聚類分析;B:轉(zhuǎn)錄組數(shù)據(jù)中差異表達(dá)的轉(zhuǎn)錄因子家族的統(tǒng)計(jì)分析

將T3代純合的轉(zhuǎn)基因擬南芥和野生型擬南芥的種子經(jīng)過清洗和春化后轉(zhuǎn)移至MS0培養(yǎng)基上生長2周,將其轉(zhuǎn)移至土中繼續(xù)培養(yǎng)1周后對(duì)擬南芥的進(jìn)行控水處理,結(jié)果顯示,在控水前轉(zhuǎn)基因擬南芥和野生型擬南芥的生長并無差異(圖5-A),但是控水1周后80%以上的轉(zhuǎn)基因擬南芥能夠存活,然而只有20%左右的野生型擬南芥能夠存活(圖5-C)。采取控水1周后的轉(zhuǎn)基因擬南芥和野生型擬南芥的葉片,對(duì)葉片的相對(duì)電導(dǎo)率進(jìn)行了測(cè)定,結(jié)果顯示在干旱處理1周后,轉(zhuǎn)基因擬南芥的相對(duì)電導(dǎo)率要低于野生型的相對(duì)電導(dǎo)率(圖5-D)。

2.4 大豆GmbZIP16增強(qiáng)了擬南芥脅迫響應(yīng)基因的表達(dá)

通過提取干旱處理0和4 h的4周齡的T3代純合轉(zhuǎn)基因擬南芥和野生型擬南芥幼苗的總RNA,并將其反轉(zhuǎn)錄cDNA。通過qRT-PCR檢測(cè)脅迫響應(yīng)基因的表達(dá)。結(jié)果顯示,在正常生長條件下,轉(zhuǎn)基因擬南芥植株中的脅迫響應(yīng)基因、和的表達(dá)量與在野生型擬南芥中的表達(dá)量相比有所提高,特別是在干旱處理4 h后,這些脅迫響應(yīng)基因在轉(zhuǎn)基因擬南芥植株中的表達(dá)量顯著高于在野生型擬南芥中的表達(dá)量(圖6)。

1:植物激素信號(hào)轉(zhuǎn)導(dǎo)Plant hormone signal transduction;2:甘油酯代謝Glycerolpidmetabolism;3:晝夜節(jié)律Circadian rhythm-plant;4:糖酵解/糖質(zhì)新生Glycolysis/Gluconeogenesis;5:過氧物酶體Peroxisome;6:甘油磷脂代謝Glycerophospholipid metabolism;7:卟啉和葉綠素代謝Porphyrin and ChlorophyII metabolism;8:調(diào)節(jié)自噬Regulation of autophagy;9:鞘脂類代謝Sphingolipid metabolism;10:果糖和甘露糖Fructose and mannose metabolism;11:類黃酮生物合成Flavonoid biosynthesis;12:磷酸戊糖途徑Pentose phosphate pathway;13:脂肪酸代謝Fatty acid metabolism;14:亞麻酸代謝Alpha-Linolenic acid metabolism;15:醚脂類代謝Ether lipid metabolism;16:角質(zhì)、軟木脂和蠟合成Cutin, Suberine and wax biosynthesis;17:鞘糖脂生物合成-神經(jīng)節(jié)Glycosphingolipid biosynthesis-ganglio series;18:脂肪酸生物合成Fatty acid biosynthesis;19:異黃酮生物合成Isoflavonoid biosynthesis;20:黃酮和黃酮醇生物合成Flavone and flavonol biosynthesis;21:脂肪酸延伸Fatty acid elongation;22:葉酸生物合成Folate biosynthesis;23:檸檬烯和松萜降解Limonene and pinene degradation;24:光合作用-天線蛋白Photosynthesis-antenna proteins;25:生物素代謝Biotin metabolism;26:?;撬岷蛠喤;撬岽xTaurine and hypotaurine metabolism;27:花青素生物合成Anthocyanin biosynthesis;28:葡萄糖鞘脂類Glycosphingolipid biosynthesis-globo series;29:單萜類合成Monoterpenoid biosynthesis;30:酮體的合成和降解Synthesis and degradation of ketone bodies

A:轉(zhuǎn)GmbZIP16基因的半定量PCR鑒定;B:轉(zhuǎn)GmbZIP16基因擬南芥株系相對(duì)表達(dá)量檢測(cè)

A:轉(zhuǎn)GmbZIP16擬南芥和野生型擬南芥在正常生長條件下的表型;B:轉(zhuǎn)GmbZIP16擬南芥和野生型擬南芥在6% PEG處理下的表型;C:轉(zhuǎn)GmbZIP16擬南芥和野生型擬南芥在8% PEG處理下的表型;D和E:轉(zhuǎn)GmbZIP16擬南芥和野生型擬南芥在PEG處理下的總根長;F和G:轉(zhuǎn)GmbZIP16擬南芥和野生型擬南芥在PEG處理下的鮮重。*:差異顯著(P<0.05);**:差異極顯著(P<0.05)。下同

2.5 轉(zhuǎn)GmbZIP16大豆毛狀根復(fù)合體的表型鑒定及生理指標(biāo)的測(cè)定

為了進(jìn)一步分析大豆能夠增強(qiáng)植物的抗旱性,對(duì)過表達(dá)大豆復(fù)合體中毛狀根進(jìn)行qRT-PCR檢測(cè)(圖7-A),結(jié)果表明,在過表達(dá)復(fù)合體毛狀根中,表達(dá)水平是空載對(duì)照復(fù)合體毛狀根的4倍以上。表明已在大豆毛狀根中超表達(dá)。通過對(duì)大豆毛狀根復(fù)合體植株的表型鑒定,在25% PEG處理2周后,轉(zhuǎn)空載體大豆毛狀根復(fù)合體植株葉片的黃化程度要大于轉(zhuǎn)基因大豆毛狀根復(fù)合體植株(圖7-C),通過對(duì)處理1周的大豆毛狀根復(fù)合體植株的葉片脯氨酸、丙二醛及葉綠素的提取分析,得出在25% PEG處理1周后,轉(zhuǎn)大豆毛狀根復(fù)合體的丙二醛含量顯著低于對(duì)照(圖7-D),且脯氨酸和葉綠素含量均高于對(duì)照組(圖7-E和圖7-F)。

A:轉(zhuǎn)GmbZIP16擬南芥和野生型擬南芥在處理前的表型;B:轉(zhuǎn)GmbZIP16擬南芥和野生型擬南芥在干旱處理7 d后的表型;C:轉(zhuǎn)GmbZIP16擬南芥和野生型擬南芥在干旱處理下的存活率;D:轉(zhuǎn)GmbZIP16擬南芥和野生型擬南芥在干旱處理下的相對(duì)電導(dǎo)率

圖6 脅迫響應(yīng)基因在轉(zhuǎn)基因擬南芥和野生型擬南芥植株中的qRT-PCR分析

A:轉(zhuǎn)GmbZIP16大豆毛狀根復(fù)合體不同株系表達(dá)量檢測(cè);B:轉(zhuǎn)GmbZIP16大豆毛狀根復(fù)合體及對(duì)照在25% PEG處理前的表型;C:轉(zhuǎn)GmbZIP16大豆毛狀根復(fù)合體及對(duì)照在25% PEG處理2周后的表型;D:轉(zhuǎn)GmbZIP16大豆毛狀根復(fù)合體及對(duì)照在25% PEG處理1周后的葉片丙二醛含量;E:轉(zhuǎn)GmbZIP16大豆毛狀根復(fù)合體及對(duì)照在25% PEG處理1周后的葉片脯氨酸含量;F:轉(zhuǎn)GmbZIP16大豆毛狀根復(fù)合體及對(duì)照在25% PEG處理1周后的葉片葉綠素含量

3 討論

全球氣候的不斷變化,使植物的生長受到了嚴(yán)峻考驗(yàn)。為了適應(yīng)環(huán)境的變化,植物體通過對(duì)自身信號(hào)傳導(dǎo)及能量代謝等途徑的調(diào)控來增強(qiáng)對(duì)外界不良環(huán)境的抵抗[14]。在這一系列復(fù)雜的過程中,轉(zhuǎn)錄因子發(fā)揮著重要的調(diào)控作用。植物體通過信號(hào)的逐級(jí)傳導(dǎo)使與抗逆相關(guān)的轉(zhuǎn)錄因子的活性增加,從而調(diào)控脅迫相關(guān)基因的表達(dá)來增強(qiáng)植物體對(duì)外界環(huán)境的抵抗[15]。因此,研究轉(zhuǎn)錄因子的功能,對(duì)提高植物的抗逆性具有重要的意義。鋅指蛋白轉(zhuǎn)錄因子廣泛存在真核生物體中[16],且具有廣泛的生物學(xué)功能,在生物體中參與很多重要的代謝途徑,如影響植物細(xì)胞的生長發(fā)育、調(diào)控植物的光周期以及參與植物抵抗非生物脅迫等等[17]。本研究通過對(duì)大豆干旱轉(zhuǎn)錄組數(shù)據(jù)分析,發(fā)現(xiàn)一個(gè)受到干旱誘導(dǎo)高表達(dá)的鋅指轉(zhuǎn)錄因子,并將其命名為GmbZIP16。并從大豆的轉(zhuǎn)錄本中成功的將其克隆。

近年來越來越多文章報(bào)道大豆鋅指轉(zhuǎn)錄因子參與植物抵抗非生物脅迫的過程。Liao等[18]報(bào)道在擬南芥中過表達(dá)大豆增強(qiáng)了轉(zhuǎn)基因擬南芥對(duì)鹽的抗性,而這種耐鹽性僅僅體現(xiàn)在種子的萌發(fā)階段;然而在擬南芥中過表達(dá)、和,發(fā)現(xiàn)這3個(gè)大豆鋅指轉(zhuǎn)錄因子負(fù)調(diào)控ABA信號(hào)途徑,減弱了轉(zhuǎn)基因擬南芥對(duì)ABA的敏感性,增強(qiáng)了轉(zhuǎn)基因擬南芥對(duì)低溫和高鹽的抗性[19]。Gao等[20]發(fā)現(xiàn)一個(gè)大豆鋅指轉(zhuǎn)錄因子,并將其過表達(dá)與擬南芥和小麥中,結(jié)果顯示,大豆在擬南芥和小麥中過表達(dá)提高了轉(zhuǎn)基因植株對(duì)多種非生物脅迫的抵抗。本文將大豆在擬南芥及大豆毛狀根中過表達(dá),并通過對(duì)轉(zhuǎn)基因擬南芥及轉(zhuǎn)基因大豆毛狀根復(fù)合體植株的表型鑒定,發(fā)現(xiàn)在植物中過表達(dá)大豆提高了轉(zhuǎn)基因植株的抗旱性(圖4、圖5和圖7)。這些結(jié)果表明大豆在大豆的抗旱性方面發(fā)揮著重要的作用。

當(dāng)非生物脅迫來臨時(shí),植物體中的鋅指轉(zhuǎn)錄因子蛋白以二聚體的形式與DNA順式作用元件相結(jié)合,從而調(diào)控下游與脅迫相關(guān)的靶基因的表達(dá)[20]。利用qRT-PCR技術(shù),對(duì)轉(zhuǎn)擬南芥植株與野生型擬南芥中的、和表達(dá)量進(jìn)行了實(shí)時(shí)檢測(cè)。擬南芥被報(bào)道與擬南芥抵抗非生物脅迫過程中扮演這重要的角色,將在擬南芥中過表達(dá)能夠增強(qiáng)擬南芥植株中、及等脅迫響應(yīng)基因的表達(dá)[21]。在擬南芥中,是一個(gè)與脯氨酸合成相關(guān)的關(guān)鍵基因[22],而脯氨酸是植物抵抗非生物脅迫過程中一個(gè)重要的滲透保護(hù)物質(zhì)[23]。結(jié)果顯示,在過表達(dá)大豆擬南芥的植物體中,、和的表達(dá)量會(huì)有顯著提高,特別是在干旱處理4 h后,它們的表達(dá)量會(huì)有明顯的提高(圖6),這些結(jié)果表明大豆在擬南芥中過表達(dá),增強(qiáng)了脅迫基因的表達(dá)從而增強(qiáng)了轉(zhuǎn)基因植株對(duì)干旱的抵抗能力。

4 結(jié)論

獲得大豆,并確定能夠增強(qiáng)轉(zhuǎn)基因植株對(duì)干旱的抵抗能力,在擬南芥中過表達(dá)可以增強(qiáng)擬南芥中與脅迫響應(yīng)相關(guān)的基因的表達(dá),從而增強(qiáng)轉(zhuǎn)基因植株的抗逆性。

附表1 差異表達(dá)轉(zhuǎn)錄因子基因的統(tǒng)計(jì)分析

Table S1 Statistical analyses of differential expressions of the transcription factors

轉(zhuǎn)錄因子(基因ID)Transcripts (Gene ID)對(duì)照處理表達(dá)CK_treat-expression干旱處理表達(dá)Drought treat-expression差異倍數(shù)log2Fold change (GH /CK) XM_014775782.13.0728466273.58710.99549952 XM_003539892.30.442178713.801310.65667864 XM_014768463.15.6380674585.4059.667632729 XM_003545361.35.1953423823.9999.52364764 XM_003535756.30.819392459.22059.130417722 XM_003548005.32.1238751136.7089.063946562 XM_003551152.32.9939331516.9218.984888049 XM_003556034.30.377359183.8528.92839033 XM_014772354.10.377359183.8528.92839033 XM_003539892.30.377659182.76128.918660887 NM_001251305.128.2833212917.898.835203688 NM_001251292.167.9939626441.718.603193047 XM_003550283.310.386533712.5048.48153519 XM_006583267.21.22554382.26448.285009266 XM_006583267.21.22554382.26448.285009266 XM_003540402.20.355939109.05378.259193682 XM_006606106.25.1480651570.5588.253031063 BGI_novel_T0221755.1480651570.5588.253031063 XM_006606109.25.1480651570.5588.253031063 XM_014772315.15.1480651570.5588.253031063 XM_006606105.25.1480651570.5588.253031063 XM_006606108.25.1480651570.5588.253031063 BGI_novel_T00339014.746864442.5798.234845679 NM_001287459.114.746864442.5798.234845679 XM_003549180.35.5801811678.588.23271364 NM_001248108.11.221598362.43028.21278915 NM_001251495.158.3611417301.828.211700255 XM_003535391.20.353226101.68028.169230449 XM_006600354.22.091173585.60148.129462705 BGI_novel_T0184662.091173585.60148.129462705 XM_003550534.32.091173585.60148.129462705 XM_003526219.30.35191696.548618.099879452 XM_006589426.20.782847211.62188.078543294 XM_014763340.10.782847211.62188.078543294 NM_001280575.10.35131990.962318.016344665 XM_003541345.34.7015471212.0068.01004566 XM_003533076.312.555273107.3577.951251165 XM_003533076.312.555273107.3577.951251165 XM_006595382.10.783615193.05947.944683393 XM_014765709.113.430163290.2877.936593524 XM_014765707.113.430163290.2877.936593524 XM_003526229.32.521864614.00247.927610193 NM_001250384.119.522164483.4727.843359816 XM_003525088.328.676086124.6957.73864614 XM_003522227.31.640113339.77117.694623732 XM_006582175.242.613688600.9677.657038471 XM_006582174.242.613688600.9677.657038471 XM_003526128.342.613688600.9677.657038471 BGI_novel_T0034421.639543327.21937.640820568 XM_003536435.32.072706406.01177.613862265 XM_003540037.3112.010120959.487.547830256 XM_003555003.30.769511140.79347.51542311 XM_003524356.30.33667560.285317.484307845 NM_001248578.11.634442290.49667.473578999 XM_006601151.20.765817135.67597.468947932 XM_006601149.20.765817135.67597.468947932 XM_003553745.31.632353279.70697.420818746 NM_001248972.126.046944443.0077.414278518 XM_003520654.34.246435721.35447.408312447 XM_006573726.28.1686671385.5927.406186143 NM_001255872.20.76422128.34927.39187046 XM_006576060.20.33283155.778347.388770909 NM_001250398.11.636804273.56077.384835537 NM_001248860.123.438173904.3617.380082399 NM_001248860.123.438173904.3617.380082399 XM_003542945.310.35191635.8567.304006045 XM_003526787.368.4063410458.037.25626551 XM_014762182.10.32787647.287717.172171038 XM_003533977.30.32787647.287717.172171038 XM_006587303.20.32787647.287717.172171038 XM_014762181.10.32787647.287717.172171038 XM_006587302.20.32787647.287717.172171038 BGI_novel_T01845129.099594100.3917.138619044 BGI_novel_T01845129.099594100.3917.138619044 XM_006600337.229.099594100.3917.138619044 XM_006600337.229.099594100.3917.138619044 XM_003550526.329.099594100.3917.138619044 XM_003550526.329.099594100.3917.138619044 XM_003549364.32.929455372.2036.989313287 XM_003549364.32.929455372.2036.989313287 XM_003538059.36.84471865.79516.982892432 XM_003543209.34.227683512.6446.92194612 BGI_novel_T00508224.723332863.5646.855794636 NM_001248384.124.723332863.5646.855794636 XM_014766943.16.838204766.41496.808364244

表中加粗部分代表在轉(zhuǎn)錄組測(cè)序中的差異表達(dá)數(shù)據(jù)

The bold part of the table is represented that the differential expression data ofin transcriptome sequencing

[1] Zhu J K. Plant salt tolerance., 2001, 6: 66-71.

[2] Frankel A D, Pabo C O. Fingering too many proteins., 1988, 53: 675.

[3] Nakagawa H, Ohmiya K, Hattori T, A rice bZIP protein, designated, is rapidly induced by abscisic acid., 1966, 9: 217-227.

[4] Choi H, Hong J, Kang J. ABFs, a family of ABA-responsive element binding factors., 2000, 21: 1723-1730.

[5] Fujita Y, Fujita M, Satoh R, KIM S Y. AREB1 is a transcription activator of novel ABRE-De-pendent ABA signaling that enhances drought stress tolerance in., 2005, 17: 3470-3488.

[6] Berg J M, Shi Y. The galvanization of biology: a growing appreciation for the roles of zinc., 1996, 271: 1081-1085.

[7] 韓瑩琰, 張愛紅, 范雙喜, 曹家樹. 十字花科植物C2H2型鋅指蛋白新基因同源序列克隆與進(jìn)化分析. 核農(nóng)學(xué)報(bào), 2011, 25(5): 916-921.

Han Y Y, Zhang A H, Fan S X, Cao J S. Cloning and evolutionary analysis of homologous sequences of a novel gene encoding C2H2 zinc finger protein in cruciferae., 2011, 25(5): 916-921. (in Chinese)

[8] Saad R B, Zouari N, Ramdhan W B, Azaza J, Meynard D, Guiderdoni E, Hassairi A. Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-fingergene isolated from the halophyte grasss., 2010, 72: 171-190.

[9] Saad R B, Romdhan W B, Zouari N, Azaza J, Meynard D, VerdeilJ L, Guiderdoni E, Hassairi A. Promoter of the AlSAP gene from the halophyte grassdirects developmental-regulated, stress-inducible, and organ-specific gene expression in transgenic tobacco., 2010, 20(5): 1003-10018.

[10] Huang J, Sun S J, Xu D Q, Yang X, Bao Y M, Wang Z F, Tang H J, Zhang H. Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245.2009, 389: 556-561.

[11] Jain M, Tyagi A K, Khurana J P. Constitutive expression of a meiotic recombination protein gene homolog, OsTOP6A1, from rice confers abiotic stress tolerance in transgenicplants., 2008, 27: 767-778.

[12] 郭書巧, 黃驥, 江燕, 張紅生.水稻C2H2型鋅指蛋白基因RZF71的克隆與表達(dá)分析. 遺傳, 2007, 29(5): 607- 613.

Guo S Q, Huang J, Jiang Y, Zhang H S. Cloning and characterization of RZF71 encoding a C2H2-type zinc finger protein from rice., 2007, 29(5): 607-613. (in Chinese)

[13] Huang J, Yang X, Wang M M, Tang H J, Ding L Y, Shen Y, Zhang H S. A novel rice C2H2-type zinc finger protein lacking DLN-box/EAR-motif plays a role in salt tolerance., 2007, 1769: 220-227.

[14] 李芳蘭, 包維楷.植物葉片形態(tài)解剖結(jié)構(gòu)對(duì)環(huán)境變化的響應(yīng)與適應(yīng).植物學(xué)通報(bào), 2005, 22: 118-127.

Li F L, Bao W K. Responses of the morphological and anatomical structure of the plant leaf to environmental change, 2005, 22:118-127. (in Chinese)

[15] 田超, 王冉, 彭艷, 張志昌, 曹林. 植物抗逆脅迫相關(guān)蛋白激酶的研究進(jìn)展. 安徽農(nóng)業(yè)科學(xué), 2015, 43(20): 4-6.

Tian C, Wang R, Peng Y, Zhang Z C, Cao L. Research advance of protein kinase in plant resistant to adversity stress.2015, 43(20): 4-6. (in Chinese)

[16] 楊穎, 高世慶, 唐益苗, 冶曉芳, 王永波, 劉美英, 趙昌平.植物bZIP轉(zhuǎn)錄因子的研究進(jìn)展. 麥類作物學(xué)報(bào), 2009, 29(4): 730-737.

Yang Y, Gao S Q, Tang Y M, Ye X F, Wang Y B, Liu M Y, Zhao C P. Advance of bZIP transcription factors in plants., 2009, 29(4): 730-737. (in Chinese)

[17] 王偉英, 李海明, 戴藝民, 林江波.植物鋅指蛋白的功能研究進(jìn)展. 中國園藝文摘, 2016, 32(7):3-5.

Wang W Y, Li H M, Dai Y M, Lin J B. Advances on the function of plant zinc finger protein., 2016, 32(7): 3-5. (in Chinese)

[18] Liao Y, Zhang J S, Chen S Y, Zhang W K. Role of soybeanunder abscisic acid and salt stresses.y, 2008, 50: 221-230.

[19] Liao Y, Zou H F, Wei W, Hao Y J, Tian A G, Huang J, Liu Y F, Zhang J S, Chen S Y. Soybean,andgenes function as negative regulator of ABA signaling and confer salt and freezing., 2008, 228: 225-240.

[20] Gao S Q, Chen M, Xu Z S, Zhao C P, Li L C, Xu H J, Tang Y M, Zhao X , Ma Y Z. The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants., 2011, 75: 537-553.

[21] Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, YAMAGUCHI S K. Functional analysis of antranscription factor, DREB2A, involved in drought- responsive gene expression., 2006, 18: 1292-1309.

[22] Strizhov N, Abraham E, Okresz L, BLICKLING S, ZILBERSTEIN A, SCHELL J, KONCZ C, SZABADOS L. Differential expression of twogenes controlling proline accumulation during salt stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in., 1997, 12: 557-569.

[23] 李玲, 余光輝, 曾富華.水分脅迫下植物脯氨酸累積的分子機(jī)理. 華南師范大學(xué)學(xué)報(bào), 2003, 1: 126-134.

Li L, Yu G H, Zeng F H. The plant molecular mechanism of proline accumulation under water stress., 2003, 1: 126-134. (in Chinese)

(責(zé)任編輯 李莉)

Verification and analyses of soybeangene resistance to drought

ZHAO WanYing1,2, YU TaiFei2, YANG JunFeng3, LIU Pei2, CHEN Jun2, CHEN Ming2, ZHOU YongBin2, MA YouZhi2, XU ZhaoShi2, MIN DongHong1

(1Northwest A & F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, Shaanxi;2Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/ Key Laboratory of Biology and Genetic Improvement of Triticeae Crop, Ministry of Agriculture, Beijing 100081;3Hebei Wangfeng Seed Industry Co., Ltd. Xingtai 054900, Hebei)

【Objective】Soybean GmbZIP16 protein was screened by analyzing soybean drought transcriptome. Functions of soybeanwere verified by analyzing the phenotypic characterization of transgenicand soybean hairy root complexes. On the basis of experimental result analyses above-mentioned, we could determine thatwas involved in the drought resistance process.【Method】soybeanwas found out by analyzing soybean drought transcriptome and cloned by PCR, which soybean cDNA as a template, and then ligated the fragment to pCAMBIA1302 and pCAMBIA3301 expression vectors by in-fusion ligase. The recombinant pCAMBIA1302-GmbZIP16 and pCAMBIA3301-GmbZIP16 vectors were transferred intoGV3101 and K599 competent cells by liquid nitrogen freeze-melt method, respectively. The transgenicplants and transgenic soybean hairy root complexes were generated by-mediated transformation method. The transgenicplants were identified by semi quantitative PCR and quantitative real time PCR. which demonstratedcould over express in transgenicand transgenic soybean hairy root complexplants. 2 weeks old transgenicand WT plants grew under normal conditions were transferred into MS0 solid medium supplement with 6% and 8% PEG for 7d. Biomass differences between transgenicand WT plants were investigated and analyzed. The different expression of stress- related genes betweenand WT plants were analyzed by qRT-PCR. The transgenicsoybean hairy root complexes and control group plants were treated with 25% PEG for 7 days, and then the leaf samples of transgenicsoybean hairy root complex and control group plants were taken. The proline content, MDA content and chlorophyll content of leaf samples were measured by Multiskan Spectrum Microplate Spectrophotometer.【Result】Thegene was isolated by PCR technology. The two transgeniclines were obtained by-mediated transformation method. Compared with the WT plants, the transgeniclines had higher biomass (the fresh weight and the root length) and survival rate under drought stress by phenotypic characterization experiment. The expression levels of some relative genes such as,andwere improved in transgenic, compared with the WT plants. The leaves of transgenicsoybean hairy root complex plants had the higher proline and chlorophyll content and a lower MDA content than that of the control group plants under the deal with 25% PEG. 【Conclusion】The drought resistance of transgenicwas improved by expressing soybean. Over expression ofcould enhance the drought resistance of transgenic soybean hairy root complex.can improve the drought resistance of plants mainly by affecting the expression of genes related to stress tolerance.

soybean; GmbZIP16; drought resistance; qRT-PCR

2018-04-01;

2018-05-14

國家轉(zhuǎn)基因生物新品種培育科技重大專項(xiàng)(2018ZX08009100,2016ZX08002-002)、西北農(nóng)林科技大學(xué)2017年唐仲英育種基金

趙婉瑩,E-mail:zhaowanying199406@126.com。通信作者閔東紅,E-mail:mdh2493@126.com。通信作者徐兆師,E-mail:xuzhaoshi@caas.cn

10.3864/j.issn.0578-1752.2018.15.001

猜你喜歡
毛狀鋅指復(fù)合體
鋅指蛋白與肝細(xì)胞癌的研究進(jìn)展
C2H2型鋅指蛋白在腫瘤基因調(diào)控中的研究進(jìn)展
金鐵鎖多倍體毛狀根的誘導(dǎo)及性質(zhì)
Myc結(jié)合的鋅指蛋白1評(píng)估實(shí)驗(yàn)性急性胰腺炎疾病嚴(yán)重程度的價(jià)值
CoFe2O4/空心微球復(fù)合體的制備與吸波性能
6-芐氨基腺嘌呤和萘乙酸對(duì)三裂葉野葛毛狀根生長和異黃酮含量的影響
鋅指蛋白及人工鋅指蛋白對(duì)微生物代謝影響的研究進(jìn)展
不同因子對(duì)藥用植物毛狀根產(chǎn)量和次生代謝產(chǎn)物積累影響的研究進(jìn)展△
3種多糖復(fù)合體外抗腫瘤協(xié)同增效作用
日本西南部四國增生復(fù)合體中的錳礦分布
马鞍山市| 乌拉特中旗| 高淳县| 岑溪市| 定南县| 汉川市| 宜兰市| 沙坪坝区| 商丘市| 晋州市| 新密市| 兰州市| 威海市| 旬阳县| 蛟河市| 顺昌县| 永福县| 揭西县| 金堂县| 巴彦淖尔市| 调兵山市| 平定县| 武乡县| 五峰| 新和县| 曲靖市| 平顶山市| 广安市| 东乡县| 淄博市| 托克逊县| 剑川县| 长兴县| 吉木萨尔县| 三穗县| 淄博市| 普安县| 渭南市| 通州区| 滕州市| 通化市|