国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

地膜秸稈復(fù)合覆蓋改善龜裂堿土水鹽特性提高油葵產(chǎn)量

2018-08-10 07:14孫兆軍陳小莉趙西寧高曉東吳普特
關(guān)鍵詞:油葵土壤水分鹽分

呂 雯,孫兆軍,陳小莉,趙西寧,高曉東,吳普特

?

地膜秸稈復(fù)合覆蓋改善龜裂堿土水鹽特性提高油葵產(chǎn)量

呂 雯1,2,3,孫兆軍2,3,陳小莉4,趙西寧1,高曉東1,吳普特1※

(1. 西北農(nóng)林科技大學(xué)水土保持研究所,楊凌 712100; 2. 寧夏大學(xué)環(huán)境工程研究院,銀川 750021;3.寧夏(中阿)旱區(qū)資源評(píng)價(jià)與環(huán)境調(diào)控重點(diǎn)實(shí)驗(yàn)室,銀川 750021;4. 西北農(nóng)林科技大學(xué)農(nóng)學(xué)院,楊凌 712100)

為了提高鹽堿地降水利用率,抑制化學(xué)(脫硫石膏)改良?jí)A土過(guò)程中土壤鹽分表聚及板結(jié)問(wèn)題,該文以寧夏平羅縣西大灘鹽堿地試驗(yàn)站為例,設(shè)置了地膜秸稈復(fù)合覆蓋(plastic and straw dual mulching,PSM)、地膜覆蓋(plastic film mulching,PM)、秸稈覆蓋(straw mulching,SM)和無(wú)覆蓋常規(guī)種植(nomulching,CK)4個(gè)處理,探討改良龜裂堿土過(guò)程中不同覆蓋措施下旱地油葵的土壤水鹽結(jié)構(gòu)特征及其對(duì)產(chǎn)量的影響。結(jié)果表明,PSM處理有效提高了30~100 cm土層土壤貯水、持水能力,推遲油葵消耗相對(duì)深層60~100 cm土壤水分的時(shí)間;在30~90 cm 土層,其水分活躍性顯著高于其他處理;比單一覆蓋抑鹽效果佳,土壤鹽分緩沖性增強(qiáng),鹽分表聚程度顯著降低;同時(shí)能顯著降低土壤容重,提高土壤孔隙度。PSM處理提高了油葵苗期存活率和產(chǎn)量,其較PM、SM處理和CK分別增產(chǎn)35.45%,120.15%,87.80%(<0.05);PSM處理較PM、SM處理和CK的降水利用效率分別提高了14.71%、86.45%和59.05%(<0.05),其水分利用效率分別比SM和CK提高了10.80%和32.71%。綜上,地膜秸稈復(fù)合覆蓋(PSM)可增強(qiáng)土壤保墑抑鹽能力,改善作物根區(qū)土壤水鹽環(huán)境,提高天然降水的生產(chǎn)潛力;促進(jìn)堿土改良初期的保苗增產(chǎn),提高經(jīng)濟(jì)效益。

地膜;秸稈;土壤;復(fù)合覆蓋;土壤水鹽;產(chǎn)量;降水利用效率

0 引 言

鹽堿荒地和鹽堿化中低產(chǎn)田,是中國(guó)重要的后備耕地儲(chǔ)備,開(kāi)發(fā)潛力巨大。寧夏銀北為龜裂堿土(白僵土)主要典型分布區(qū)[1],面積約2萬(wàn)hm2。近年來(lái),國(guó)內(nèi)外許多學(xué)者采用施用工業(yè)廢棄物脫硫石膏(CaSO4·2H2O)的化學(xué)方法改良?jí)A土方面取得了一定成果和良好的環(huán)保效益[2-8]。而堿土較之鹽土改良周期長(zhǎng)、難度大,在水資源緊缺與降水時(shí)空分布不均情況下,施入脫硫石膏的改良初期,部分殘留的鹽分[5]、堿分極易造成鹽害及土壤的泥濘、板結(jié)。干旱缺水、土壤易板結(jié)和改良初期鹽分表聚依然是制約化學(xué)改良中龜裂堿土農(nóng)業(yè)生產(chǎn)發(fā)展的關(guān)鍵因素。

采用地膜、秸稈等地面覆蓋是減少土壤水分蒸發(fā),增加土壤的有效貯水量,提高降水利用效率及減少土壤鹽分表聚的重要[9-18]手段。在實(shí)際生產(chǎn)推廣采用單一地膜、秸稈覆蓋方式種植時(shí),也存在著一些問(wèn)題,如堿土膜下土壤易泥濘、板結(jié)[19],造成缺株斷行、抑制植株生長(zhǎng)[19-20],后期水分的耗竭[21]及秸稈覆蓋后出苗率降低等現(xiàn)象[22-24]。為了實(shí)現(xiàn)地膜與秸稈覆蓋的優(yōu)勢(shì)互補(bǔ),國(guó)內(nèi)外針對(duì)地膜秸稈復(fù)合覆蓋的研究已涉及土壤溫度、水分、鹽分及作物生長(zhǎng)等多個(gè)方面。有研究表明,地膜秸稈復(fù)合覆蓋可調(diào)節(jié)土壤溫度,提高生育期土壤水分含量、土壤水分穩(wěn)定性、用水效率及作物產(chǎn)量[24-29];地膜結(jié)合秸稈深埋能有效地控鹽、抑鹽[30-31];也有研究表明[32],在種植茶園時(shí)采用復(fù)合覆蓋后造成了減產(chǎn)和水分利用效率的降低。綜上前人研究焦點(diǎn)主要集中在單一覆蓋或健康土壤中采用地膜秸稈復(fù)合覆蓋及地膜結(jié)合秸稈深埋的土壤水熱及作物方面的影響及變化的研究,對(duì)鹽堿土采用地膜秸稈復(fù)合覆蓋方式種植油葵方面的研究相對(duì)薄弱;而化學(xué)改良中的干旱、鹽害和堿分板結(jié)同時(shí)出現(xiàn)時(shí),土壤水鹽動(dòng)態(tài)及作物的響應(yīng)研究涉及相對(duì)較少。油葵()是在新開(kāi)墾的鹽堿原土及低產(chǎn)田中普遍種植的一種耐旱、耐瘠薄及鹽堿的鹽堿地的先鋒作物。隨著引黃配給的減少和改良?jí)A土儲(chǔ)備耕地需求增加,復(fù)合覆蓋對(duì)堿化土壤改良中田間尺度土壤的新的水鹽動(dòng)態(tài)分布、物理性質(zhì)和對(duì)油葵生長(zhǎng)及產(chǎn)量的影響亟待深入研究。鑒于以上研究現(xiàn)狀,選取新開(kāi)墾龜裂堿土農(nóng)田為研究對(duì)象,通過(guò)對(duì)比4種不同覆蓋方式下土壤剖面水鹽分布及隨降雨和時(shí)間的變化特點(diǎn),擬對(duì)地膜秸稈復(fù)合覆蓋對(duì)土壤水分、鹽分、容重、孔隙度及作物生長(zhǎng)發(fā)育及產(chǎn)量形成等方面進(jìn)行系統(tǒng)的分析,探索脫硫石膏改良龜裂堿土荒地及堿化低產(chǎn)田初期,提高耕地土壤保水抑鹽能力和降水利用效率的方法與途徑,為該地區(qū)鹽堿地原土改良種植油葵的可持續(xù)發(fā)展提供科學(xué)依據(jù)和技術(shù)支撐。

1 材料與方法

1.1 試驗(yàn)區(qū)概況

試驗(yàn)地處寧夏平羅縣西大灘前進(jìn)農(nóng)場(chǎng),位于銀川平原北部(106°24′E,38°50′N,海拔1 156 m),中溫帶干旱地區(qū),干旱少雨,溫差較大,年降水量為105~205 mm,主要集中在7月-9月,多年平均蒸發(fā)量為1 755.1 mm,地下水深埋1.5~2.0 m。土壤類型為堿化土壤中典型的龜裂堿土。土壤堿化度為20.0%~35.3%之間,pH值在8.7~10.2之間,全鹽質(zhì)量分?jǐn)?shù)為2.5~4.8 g/kg,鹽分類型主要有NaCl、Na2SO4、Na2CO3,土壤質(zhì)地粘重(容重1.42~1.74 g/cm),透水性差;土壤有機(jī)質(zhì)含量為5.87~7.43 g/kg;田間最大持水量22%~41%,而凋萎系數(shù)高達(dá)14%~18%,濕時(shí)吸水膨脹泥濘不易透水,干時(shí)收縮板結(jié)。

1.2 試驗(yàn)設(shè)計(jì)

供試作物為油葵,品種為KWS203。設(shè)置(plastic and straw dual mulching,PSM)、地膜覆蓋(plastic film mulching,PM)、秸稈覆蓋(straw mulching, SM)和無(wú)覆蓋常規(guī)種植(no mulching, CK)4個(gè)處理,3次重復(fù),區(qū)組隨機(jī)排列。各小區(qū)長(zhǎng)8 m、寬6 m,間隔2 m作為保護(hù)行,共 12個(gè)小區(qū)。前一年秋收后整地,根據(jù)土壤堿化度計(jì)算[33-34]脫硫石膏施用量為2.45×104kg/hm2,平均撒施并進(jìn)行機(jī)械翻耕(深度30 cm),與土壤混合均勻后,采用4.5×103m3/hm2定額進(jìn)行泡田淋洗。脫硫石膏主要成分是CaSO4·2H2O,顆粒細(xì)小松散均勻,粒徑主要集中在30~60m,含有12%游離水。2013年11月施用脫硫石膏并進(jìn)行泡田淋洗,2014年6月1日不同材料覆蓋試驗(yàn)小區(qū),2014年6月3日人工播種油葵,10月8日收獲。

供試油葵品種為KW203,播種量7.50 kg/hm2,行距50 cm,株距25~30 m。生育期內(nèi)雨養(yǎng)不灌溉,各處理田間施肥、除草等其他管理措施一致。播種前施入有機(jī)肥(牛糞)30×103 kg/hm2,尿素225 kg/hm2,過(guò)磷酸鈣60 kg/hm2,硫酸鉀60 kg/hm2。

表1 試驗(yàn)處理內(nèi)容

1.3 測(cè)定項(xiàng)目及方法

土壤水分:采用土鉆烘干法,測(cè)定土壤質(zhì)量含水率。測(cè)定深度為0~100 cm土層,取樣間隔為10 cm,取樣時(shí)間分別在油葵播種前一天(6月2日)、苗期(6月26日)、拔節(jié)期(7月31日)、開(kāi)花期(8月28日)、成熟期(10月9日),3次重復(fù)。

土壤鹽分:采用電導(dǎo)率法,采樣日期同上,測(cè)定深度為0~60 cm土層,取樣間隔為20 cm;

土壤容重及孔隙度:容重測(cè)定采用環(huán)刀法,分別于6月1日(覆蓋處理前)和10月9日(收獲前)取土,深度為0~10、>10~20、>20~40、>40~60 cm共4層,測(cè)定各土層土壤體積質(zhì)量并計(jì)算孔隙度;其中,土壤孔隙度計(jì)算公式為

土壤孔隙度=(1?容重/密度)×100% (1)

油葵出苗、生長(zhǎng)狀況及產(chǎn)量:于幼苗期調(diào)查油葵每天的出苗數(shù),并統(tǒng)計(jì)出苗率及出苗天數(shù),收獲前統(tǒng)計(jì)存活率。油葵收獲期,選取各小區(qū)連續(xù)2行,每行10株,共20株油葵,常規(guī)方法測(cè)定株高、莖粗,盤徑、單盤粒質(zhì)量及百粒質(zhì)量;其中,出苗率和存活率的計(jì)算公式為

出苗率=(實(shí)際出苗數(shù)/種子數(shù))×100% (2)

存活率=(實(shí)際存活數(shù)/出苗數(shù))×100% (3)

耗水量采用水量平衡法計(jì)算,

ET =ΔW+++?(4)

作物水分利用效率計(jì)算公式為:

WUE=/ET (5)

作物降水利用效率計(jì)算公式為:

PUE=/(6)

式(4)~(6)中,ET為作物生育期內(nèi)的蒸散量,mm;為生育期降水量,mm;為生育期灌溉量,mm;Δ為相鄰2次取樣0~100 cm土層蓄水量變化,mm;為時(shí)段內(nèi)地下水的補(bǔ)給量,mm;為時(shí)段內(nèi)地表徑流量,mm;為作物產(chǎn)量,kg/hm2。由于試驗(yàn)區(qū)在全生育期內(nèi)次降雨量較小,且本試驗(yàn)高埂種植,地勢(shì)平坦,未進(jìn)行灌溉,有效降水量少,不產(chǎn)生地面徑流,可忽略徑流和地下水補(bǔ)給影響,因此耗水量與降雨和蒸散有關(guān)。

1.4 數(shù)據(jù)處理

試驗(yàn)數(shù)據(jù)采用Surfer8.0、SPSS22.0和 Microsoft Excel 2007 軟件進(jìn)行處理,Duncan新復(fù)極差法進(jìn)行差異顯著性檢驗(yàn)(=0.05)。

2 結(jié)果與分析

2.1 試驗(yàn)期降水特征

根據(jù)試驗(yàn)期當(dāng)年實(shí)測(cè)氣象資料與多年平均降水資料圖1顯示,研究區(qū)降水量時(shí)間變異性強(qiáng),各月份間有較大差異。該區(qū)多年平均降水量為176.87 mm,試驗(yàn)當(dāng)年降水量為184 mm為平水年。生長(zhǎng)期內(nèi),油葵苗期(6月)降水增多,現(xiàn)蕾期至成熟期內(nèi)(7月—10月)降水減少是當(dāng)年的降雨顯著特征。同時(shí)出現(xiàn)了1個(gè)干旱少雨強(qiáng)蒸發(fā)階段為8月1日至8月25日無(wú)有效降雨。

圖1 研究區(qū)2014年和1992-2012年月降水量

2.2 土壤水分的變化

2.2.1 土壤含水率的空間變化特征

從土壤含水率變化來(lái)看(圖2),油葵對(duì)不同處理土壤水分的利用表現(xiàn)出一定的階段性,不同覆蓋方式水分消耗的土層深度有所不同。苗期PSM處理在30~100 cm的土層平均土壤含水率為28.25%,分別比PM和SM高出6.18%、2.85%,而其20~30 cm土層土壤含水率顯著低于PSM、CK(<0.05),與SM差異不顯著;3種覆蓋PM、PSM、SM處理0~10 cm的土壤含水率均顯著高于(<0.05)CK處理?,F(xiàn)蕾期,有效降水(>5 mm)。大幅減少,PSM處理在60~100 cm土層土壤含水率分別比PM 、SM和CK高出12.95%、18.03%、7.04%;PSM處理的30~50 cm、SM處理的40~70 cm、PM處理的60~90 cm土層含水率與各處理苗期相比較顯著消耗降低(<0.05)。8月1日至8月25日期間25 d無(wú)有效降雨,氣溫高蒸發(fā)量大,油葵正值開(kāi)花期,營(yíng)養(yǎng)與生殖生長(zhǎng)并進(jìn),作物蒸發(fā)蒸騰需水量高,PSM、SM處理水分主要消耗在30~50 cm土層,分別比現(xiàn)蕾期顯著降低了45.28%、36.27%;PM處理水分主要消耗在80~100 cm土層,降低了20.65%;CK處理水分主要消耗在80~100 cm土層降低了43.15%。在乳熟期,PSM處理水分主要消耗在60~100 cm土層比開(kāi)花期有顯著降低(<0.05),PM在40~50 cm土層土壤水分降了低19.99%。

注:PSM、PM、SM和CK分別為地膜秸稈復(fù)合覆蓋、地膜覆蓋、秸稈覆蓋和常規(guī)無(wú)覆蓋耕作4種處理,下同。

2.2.2 土壤水分垂直變異特征

土壤水分的變異系數(shù)CV表明了各土層土壤水分運(yùn)動(dòng)的活躍程度。土壤水分變異系數(shù)受降雨、作物蒸騰和覆蓋處理不同的影響,呈現(xiàn)出波動(dòng)性變化。如圖3所示,0~20 cm土層,覆蓋處理PM、PSM、SM均顯著低于CK的變異系數(shù)(<0.05),變異系數(shù)由小到大依次為PM

圖3 土壤含水率變異系數(shù)

2.3 土壤鹽分的變化

播種至現(xiàn)蕾期(圖4),PSM處理0~60 cm土體脫鹽0.97 g/kg,SM處理脫鹽0.37 g/kg,PM和CK處理分別積鹽1.28,0.45 g/kg;現(xiàn)蕾期至乳熟期間,PSM處理積鹽量為0.51 g/kg,顯著低于PM(0.65 g/kg)、SM(1.32 g/kg)處理(<0.05),在整個(gè)生育期內(nèi),PSM處理40~60 cm土層保持相對(duì)較低土壤含鹽量。說(shuō)明PSM處理在0~60 cm耕層土壤比其他2種覆蓋抑制鹽分效果好。在現(xiàn)蕾至乳熟期間,在20~40cm、40~60cm土層PSM處理含鹽量分別為1.33和1.41 g/kg,分別比PM的土壤含鹽量4.07和4.87 g/kg,低了2.74和3.47 g/kg;乳熟期,PSM各層土壤含鹽量均顯著低于PM處理(<0.05)。PSM與SM處理相比較,PSM處理在開(kāi)花期的0~20、40~60 cm和乳熟期的20~60 cm土層抑鹽效果顯著優(yōu)于SM處理(<0.05)。SM處理由于后期秸稈腐解,表層土壤逐步暴露于空氣中,表層積鹽嚴(yán)重。PSM處理的土壤鹽分表聚程度顯著低于其他3個(gè)處理。3種覆蓋處理0~20 cm土層的鹽分表聚現(xiàn)象均出現(xiàn)生育期后半程,其中PSM、SM處理出現(xiàn)于現(xiàn)蕾期-開(kāi)花期,PM處理發(fā)生在開(kāi)花期-乳熟期。無(wú)覆蓋CK處理于播種期-苗期發(fā)生鹽分的表聚,正值幼苗期鹽分敏感時(shí)段,必然造成一定程度的死苗及減產(chǎn)。由于作物根系的向下生長(zhǎng),越后期出現(xiàn)鹽分的表聚,對(duì)作物生長(zhǎng)負(fù)面影響越小一些。進(jìn)一步說(shuō)明了PSM處理可以增強(qiáng)土壤鹽分緩沖性。

圖4 油葵生育期內(nèi)土壤含鹽量動(dòng)態(tài)變化

2.4 土壤容重及孔隙度的變化

圖5為不同覆蓋對(duì)土壤容重和孔隙度的影響,經(jīng)過(guò)一個(gè)生長(zhǎng)期,在其自身重力作用及其他因素的影響下,成熟期土壤容重比處理前均有不同程度增加。>10~20 cm土層,PSM處理土層容重比PM、SM和CK處理分別低7.19%、4.05%和9.55%。PSM處理0~40 cm土層容重與處理前差異不顯著。PM處理在0~40 cm以上土層的土壤容重比處理前顯著增加(<0.05),在0~10 cm土層,其土壤容重達(dá)1.55 g/cm3,比PSM、SM和CK分別高出13.14%、9.93%和6.16%。40 cm以下各處理土層的土壤均未受到耕作機(jī)具擾動(dòng),處理間差異不顯著。

0~40 cm土層,各處理收獲期土壤孔隙度較處理前均有不同程度降低,隨土層的加深而減小。其中PSM成熟期孔隙度與處理前差異不顯著,PM處理與處理前孔隙度有顯著降低(<0.05);PSM處理土層孔隙度均值比PM提高了8.85%(<0.05)>10~20 cm土層,PSM處理土層孔隙度均值比SM和CK處理提高了4.46%和12.01%(<0.05)。表明PSM處理較PM、SM和CK處理能使耕層土壤孔隙狀況得到改善,促成良好土壤結(jié)構(gòu)的形成。

注:同一土壤深度的不同小寫字母表示處理間在5%水平上差異顯著,下同。

2.5 覆蓋對(duì)油葵生長(zhǎng)、產(chǎn)量和水分利用效率的影響

2.5.1 油葵生長(zhǎng)及產(chǎn)量特征值

PSM處理產(chǎn)量比PM、SM處理和CK分別提高了35.45%,120.15%,87.80%(<0.05);PM處理產(chǎn)量比SM、CK分別提高了62.53%,38.65%(<0.05),SM處理產(chǎn)量低于CK17.22%(<0.05)。產(chǎn)量最高的PSM處理具有最高的株高株高、莖粗、單盤粒質(zhì)量、百粒質(zhì)量,而產(chǎn)量最小的SM處理在株高、單盤粒質(zhì)量、莖粗顯著低于CK。PSM、PM株高、莖粗、單盤粒質(zhì)量、百粒質(zhì)量均顯著高于SM、CK(<0.05),這是PSM、PM產(chǎn)量構(gòu)成方面增產(chǎn)的主要原因。由于試驗(yàn)為堿化土壤,油葵出苗率及成株率對(duì)產(chǎn)量影響較大。出苗天數(shù)的大小順序?yàn)镻SM

表2 不同覆蓋處理油葵生育期特性與產(chǎn)量構(gòu)成因素

2.5.2 耗水量與水分利用效率

PSM處理的耗水量較PM、SM處理和CK均顯著提高,分別增加56.45、87.39和51.26 mm(<0.05),耗水強(qiáng)度的大小順序與總耗水量趨勢(shì)一致,PSM處理的耗水強(qiáng)度較PM、SM處理和CK均顯著提高,分別增加 47.67%、99.27%和41.92%(<0.05)。

表3 不同處理對(duì)油葵水分及降水利用效率的影響

由WUE的分析結(jié)果可知,PSM處理的水分利用效率顯著高于SM、CK(<0.05),分別比SM、CK提高了10.80%、32.71%,與PM處理差異不顯著;從PUE的數(shù)據(jù)來(lái)看,PSM處理的降水利用效率顯著高于PM、SM和CK(<0.05),SM與CK處理差異不顯著;PSM處理的降水利用效率分別比處理PM、SM和CK提高了14.71%、86.45%和59.05%。PSM處理降水利用效率比相對(duì)于單一地膜或秸稈覆蓋及傳統(tǒng)無(wú)覆蓋之中模式中得到了顯著的提升,在水分利用效率的提高中起到了重要的作用。

3 討 論

3.1 地膜秸稈復(fù)合覆蓋提高土壤保墑和深層儲(chǔ)存降水能力

在無(wú)灌水條件下,土壤水分主要受降雨、地表覆蓋和作物耗水等因素影響。與單一覆蓋和無(wú)覆蓋方式相比較,地膜秸稈復(fù)合覆蓋消耗的土壤水分深度的下移相對(duì)最慢,說(shuō)明了其上表層抑制蒸發(fā)顯著,中下層能較好貯存降水水分,在作物生長(zhǎng)中后期調(diào)用60~90 cm土層水分來(lái)滿足土壤蒸發(fā)和作物的高蒸騰需要,可與作物的需水期形成較好的同步。各覆蓋消耗的土壤水的深度也有所不同,地膜秸稈復(fù)合覆蓋處理于作物生育后期消耗60~100 cm土壤水分,地膜處理在作物生育前期即開(kāi)始消耗該層土壤水分,這也是單一地膜覆蓋會(huì)造成作物早衰的原因之一,復(fù)合覆蓋可以有效減少此現(xiàn)象發(fā)生。成熟期,地膜秸稈復(fù)合覆蓋處理在1 m土體平均土壤含水率顯著小于無(wú)覆蓋處理,可能由于作物地上部分比其他處理蒸騰大和根系量增加[31]及縱深分布范圍加大造成的深層儲(chǔ)水量消耗增加。這與覆膜措施存在消耗土層深層儲(chǔ)水的已有研究結(jié)果是一致的[27,32]。另一方面,此種復(fù)合覆蓋在降水充足時(shí)期通過(guò)膜側(cè)匯集雨水[24-25]的特殊入滲方式,有利于地表淺層水分向深層運(yùn)移和補(bǔ)充油葵的各生長(zhǎng)階段消耗;其淺表層(0~20 cm)土壤水分的變異系數(shù)規(guī)律與已有田飛等[28,31-32]指出的覆蓋處理土壤水分穩(wěn)定性增強(qiáng)的研究趨勢(shì)相符合;在深層(>30~90 cm)土壤水分穩(wěn)定性與前人研究有一定差異,復(fù)合覆蓋此深度的土壤水分活躍性顯著高于其他處理(<0.05)。在收獲后降水較少情況下,建議有灌水條件的改良?jí)A土利用冬灌來(lái)及時(shí)補(bǔ)充復(fù)合覆蓋土壤水分的消耗,避免第二年土壤出現(xiàn)干層。

3.2 地膜秸稈復(fù)合覆蓋有效降低土壤容重、提高土壤孔隙度

不同覆蓋方式的影響著油葵生育期內(nèi)土壤容重及孔隙的變化過(guò)程,對(duì)土壤水分及對(duì)降水的貯存量的有直接影響。地膜秸稈復(fù)合覆蓋具有相對(duì)較低土壤容重和較高土壤孔隙度,從而增加了降水貯存量及土壤重力水的入滲,調(diào)節(jié)了耕層土壤有效水庫(kù)容,減少了土壤毛管水無(wú)效蒸發(fā),為后期作物高產(chǎn)創(chuàng)造了有利的水分條件。單一地膜覆蓋在成熟期0~40 cm土壤容重顯著大于他2種覆蓋,這與已有的研究結(jié)果一致[27,35]。同時(shí),地膜秸稈復(fù)合覆蓋處理良好的土壤結(jié)構(gòu)促進(jìn)了殘留的土壤堿分和脫硫石膏充分發(fā)生反應(yīng),并及時(shí)向下淋洗置換出的有害鹽分,維持根區(qū)相對(duì)低鹽適宜生長(zhǎng)區(qū),優(yōu)化作物根區(qū)土壤水鹽環(huán)境。

3.3 地膜秸稈復(fù)合覆蓋抑制土壤積鹽

油葵的苗期至現(xiàn)蕾期為水鹽敏感時(shí)期[19],降水易引發(fā)表土的板結(jié)及鹽害,直接影響到作物出苗、成活及前期的營(yíng)養(yǎng)生長(zhǎng)。復(fù)合覆蓋膜孔處因有秸稈,能保持較好土壤結(jié)構(gòu),增強(qiáng)了入滲和淋洗作用,有效減輕堿性土壤泥濘、板結(jié)及鹽害。單一地膜處理的表層土壤一直處在較高水分狀態(tài),>20~60 cm土層脫鹽效果不佳,造成作物中、后期受到鹽害。在整個(gè)生育期內(nèi),地膜秸稈復(fù)合覆蓋處理>40~60 cm土層保持在4種處理中最低土壤含鹽量,其保持的良好耕層土壤結(jié)構(gòu),有利于利用降水充分向下淋洗耕層改良過(guò)程置換出的鹽分或穩(wěn)定鹽分含量提高作物的耐鹽適應(yīng)性[36-37],從而大大降低了在淋洗量不足情況下,化學(xué)改良?jí)A性土壤發(fā)生次生鹽害的幾率;同時(shí),地膜秸稈復(fù)合覆蓋處理增強(qiáng)了土壤鹽分緩沖性強(qiáng),減少和推遲了鹽分的表聚,降低了表層鹽分對(duì)作物的毒害性。該處理中秸稈部分在腐解過(guò)程中,還可以改善土壤養(yǎng)分[38]和生物活性[14,39-40],促進(jìn)作物的地上與地下部分生長(zhǎng),提高蒸發(fā)“無(wú)效水”向蒸騰“有效水”的轉(zhuǎn)化,加快堿化土壤改良進(jìn)程,形成良性的循環(huán)。

3.4 地膜秸稈復(fù)合覆蓋提高油葵出苗存活率、產(chǎn)量及降水利用率

鹽堿地低產(chǎn)田產(chǎn)量不穩(wěn)定,與苗期保苗率低有關(guān)。地膜秸稈復(fù)合覆蓋作物的存活率顯著高于地膜覆蓋、秸稈覆蓋和無(wú)覆蓋常規(guī)種植,為后期保產(chǎn)和增產(chǎn)打下了良好的基礎(chǔ)。單一秸稈覆蓋出苗率低而造成減產(chǎn),可能由于其前期溫度降低[22,26]影響了油葵的出苗率。降水利用效率(PUE)反映了旱地農(nóng)業(yè)降水的生產(chǎn)潛力。在增加耗水量情況下,復(fù)合覆蓋的種植模式相對(duì)于常規(guī)種植依然能顯著提高產(chǎn)量和水分利用效率,尤其是降水利用效率顯著高于地膜覆蓋、秸稈覆蓋和常規(guī)種植模式。這與前人的部分研究結(jié)果[41-42]中的覆蓋栽培總體耗水量有所減少有一定差異,與前人研究得出的提高水分利用效率[24-25,43]趨勢(shì)是一致的。究其原因可能由于在不同水分條件下,復(fù)合覆蓋處理的抑蒸、保苗效果好,地上、地下部分生長(zhǎng)的增加及物候期相對(duì)延長(zhǎng),因而復(fù)合覆蓋油葵后期蒸騰作用的耗水量顯著大于無(wú)覆蓋處理。在龜裂堿土改良中,采用地膜秸稈復(fù)合覆蓋方式旱作種植油葵能提高天然降水的生產(chǎn)潛力,促進(jìn)節(jié)水生產(chǎn),增加經(jīng)濟(jì)效益。

4 結(jié) 論

1)在降水量較多時(shí)期,地膜秸稈復(fù)合覆蓋有效提高了30~100 cm土層土壤貯水、持水能力,相對(duì)單一覆蓋延遲消耗深層土壤水分的時(shí)間,在30~90 cm的土壤水分活躍性顯著高于其他處理。

2)地膜秸稈復(fù)合覆蓋在堿土改良過(guò)程中比單一覆蓋抑鹽效果佳,其土壤鹽分緩沖性強(qiáng),鹽分表聚推遲至作物生長(zhǎng)后期,程度顯著低于其他3個(gè)處理,減少單一覆蓋和常規(guī)種植的土壤鹽分對(duì)作物早起鹽分敏感生長(zhǎng)時(shí)段的毒害。

3)地膜秸稈復(fù)合覆蓋能相對(duì)保持較低土壤容重和較高土壤孔隙度促進(jìn)土壤結(jié)構(gòu)的改良,有利于提高土壤有效水庫(kù)容和加快淋洗進(jìn)程。

4)地膜秸稈復(fù)合覆蓋處理產(chǎn)量比地膜、秸稈處理和無(wú)覆蓋種植分別提高了35.45%,120.15%,87.80%(<0.05),提高了苗期存活率;生育期的耗水量較地膜、秸稈處理和常規(guī)無(wú)覆蓋種植分別增加 56.45、87.39 和 51.26 mm(<0.05);其降水利用效率分別比地膜、秸稈和無(wú)覆蓋提高了14.71%、86.45%和59.05%;水分利用效率分別比秸稈、無(wú)覆蓋提高了10.80%、32.71%。

綜上所述,地膜秸稈復(fù)合覆蓋種植方式可調(diào)節(jié)土壤有效水庫(kù)容,增強(qiáng)土壤保墑抑鹽能力,改善作物根區(qū)土壤水鹽環(huán)境,提高天然降水的生產(chǎn)潛力;在堿土改良的初期促進(jìn)保苗增產(chǎn)。同時(shí),由于研究區(qū)降水變異性強(qiáng),試驗(yàn)?zāi)晗掭^短,得出的初步結(jié)論還有待于進(jìn)一步結(jié)合田間蒸發(fā)蒸騰及作物多項(xiàng)指標(biāo)做更深入的定點(diǎn)多年監(jiān)測(cè)研究。

[1] 王遵親,祝壽泉,俞仁培. 中國(guó)鹽漬土[M]. 北京:科學(xué)出版社,1993.

[2] 王靜,許興,肖國(guó)舉,等. 脫硫石膏改良寧夏典型龜裂堿土效果及其安全性評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(2):141-147.

Wang Jing, Xu Xing, Xiao Guoju, et al. Effect of typical takyr solonetzs reclamation with flue desulphrization gas gypsum and its security assessment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(2): 141-147. (in Chinese with English abstract)

[3] 楊軍,孫兆軍,劉吉利,等. 脫硫石膏糠醛渣對(duì)新墾龜裂堿土的改良洗鹽效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(17):128-135.

Yang Jun, Sun Zhaojun, Liu Jili, et al. Effects of saline improvement and leaching of desulphurized gypsum combined with furfural residue in newly reclaimed farmland crack alkaline soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(17): 128-135. (in Chinese with English abstract)

[4] Wang Jinman, Bai Zhongke, Yang Peiling. Effect of byproducts of flue gas desulfurization on the soluble salts composition and chemical properties of sodic soils[J]. Plos one, 2013, 8(8): 1-13.

[5] 樊麗琴,楊建國(guó),尚紅鶯,等. 脫硫石膏施用下寧夏鹽化堿土水鹽運(yùn)移特征[J]. 水土保持學(xué)報(bào),2017,31(3):193-196. Fan Liqin, Yang Jianguo, Shang Hongying, et al. Characteristics of soil water and salt movement in a saline alkali soil treated with desulfurized gypsum[J]. Journal of Soil and Water Conservation, 2017, 31(3): 193-196. (in Chinese with English abstract)

[6] 陳鳳清,叢建民,許清濤,等. 脫硫石膏改良對(duì)吉林西部堿土酶活性的影響研究[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào),2016,37(12):151-156.

Chen Fengqing, Cong Jianmin, Xu Qingtao, et al. Effect of modified desulfurization gypsum on enzyme activity of alkaline soils in western Jilin[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(12): 151-156. (in Chinese with English abstract)

[7] 王金滿,楊培嶺,任樹(shù)梅,等. 煙氣脫硫副產(chǎn)物改良?jí)A性土壤過(guò)程中化學(xué)指標(biāo)變化規(guī)律的研究[J]. 土壤學(xué)報(bào),2005,42(1):98-105.

Wang Jinman, Yang Peiling, Ren Shumei, et al. Variation of chemical indices of alkaline soil ameliorated with desulphurization by products[J]. Acta Pedologica Sinica, 2005, 42(1): 98-105. (in Chinese with English abstract)

[8] 張海軍,李躍進(jìn),陳昌和,等. 脫硫石膏改良?jí)A土過(guò)程中特征值變化的研究[J]. 干旱區(qū)資源與環(huán)境,2007,21(7):165-168.

Zhang Hangjun, Li Yuejin, Chen Changhe, et al. Research on the eigenvalue's change in the process of improving alkaline soil with desulfurized gypsum[J]. Journal of Arid Land Resources and Environment, 2007, 21(7): 165-168. (in Chinese with English abstract)

[9] Wang Jiandong, Zhang Yanqun, Gong Shihong, et al. Evapotranspiration, crop coefficient and yield for drip-irrigated winter wheat with straw mulching in North China Plain[J]. Field Crops Research, 2018, 217: 218-228.

[10] Li Qiang, Li Hongbing, Zhang Li, et al. Mulching improves yield and water-use efficiency of potato cropping in China: A meta-analysis[J]. Field Crops Research, 2018, 221: 50-60.

[11] Xue Naiwen, Xue Jianfu, Yang Zhenping, et al. Effects of film mulching regime on soil water status and grain yield of rain-fed winter wheat on the Loess Plateau of China[J]. Journal of Integrative Agriculture, 2017, 16(11): 2612-2622.

[12] Yan Zhenxing, Gao Chao, Ren Yujie, et al. Effects of pre-sowing irrigation and straw mulching on the grain yield and water use efficiency of summer maize in the North China Plain[J]. Agricultural Water Management, 2017, 186: 21-28.

[13] 齊智娟,馮浩,張?bào)w彬,等. 覆膜耕作方式對(duì)河套灌區(qū)土壤水熱效應(yīng)及玉米產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016, 22(20):108-113.

Qi Zhijuan, Feng Hao, Zhang Tibin, et al. Effects of mulch and tillage methods on soil water and temperature as well as corn yield in Hetao irrigation district[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 22(20): 108-113. (in Chinese with English abstract)

[14] Jiang Yunfeng, Ma Nan, Chen Zhiwen, et al. Soil macrofauna assemblage composition and functional groups in no-tillage with corn stover mulch agroecosystems in a mollisol area of northeastern China[J]. Applied Soil Ecology, 2018, 128: 61-70.

[15] Tan Shuai, Wang Quanjiu, Xu Di, et al. Evaluating effects of four controlling methods in bare strips on soil temperature, water, and salt accumulation under film-mulched drip irrigation[J]. Field Crops Research, 2017, 214: 350-358.

[16] 王婧,逄煥成,任天志,等. 地膜覆蓋與秸稈深埋對(duì)河套灌區(qū)鹽漬土水鹽運(yùn)動(dòng)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(15):52-59.

Wang Jing, Pang Huancheng, Ren Tianzhi, et al. Effect of plastic film mulching and straw buried on soil water-salt dynamic in Hetao plain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(15): 52-59. (in Chinese with English abstract)

[17] 趙永敢,逄煥成,李玉義,等. 秸稈隔層對(duì)鹽堿土水鹽運(yùn)移及食葵光合特性的影響[J]. 生態(tài)學(xué)報(bào),2013,33(17):5153-5161.

Zhao Yonggan, Pang Huancheng, Li Yuyi, et al. Effects of straw interlayer on soil water and salt movement and sunflower photosynthetic characteristics in saline-alkali soils[J]. Acta Ecologica Sinica, 2013, 33(17): 5153-5161. (in Chinese with English abstract)

[18] 姚寶林,李光永,王峰. 凍融期灌水和覆蓋對(duì)南疆棉田水熱鹽的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(7):114-120.

Yao Baolin, Li Guangyong, Wang Feng. Effects of winter irrigation and soil surface mulching during freezing-thawing period on soil water-heat-salt for cotton fields in south Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(7): 114-120. (in Chinese with English abstract)

[19] 杜社妮,白崗栓,于健,等. 沙封覆膜種植孔促進(jìn)鹽堿地油葵生長(zhǎng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014, 30(5):82-90.

Du Sheni, Bai Gangshuan, Yu Jian, et al. Planting hole sealed by sand promoting growth of oil sunflower in saline-alkaline fields mulched with plastic film[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(5): 82-90. (in Chinese with English abstract)

[20] 高金芳,李毅,陳世平,等. 覆膜開(kāi)孔蒸發(fā)條件下土體高度對(duì)水鹽運(yùn)移的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(9):50-55.

Gao Jinfang, Li Yi, Chen Shiping, et al. Effects of soil column heights on movement of soil water and soil salt during evaporation under perforated plastic mulch[J]. Transactions of The Chinese Society for Agricultural Machinery, 2010, 41(9): 50-55. (in Chinese with English abstract)

[21] Zaongo C G L, Wendt C W, Lascano R J, et al. Interactions of water, mulch and nitrogen on sorghum in Niger[J]. 1997, 197(1): 119-126.

[22] 陳素英,張喜英,裴冬,等. 玉米秸稈覆蓋對(duì)麥田土壤溫度和土壤蒸發(fā)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005, 21(10):171-173.

Chen Suying, Zhang Xiying, Pei Dong, et al. Effects of corn straw mulching on soil temperature and soil evaporation of winter wheat field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(10): 171-173. (in Chinese with English abstract)

[23] 高亞軍,李生秀. 旱地秸稈覆蓋條件下作物減產(chǎn)的原因及作用機(jī)制分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005, 21(7):15-19.

Gao Yajun, Li Shengxiu. Cause and mechanism of crop yield reduction under straw mulch in dryland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(7): 15-19. (in Chinese with English abstract)

[24] 殷濤,何文清,嚴(yán)昌榮,等. 地膜秸稈雙覆蓋對(duì)免耕種植玉米田土壤水熱效應(yīng)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014, 30(19):78-87.

Yin Tao, He Wenqing, Yan Changrong, et al. Effects of plastic mulching on surface of no-till straw mulching on soil water and temperature[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014,30(19): 78-87. (in Chinese with English abstract)

[25] 揣峻峰,謝永生,索改弟,等. 地膜與秸稈雙重覆蓋對(duì)渭北蘋果園土壤水分及產(chǎn)量的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究,2013, 31(3):26-30.

Chuai Junfeng, Xie Yongsheng, Suo Gaidi, et al. Effects of dual mulching of film and straw on soil moisture and apple yield in Weibei Region[J]. Agricultural Research in the Arid Areas, 2013, 31(3): 26-30. (in Chinese with English abstract)

[26] 李娜娜,池寶亮,梁改梅. 旱地玉米秸稈地膜二元覆蓋的土壤水熱效應(yīng)研究[J]. 水土保持學(xué)報(bào),2017,9(4):248-253.

Li Nana, Chi Baoliang, Liang Gaimei. Study on soil water and heat effect of plastic film combined with straw mulch in dryland maize field[J]. Journal of Soil and Water Conservation, 2017, 31(4): 248-253. (in Chinese with English abstract)

[27] 潘雅文,樊軍,郝明德,等. 黃土塬區(qū)長(zhǎng)期不同耕作、覆蓋措施對(duì)表層土壤理化性狀和玉米產(chǎn)量的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2016, 22(6):1558-1567.

Pan Yawen, Fan Jun, Hao Mingde, et al. Effects of long-term tillage and mulching methods on properties of surface soil and maize yield in tableland region of the Loess Plateau[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(6): 1558-1567. (in Chinese with English abstract)

[28] 田飛,謝永生,索改弟,等. 雙元覆蓋對(duì)果園土壤水分的調(diào)控效果[J]. 應(yīng)用生態(tài)學(xué)報(bào),2014(8):2289-2296.

Tian Fei, Xie Yongsheng, Suo Gaidi, et al. Controlling effects of dual mulching on soil moisture in an apple orchard[J]. 2014(8): 2289-2296. (in Chinese with English abstract)

[29] 翟勝,王巨媛,梁銀麗. 地面覆蓋對(duì)溫室黃瓜生產(chǎn)及水分利用效率的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005,21(10):129-133.

Zhai Sheng, Wang Juyuan, Liang Yinli. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(10): 129-133. (in Chinese with English abstract)

[30] 高茂盛,廖允成,李俠,等. 不同覆蓋方式對(duì)渭北旱作蘋果園土壤貯水的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2010,43(10):2080-2087.

Gao Maosheng, Liao Yuncheng, Li Xia, et al. Effects of different mulching patterns on soil water-holding capacity of non-irrigated apple orchard in the weibei plateau[J]. Scientia Agricultura Sinica, 2010, 43(10): 2080-2087. (in Chinese with English abstract)

[31] 張杰,任小龍,羅詩(shī)峰,等. 環(huán)保地膜覆蓋對(duì)土壤水分及玉米產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010, 26(6):14-19.

Zhang Jie, Ren Xiaolong, Luo Shifeng, et al. Influences of different covering materials mulching on soil moisture and corn yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(6): 14-19. (in Chinese with English abstract)

[32] 孫立濤,王玉,丁兆堂. 地表覆蓋對(duì)茶園土壤水分、養(yǎng)分變化及茶樹(shù)生長(zhǎng)的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2011,22(9):2291-2296.

Sun Litao, Wang Yu, Ding Zhaotang. Effects of ground surface mulching in tea garden on soil water and nutrient dynamics and tea plant growth[J]. Chinese Journal of Applied Ecology, 2011, 22(9): 2291-2296. (in Chinese with English abstract)

[33] 金梁,烏力更,魏丹,等. 石膏改良蘇打堿土.Ⅰ.經(jīng)濟(jì)改良層石膏用量的確定[J]. 生態(tài)學(xué)雜志,2012, 31(7):1745-1750.

Jin Liang, Wu Ligeng, Wei Dan, et al. Gypsum application in amelioration of soda-alkaline soil I. Determination of economical application amount[J]. Chinese Journal of Ecology, 2012, 31(7): 1745-1750. (in Chinese with English abstract)

[34] 肖國(guó)舉,羅成科,張峰舉,等. 燃煤電廠脫硫石膏改良?jí)A化土壤的施用量[J]. 環(huán)境科學(xué)研究,2010,23(6):762-767.

Xiao Guoju, Luo Chengke, Zhang Fengju. Application amount of desulfurized gypsum from coal fired power plants on improving the quality of alkalized soil[J]. Research of Environmental Sciences, 2010, 23(6): 762-767. (in Chinese with English abstract)

[35] 雷金銀,吳發(fā)啟,王健,等. 保護(hù)性耕作對(duì)土壤物理特性及玉米產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(10):40-45.

Lei Jinyin, Wu Faqi, Wang Jian, et al. Effects of conservation tillage on soil physical properties and corn yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(10): 40-45. (in Chinese with English abstract)

[36] Delgado I C, Sanchez-Raya A. J. Effects of sodium chloride and mineral nutrients on initial stages of development of sunflower life[J]. Communications in Soil Science and Plant Analysis, 2007, 15/16(38): 2013-2027.

[37] Dong Qinge, Yang Yuchen, Yu Kun, et al. Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China[J]. Agricultural Water Management, 2018, 201: 133-143.

[38] Helder F, Jo?o A S. Vineyard mulching as a climate change adaptation measure: Future simulations for Alentejo, Portugal[J]. Agricultural Systems, 2018, 164: 107-115.

[39] 楊濱娟,黃國(guó)勤,錢海燕. 秸稈還田配施化肥對(duì)土壤溫度、根際微生物及酶活性的影響[J]. 土壤學(xué)報(bào),2014,51(1):150-157.

Yang Binjuan, Huang Guoqin, Qian Haiyan. Effects of straw incorporation plus chemical fertilizer on soil temperature, root micro-organisms and enzyme activities[J]. Acta Pedologica Sinica, 2014, 51(1): 150-157. (in Chinese with English abstract)

[40] 陳奇恩. 中國(guó)塑料薄膜覆蓋農(nóng)業(yè)[J]. 中國(guó)工程科學(xué),2002,4(4):12-15,21.

Chen Qien. Mulching agriculture using thin plastic film in China[J]. Engineering Sciences, 2002, 4(4): 12-15, 21. (in Chinese with English abstract)

[41] 胡芬. 半濕潤(rùn)易旱區(qū)農(nóng)業(yè)節(jié)水技術(shù)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),1998,14(1):76-80.

Hu Fen. Study on water-saving techniques of agriculture in semihumid and liable to drought region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1998, 14(1): 76-80. (in Chinese with English abstract)

[42] 黨廷輝,郭棟,戚龍海. 旱地地膜和秸稈雙元覆蓋栽培下

小麥產(chǎn)量與水分效應(yīng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(10):20-24.

Dang Tinghui, Guo Dong, Qi Longhai. Effects of wheat yield and water use under dual-mulching mode of plastic film and straw in the dryland farming[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(10): 20-24. (in Chinese with English abstract)

[43] 趙永敢,李玉義,胡小龍,等. 地膜覆蓋結(jié)合秸稈深埋對(duì)土壤水鹽動(dòng)態(tài)影響的微區(qū)試驗(yàn)[J]. 土壤學(xué)報(bào),2013,50(6):1129-1137.

Zhao Yonggan, Li Yuyi, Hu Xiaolong, et al. Effects of plastic mulching and deep burial of straw on dynamics of soil water and salt in micro-plot field cultivation[J]. Acta Pedologica Sinica, 2013, 50(6): 1129-1137. (in Chinese with English abstract)

Plastic film and straw combined mulchingimproving water and salt characteristics of Takyr Solonetzs and yield of oil sunflower

Lü Wen1,2,3, Sun Zhaojun2,3, Chen Xiaoli4, Zhao Xining1, Gao Xiaodong1, Wu Pute1※

(1.,,712100,; 2.,,750021,; 3.()750021,; 4.,,712100,)

Saline alkali wasteland and low-yield fields are important reserve of cultivated land in China. The chemical methods of industrial waste desulphurization gypsum (CaSO4·2H2O) have achieved certain results and good environmental protection benefits at the aspect of improving alkaline soil. Scarce water resource, soil hardening and salt concentration in early improvement are still the key factors that restrict the development of agricultural production in chapped alkali soil by using waste desulfurization gypsum from power plant. In order to improve rainfall utilization efficiency, and restrain the problems of salt aggregation on soil surface and soil compaction in the process of chemical improvement of alkaline soil, a field experiment was conducted, which included 3 soil surface mulching methods: combined mulching of plastic film and straw (the straw was firstly used, then covered with mulching film, and later seeding was conducted artificially; the aperture was 4 cm, and the straw mulch was restored at the orifice after sowing), plastic film mulching (white transparent polyethylene film, width of 2 m, thickness of 0.02 mm), and straw mulching (spring wheat straw, length of 8-12 cm, coverage amount of 0.6 kg/m2). The experiment included 4 treatments: plastic film and straw combined mulching (PSM), plastic film mulching (PM), straw mulching (SM) and conventional tillage (CK), which were designed to explore the dynamic structure characteristics of soil water salt and its effect on yield of oil sunflower () at Pingluo saline-soil Experimental Station in Ningxia. The soil moisture contents at the depth of 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 cm were measured; soil salt contents and soil bulk densities of different soil depth profiles (10, 20, 30, 40, 50, 60 cm) were measured for different treatments. And the results showed that: The PSM treatment effectively improved the water storage and water holding capacity of 30-100 cm soil layer. It delayed the time of oil sunflower consuming the moisture in 60-100 cm soil depth. The water activity in the 30-90 cm soil layer under PSM treatment was higher than that of other single coverage models. Salt accumulation on soil surface was delayed to the later stage of crop growth, and its level was significantly lower than the other 3 treatments, reducing the toxicity of soil salinity in early salt-sensitive growth period of crops compared with single coverage and conventional planting. The combined mulch promoted the improvement of soil structure with relatively low soil bulk density and higher soil porosity, which is beneficial to improve soil effective water storage capacity and accelerate the process of leaching. The PSM treatment improved survival rate and yield of oil sunflower in seedling stage. The precipitation use efficiency under the PSM treatment was increased by 14.71%, 86.45% and 59.05% respectively compared with the PM, SM and CK treatments, and the water use efficiency was increased by 10.80% and 32.71%, respectively, compared with the SM and CK treatments. Therefore, the plastic film and straw combined mulch can improve soil structure, which is beneficial to enhance soil effective water storage capacity and accelerate the process of leaching.

plastic film; straw; soils; combined mulch; soil water and salt; yield; precipitation use efficiency

呂 雯,孫兆軍,陳小莉,趙西寧,高曉東,吳普特. 地膜秸稈復(fù)合覆蓋改善龜裂堿土水鹽特性提高油葵產(chǎn)量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(13):125-133.doi:10.11975/j.issn.1002-6819.2018.13.015 http://www.tcsae.org

Lü Wen, Sun Zhaojun, Chen Xiaoli, Zhao Xining, Gao Xiaodong, Wu Pute. Plastic film and straw combined mulchingimproving water and salt characteristics of Takyr Solonetzs and yield of oil sunflower[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(13): 125-133. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.13.015 http://www.tcsae.org

2017-04-15

2018-05-23

國(guó)家自然科學(xué)基金(41571506、51579212),國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFC0400204),國(guó)家林業(yè)公益性行業(yè)科研重大專項(xiàng)(201504402),陜西省科技統(tǒng)籌創(chuàng)新工程項(xiàng)目(2015KTCL02-25、2016KTZDNY-01-03)。

呂 雯,助理研究員,主要從事水土資源高效利用研究。 Email:lvwen2011@hotmail.com

吳普特,研究員,主要從事水土保持與節(jié)水農(nóng)業(yè)方面研究。Email:gjzwpt@vip.sina.com

10.11975/j.issn.1002-6819.2018.13.015

S156.4; S152.7

A

1002-6819(2018)-13-0125-09

猜你喜歡
油葵土壤水分鹽分
磷素添加對(duì)土壤水分一維垂直入滲特性的影響
北京土石山區(qū)坡面土壤水分動(dòng)態(tài)及其對(duì)微地形的響應(yīng)
寧夏中部壓砂區(qū)表層土壤離子分布及鹽分類型預(yù)測(cè)
衡水湖濕地蘆葦?shù)纳锪颗c土壤水分變化的相關(guān)性研究
山東聊城東昌府區(qū)26.67公頃油葵盛開(kāi)“致富花”
滴灌條件下鹽漬土鹽分淡化區(qū)形成過(guò)程中離子運(yùn)移特征
油葵種植技術(shù)要點(diǎn)
自走式油葵收割機(jī)研發(fā)成功
自走式油葵收割機(jī)研發(fā)成功
Spatial and temporal variations of the surface soil moisture in the source region of the Yellow River from 2003 to 2010 based on AMSR-E
于都县| 昭觉县| 肇源县| 余姚市| 曲麻莱县| 昌图县| 图木舒克市| 永定县| 正定县| 珠海市| 航空| 罗定市| 松溪县| 肇庆市| 贡觉县| 黔南| 安义县| 南昌县| 凤阳县| 阳信县| 抚州市| 嵊泗县| 彭泽县| 海林市| 巴楚县| 盐源县| 寿光市| 周口市| 陈巴尔虎旗| 育儿| 西和县| 彝良县| 莱西市| 景东| 长沙县| 武邑县| 桂平市| 禄劝| 称多县| 南投县| 赤水市|