,,
皰疹病毒(Alphaherpesvirus)是一類具有相同形態(tài)學(xué)且具有囊膜的雙鏈DNA病毒,已知有120多種,成熟的病毒粒子由核心(core)、衣殼(capsid)、皮層(tegument)和囊膜(envelope)4個部分組成[1],按其理化性質(zhì)可劃分為α、β、γ 3個亞科。皰疹病毒感染的宿主范圍廣,可以感染人類和其他脊椎動物[2-4]。而α皰疹病毒感染后隨著基因表達(dá)時序的不同,分為立即早期(IE)基因、早期(E)基因和晚期(L)基因,其中IE基因調(diào)控著E基因和L基因的表達(dá)。目前在1型人單純皰疹病毒(Herpes simplex virus 1,HSV-1)中已發(fā)現(xiàn)了5個IE基因,包括ICP0、ICP4、ICP22、ICP27和ICP47, 而ICP4編碼的蛋白質(zhì)為病毒基因表達(dá)和復(fù)制所必需,為最重要的IE基因,它不僅對病毒的E基因和L基因有轉(zhuǎn)錄激活的作用,同時,在某些特殊條件也下發(fā)揮著轉(zhuǎn)錄抑制的作用。
α皰疹病毒基因組由特定長區(qū)(UL)和特定短區(qū)(US)兩個共價結(jié)合的片段組成,每一區(qū)域兩側(cè)都與反向重復(fù)序列相連,其中,UL和US之間的重復(fù)序列為內(nèi)部重復(fù)序列(IR),而整個基因組兩端的重復(fù)序列為末端重復(fù)序列(TR)[5]。ICP4基因在病毒基因組的2個重復(fù)序列區(qū)域——IR和TR分別有一個拷貝,是α皰疹病毒中僅有的2個雙拷貝基因之一。
在HSV-1中,ICP4表達(dá)產(chǎn)物是一個大小為175 kDa的蛋白,具有基因表達(dá)調(diào)控蛋白所具有的螺旋-轉(zhuǎn)角-螺旋(helix-turn-helix)結(jié)構(gòu)[6]并以二聚體的形式存在[7]。ICP4和許多其他的轉(zhuǎn)錄因子一樣,擁有幾個功能區(qū)域:DNA結(jié)合區(qū)域、核定位區(qū)域以及兩個反式激活區(qū)域[8],這些功能區(qū)域賦予了ICP4多種功能。Deluca[9-10]等通過構(gòu)建ICP4不同區(qū)域缺失的突變體來探究ICP4的功能域,其中只表達(dá)N端251個氨基酸的突變體既沒有激活功能也沒有抑制作用,可見N端對調(diào)控轉(zhuǎn)錄的重要性;通過比較缺失ICP4不同區(qū)域的突變體在宿主細(xì)胞內(nèi)的表達(dá)位置確定了ICP4核定位功能域為641-774位氨基酸。Shepard[11]等通過構(gòu)建細(xì)胞系和基因缺失的方法證明,缺失31-274位氨基酸的ICP4可結(jié)合到DNA上但不能調(diào)控任何類型基因的轉(zhuǎn)錄;如果結(jié)合DNA的區(qū)域缺失,ICP4的調(diào)控能力也會受到極大的影響。
ICP4蛋白的N末端和C末端共同調(diào)控著基因的表達(dá)且N端對ICP4的功能影響更大,缺失N端50~100位氨基酸所產(chǎn)生的影響比缺失整個C端的500個氨基酸影響大[12],而N端30~210位氨基酸影響ICP4與TFIID的相互作用[13],該區(qū)域缺失后會影響RNA聚合酶II對轉(zhuǎn)錄因子的招募;N端還促進(jìn)前起始復(fù)合物(Pre-Initiation Complex,PIC)的形成。C端在啟動L基因啟動子及L基因與轉(zhuǎn)錄因子形成轉(zhuǎn)錄復(fù)合物時發(fā)揮作用,故C端的缺失對L基因的表達(dá)有極大影響,但對E基因的表達(dá)影響較小[14];此外,ICP4蛋白在病毒DNA上多聚化需要C端參與,增加ICP4對DNA的親和力[15]。
病毒感染的早期,ICP4分散在細(xì)胞核的核質(zhì)中;病毒感染的晚期,ICP4則分布在細(xì)胞核中的球狀結(jié)構(gòu)[16]。而Kalamvoki M等研究發(fā)現(xiàn),缺失gE、gI或UL41的HSV突變株感染細(xì)胞后,胞質(zhì)中也有ICP4的存在[17];此外,ICP27也會影響到ICP4在細(xì)胞中的定位[18]。這說明,ICP4在細(xì)胞中的分布與其他蛋白有關(guān)。
ICP4是病毒粒子的組分之一,Suzanne M等通過比較HSV-1親本株與ICP4缺失株病毒粒子的蛋白成分差異,發(fā)現(xiàn)親本株病毒粒子中含有ICP4蛋白而缺失株病毒粒子中沒有ICP4蛋白,證明了ICP4確實(shí)是病毒內(nèi)部成分[19]。Everett的研究表明ICP4在病毒感染早期時還會結(jié)合在基因組上形成病毒核蛋白,以進(jìn)入病毒的復(fù)制中心[20]。
在宿主細(xì)胞RNA聚合酶II(RNA Polymerase II,RNA POL II)介導(dǎo)的皰疹病毒基因轉(zhuǎn)錄過程中,轉(zhuǎn)錄調(diào)控因子IID(Transcription factor II D,TFIID)含有能識別TATA框的TATA結(jié)合蛋白(TATA-binding protein,TBP)而對病毒基因的啟動子進(jìn)行識別[21]。Sampath等對HSV-1研究表明,只有在ICP4與tk和gC啟動子結(jié)合后,TBP和RNA POLII才能結(jié)合到tk和gC基因的啟動子上[14],表明ICP4對于病毒E基因和L基因的啟動子與其他轉(zhuǎn)錄因子形成轉(zhuǎn)錄復(fù)合物至關(guān)重要。RNA POLII介導(dǎo)的轉(zhuǎn)錄中需要TFIID和中介體(Mediator)的參與,在病毒感染期間,ICP4不僅與TFIID相互作用,還會與中介體相互作用[22],中介體在影響RNA POLII轉(zhuǎn)錄機(jī)制上起著重要的作用,它通過促進(jìn)RNA POL II加入PIC以建立上游激活劑和普通轉(zhuǎn)錄機(jī)制之間的橋梁,其中,PIC主要由一般轉(zhuǎn)錄因子(General transcription factors,GTFs)和RNA POL II構(gòu)成,且PIC的形成是RNA POL II轉(zhuǎn)錄機(jī)制形成的先決條件[23]。Lauren M等在對ICP4與TFIID結(jié)合的研究中發(fā)現(xiàn),ICP4會和TFIID中的一系列TBP連接因子(TBP-associated factors,TAFs)結(jié)合,這些結(jié)合的TAFs復(fù)合物在整個病毒感染過程中都會被檢測到,而ICP4與中介體的結(jié)合只會在隨后被檢測到[24](圖1A)。
A. ICP4在發(fā)揮激活功能時,會和RNA聚合酶II、中介體(Mediator)、TFIID和TAFs共同作用;B.ICP4在發(fā)揮抑制轉(zhuǎn)錄的功能時,與DNA上的特異性序列結(jié)合并與TBP和TFIIB形成TPC。而隨著病毒感染過程的推進(jìn),由其他細(xì)胞轉(zhuǎn)錄因子所介導(dǎo)的轉(zhuǎn)錄將會因為E蛋白和L蛋白的增多而受到影響。圖1 ICP4轉(zhuǎn)錄調(diào)控機(jī)制[28-29]Fig.1 Transcriptional regulation mechanism of ICP4[28-29]
ICP4蛋白激活E基因和L基因的機(jī)制是不同的,且涉及的轉(zhuǎn)錄因子也不一樣。在HSV-1中,ICP4與TFIID、TFIIA等轉(zhuǎn)錄因子以及RNA POL II共同進(jìn)行E基因轉(zhuǎn)錄的調(diào)控,其中,ICP4加強(qiáng)了TFIIA使TBP穩(wěn)定結(jié)合TATA框的能力;而HSV-1的L基因具有啟動子元件(initiator elements,INRs),該元件的存在使L基因的轉(zhuǎn)錄調(diào)控并不需要TFIIA的參與,且ICP4能夠代替TFIIA使TFIID穩(wěn)定結(jié)合在L基因上[14,25-26]。
在調(diào)控轉(zhuǎn)錄過程中,ICP4在DNA上多聚化使其與DNA的親和力增加,從而可與DNA更好地結(jié)合[15],但它與被激活轉(zhuǎn)錄的基因啟動子DNA不需要高度特異性的結(jié)合。Smiley等將缺失了gD基因啟動子上游與轉(zhuǎn)錄起始位點(diǎn)下游的ICP4特異性結(jié)合位點(diǎn)的突變株感染細(xì)胞后發(fā)現(xiàn),gD基因的轉(zhuǎn)錄幾乎沒有受到影響[27]。
α皰疹病毒ICP4對自身、LAT(Latency Assciatited Transcript,LAT)及L/STs(L/S junction-spanning transcripts,L/STs)轉(zhuǎn)錄可產(chǎn)生抑制作用,在ICP4轉(zhuǎn)錄激活調(diào)控的過程中不需要與DNA上的特異性序列結(jié)合,但發(fā)揮轉(zhuǎn)錄產(chǎn)生抑制作用時,其與DNA上的特異性序列結(jié)合卻是必不可少的條件,ICP4與DNA上的特異性序列結(jié)合時,親和力極高,這段特異性序列為ATCGTCNNNNYCGRC(R代表嘌呤,Y代表嘧啶,N代表任意堿基)。此外,ICP4抑制自身基因啟動子的轉(zhuǎn)錄和其與DNA的結(jié)合位點(diǎn)接近TATA框和轉(zhuǎn)錄起始位點(diǎn)有關(guān),ICP4的抑制功能主要受制于ICP4-DNA結(jié)合位點(diǎn)與TATA框的距離[30]。雖然在E基因和L基因的啟動子上也有和ICP4蛋白親和力比較高的位點(diǎn),但這些位點(diǎn)并不在轉(zhuǎn)錄起始位點(diǎn),所以不會被抑制。
ICP4與TBP和TFIIB形成三元復(fù)合物(tripartite complex,TPC)并與調(diào)控基因的DNA結(jié)合而發(fā)揮轉(zhuǎn)錄抑制作用,不能形成TPC的ICP4突變體是不能進(jìn)行轉(zhuǎn)錄抑制調(diào)控的[31-32]。ICP4除了抑制其本身、LAT與L/ST的轉(zhuǎn)錄外,其他IE基因也會隨著ICP4蛋白表達(dá)的增加而被抑制轉(zhuǎn)錄,然而其他IE基因并沒有ICP4抑制的結(jié)合位點(diǎn),但具有其他細(xì)胞轉(zhuǎn)錄因子結(jié)合位點(diǎn),比如SP1,它的激活能力會隨著病毒感染的進(jìn)程而減弱,從而影響其他IE基因的轉(zhuǎn)錄[33](圖1B)。
α皰疹病毒在入侵宿主細(xì)胞后,可在神經(jīng)節(jié)細(xì)胞內(nèi)形成潛伏性感染,逃避宿主巨噬細(xì)胞、自然殺傷細(xì)胞及干擾素殺傷作用的自然防御系統(tǒng),在病毒潛伏的過程中沒有完整的基因組復(fù)制,僅有小部分基因進(jìn)行了轉(zhuǎn)錄。當(dāng)宿主抵抗力下降之后,病毒在神經(jīng)節(jié)和相鄰的神經(jīng)組織內(nèi)復(fù)制。
LAT是HSV-1在潛伏期間唯一大量存在和轉(zhuǎn)錄的RNA,在潛伏感染的建立、維持及激活中扮演著重要的角色;同時,在HSV-1潛伏感染期間也能檢測到ICP4的RNA[34]。LAT的啟動子上具有ICP4高度特異性的結(jié)合位點(diǎn),該位點(diǎn)對ICP4發(fā)揮轉(zhuǎn)錄調(diào)控作用至關(guān)重要,當(dāng)ICP4與LAT的特異性結(jié)合位點(diǎn)結(jié)合后,可抑制LAT的轉(zhuǎn)錄;ICP4不僅可抑制LAT,還可抑制LAT所編碼的靶向ICP0、ICP34.5的miRNAs[35],其中ICP0在HSV-1由潛伏感染進(jìn)入裂解性感染的過程中起到重要作用[36],進(jìn)一步證明ICP4對維持潛伏是必要的。此外,在HSV-1由潛伏狀態(tài)進(jìn)入激活狀態(tài)時,ICP4會和HSV-1的其它miRNAs相互作用,如miR-H6會抑制ICP4蛋白的表達(dá)而影響HSV-1的潛伏[37-38]。最近,Maroui Ma的研究發(fā)現(xiàn)ICP4和ICP0對包含HSV-1 DNA的早幼粒細(xì)胞白血病(Promyelocytic leukemia,PML)核小體(Viral DNA-containing PML nuclear bodies,vDCP-NBs)的形成有重要作用,而vDCP-NBs與病毒基因組的潛伏感染時的主要表現(xiàn)形式相關(guān)[39]。
除了調(diào)控病毒基因轉(zhuǎn)錄和介導(dǎo)病毒潛伏感染外,ICP4還具有許多其他功能。例如,miR-101是Hela細(xì)胞編碼的一種miRNA,可影響HSV-1的復(fù)制[40],而ICP4會介導(dǎo)miR-101表達(dá)從而抑制HSV-1的復(fù)制[41]。此外,Dembowski JA的研究還發(fā)現(xiàn),ICP4可能還會影響重要的染色質(zhì)重塑細(xì)胞因子的招募[42]。
ICP4和細(xì)胞凋亡也有一定的關(guān)聯(lián),HSV-1誘導(dǎo)細(xì)胞凋亡的的功能可被病毒自身的某些蛋白抑制[43]。Leopardi研究表明,ICP4具有抗凋亡功能,是抑制HSV-1誘導(dǎo)凋亡的因素之一[44];PirittaPeri也發(fā)現(xiàn),ICP4和US3缺失的HSV-1感染U937細(xì)胞會出現(xiàn)大量凋亡和壞死性凋亡現(xiàn)象[45]。
ICP4還能對宿主細(xì)胞中的一些因子進(jìn)行轉(zhuǎn)錄調(diào)控,血管內(nèi)皮生長因子-A(vascular endothelial growth factor-A,VEGF-A)是導(dǎo)致感染HSV-1復(fù)發(fā)性角膜疾病的因素之一,ICP4可以調(diào)控VEGF-A的轉(zhuǎn)錄而促進(jìn)新血管的廣泛生成,從而導(dǎo)致復(fù)發(fā)性角膜疾病,其機(jī)制是VEGF-A啟動子中含有和病毒E基因啟動子中一樣的順式CG框,ICP4得以進(jìn)行轉(zhuǎn)錄調(diào)控[46]。
HSV的ICP4對人免疫缺陷病毒(human immunodeficiency virus,HIV)感染后在CD4+淋巴細(xì)胞中的復(fù)制也會產(chǎn)生影響,Albrecht M A 將標(biāo)記的HIV分別與HSV 親本株、ICP0缺失株、ICP4缺失株和ICP27缺失株病毒共同感染CEM細(xì)胞,發(fā)現(xiàn)HIV和ICP4缺失病毒株共感染時,HIV不能復(fù)制,而和其他的毒株共感染時卻可以復(fù)制,說明ICP4會增強(qiáng)HIV在人CD4+淋巴細(xì)胞中的復(fù)制[47]。
ICP4可以與許多其他病毒蛋白相互作用對彼此的表達(dá)及作用產(chǎn)生影響。Liu M等報道了ICP0和ICP4在病毒感染細(xì)胞中的直接相互作用,ICP4可以抑制ICP0的轉(zhuǎn)錄,而ICP0也要拮抗ICP4的抑制[48]。在缺失ICP0的情況下,敲低干擾素誘導(dǎo)蛋白(Nuclear Interferon (IFN)-Inducible Protein 16,IFI16),ICP4的表達(dá)會增加[49]。ICP4和 ICP0還會協(xié)同誘導(dǎo)E基因和L基因的轉(zhuǎn)錄[50]。此外,UL21蛋白的累積會延遲ICP4蛋白的合成[51];被膜蛋白UL7的突變也會減少ICP4的轉(zhuǎn)錄,進(jìn)而減弱HSV-1的毒力[52]。ICP27對ICP4的抑制功能具有調(diào)節(jié)作用,在缺少ICP27的情況下,ICP4對L/ST啟動子的抑制作用有所下降[53];而在感染了ICP27突變株的細(xì)胞中,核內(nèi)包含著ICP4蛋白的病毒復(fù)制結(jié)構(gòu)無法形成,取而代之的是小指環(huán)狀的結(jié)構(gòu)[54]。
ICP4是α皰疹病毒中一個必需蛋白,在激活病毒E和L基因的轉(zhuǎn)錄、表達(dá)和調(diào)控病毒的潛伏感染等方面具有重要作用,目前對HSV-1 ICP4的研究較為深入且集中于功能域?qū)D(zhuǎn)錄調(diào)控產(chǎn)生的作用、與其他蛋白及宿主細(xì)胞因子之間的相互作用以及與DNA結(jié)合的模式等方面,而對α皰疹病毒亞科其他成員的ICP4的研究資料相對缺乏,今后應(yīng)將研究重點(diǎn)放在ICP4對潛伏感染的調(diào)控及與細(xì)胞凋亡的關(guān)系等方面。
參考文獻(xiàn):
[1] Guo Y, Cheng A, Wang M, et al. Purification of anatid herpesvirus 1 particles by tangential-flow ultrafiltration and sucrose gradient ultracentrifugation[J]. J Virol Methods, 2009, 161(1): 1-6. DOI:10.1016/j.jviromet.2008.12.017
[2] Dunn JR, Auten K, Heidari M, et al. Correlation between Marek’s disease virus pathotype and replication[J]. Avian Dis, 2014, 58(2): 287-292. DOI:10.1637/10678-092513-Reg.1
[3] Tombácz D, Csabai Z, Oláh P, et al. Characterization of novel transcripts in pseudorabies virus[J]. Viruses, 2015, 7(5): 2727-2744. DOI:10.3390/v7052727
[4] Khalil MI, Che X, Sung P, et al. Mutational analysis of varicella-zoster virus (VZV) immediate early protein (IE62) subdomains and their importance in viral replication[J]. Virology, 2016, 492: 82-91. DOI:10.1016/j.virol.2016.02.012
[5] Wu Y, Cheng A, Wang M, et al. Complete genomic sequence of Chinese virulent duck enteritis virus[J]. J Virol, 2012, 86(10): 5965. DOI:10.1128/JVI.00529-12
[6] Wyrwicz L S, Rychlewski L. Fold recognition insights into function of herpes ICP4 protein[J]. Acta Biochim Pol, 2007, 54(3): 551-559.
[7] Metzler DW, Wilcox KW. Isolation of herpes simplex virus regulatory protein ICP4 as a homodimeric complex[J].J Virol, 1985, 55(2): 329-337.
[8] Paterson T, Everett RD. The regions of the herpes simplex virus type 1 immediate early protein Vmw175 required for site specific DNA binding closely correspond to those involved in transcriptional regulation[J]. Nucleic Acids Res, 1988, 16(23): 11005.
[9] Deluca NA, Schaffer PA. Physical and functional domains of the herpes simplex virus transcriptional regulatory protein ICP4[J].J Virol, 1988, 62(3): 732-743.
[10] Deluca NA, Schaffer PA. Activities of herpes simplex virus type 1 (HSV-1) ICP4 genes specifying nonsense peptides[J].Nucleic Acids Res, 1987, 15(11): 4491-4511.
[11] Shepard AA, Tolentino P, Deluca NA. trans-dominant inhibition of herpes simplex virus transcriptional regulatory protein ICP4 by heterodimer formation[J].J Virol, 1990, 64(8): 3916.
[12] Wagner LM, Lester JT, Sivrich FL, et al. The N terminus and C terminus of herpes simplex virus 1 ICP4 cooperate to activate viral gene expression[J]. J Virol, 2012, 86(12): 6862-6874. DOI:10.1128/JVI.00651-12
[13] Wagner LM, Bayer A, Deluca NA. Requirement of the N-terminal activation domain of herpes simplex virus ICP4 for viral gene expression[J].J Virol, 2013, 87(2): 1010-1018. DOI:10.1128/JVI.02844-12
[14] Sampath P, Deluca NA. Binding of ICP4, TATA-binding protein, and RNA polymerase II to herpes simplex virus type 1 immediate-early, early, and late promoters in virus-infected cells[J].J Virol, 2008, 82(5): 2339-2349. DOI:10.1128/JVI.02459-07
[15] Kuddus RH, Deluca NA. DNA-dependent oligomerization of herpes simplex virus type 1 regulatory protein ICP4[J].J Virol, 2007, 81(17): 9230-9237. DOI:10.1128/JVI.01054-07
[16] Knipe DM, Senechek D, Rice SA, et al. Stages in the nuclear association of the herpes simplex virus transcriptional activator protein ICP4[J].J Virol, 1987, 61(2): 276-284.
[17] Kalamvoki M, Qu J, Roizman B. Translocation and colocalization of ICP4 and ICP0 in cells infected with herpes simplex virus 1 mutants lacking glycoprotein E, glycoprotein I, or the virion host shutoff product of the UL41 gene[J].J Virol, 2008, 82(4): 1701-1713. DOI:10.1128/JVI.02157-07
[18] Sedlackova L, Rice SA. Herpes simplex virus type 1 immediate-early protein ICP27 is required for efficient incorporation of ICP0 and ICP4 into virions[J].J Virol, 2008, 82(1): 268-277. DOI:10.1128/JVI.01588-07
[19] Pritchard SM, Cunha CW, Nicola AV. Analysis of herpes simplex virion tegument ICP4 derived from infected cells and ICP4-expressing cells[J]. PloS One, 2013, 8(8): e70889. DOI:10.1371/journal.pone.0070889
[20] Everett RD, Sourvinos G, Orr A. Recruitment of herpes simplex virus type 1 transcriptional regulatory protein ICP4 into foci juxtaposed to ND10 in live, infected cells[J].J Virol, 2003, 77(6): 3680-3689. DOI:10.1128/JVI.77.6.3680-3689.2003
[21] Tora L, Timmers HTM. The TATA box regulates TATA-binding protein (TBP) dynamicsinvivo[J]. Trends Biochem Sci, 2010, 35(6): 309-314. DOI:10.1016/j.tibs.2010.01.007
[22] Deluca JTL, Neal A. Herpes simplex virus 1 ICP4 forms complexes with TFIID and mediator in virus-infected cells[J].J Virol, 2011, 85(12): 5733-5744. DOI:10.1128/JVI.00385-11
[23] Thomas MC, Chiang CM. General Cofactors: TFIID, mediator and USA[M]. New York Springer, 2006: 67-94. DOI:10.1007/978-0-387-40049-5_4
[24] Deluca LMW, Neal A. Temporal association of herpes simplex virus ICP4 with cellular complexes functioning at multiple steps in PolII transcription[J]. PloS One, 2013, 8(10): 65-65. DOI:10.1371/journal.pone.0078242
[25] Smith CA, Bates P, Riveragonzalez R, et al. ICP4, the major transcriptional regulatory protein of herpes simplex virus type 1, forms a tripartite complex with TATA-binding protein and TFIIB[J].J Virol, 1993, 67(8): 4676.
[26] Zabierowski SE, Deluca NA. Stabilized binding of TBP to the TATA box of herpes simplex virus type 1 early (tk) and late (gC) promoters by TFIIA and ICP4[J].J Virol, 2008, 82(7): 3546. DOI:10.1128/JVI.02560-07
[27] Smiley JR, Johnson DC, Pizer LI, et al. The ICP4 binding sites in the herpes simplex virus type 1 glycoprotein D (gD) promoter are not essential for efficient gD transcription during virus infection[J]. J Virol, 1992, 66(2): 623-631.
[28] Deluca NA. Functions and mechanism of action of the herpes simplex virus regulatory protein, ICP4[J]. Caister Acad Press,2011,64(7): 17-38.
[29] Gruffat H, Marchione R, Manet E. Herpesvirus late gene expression: a viral-specific pre-initiation complex is key[J]. Front Microbiol, 2016, 7(e1001114): 869. DOI:10.3389/fmicb.2016.00869
[30] Leopardi R, Michael N, Roizman B. Repression of the herpes simplex virus 1 alpha 4 gene by its gene product (ICP4) within the context of the viral genome is conditioned by the distance and stereoaxial alignment of the ICP4 DNA binding site relative to the TATA box[J]. J Virol, 1995, 69(5): 3042-3048.
[31] Kuddus R, Gu B, Deluca NA. Relationship between TATA-binding protein and herpes simplex virus type 1 ICP4 DNA-binding sites in complex formation and repression of transcription[J]. J Virol, 1995, 69(9): 5568-5575.
[32] Smith CA, Bates P, Riveragonzalez R, et al. ICP4, the major transcriptional regulatory protein of herpes simplex virus type 1, forms a tripartite complex with TATA-binding protein and TFIIB[J]. J Virol, 1993, 67(8): 4676-4687.
[33] Kim DB, Deluca NA. Phosphorylation of transcription factor Sp1 during herpes simplex virus type 1 infection[J]. J Virol, 2002, 76(13): 6473-6479. DOI:10.1128/JVI.76.13.6473-6479.2002
[34] Kramer MF, Coen DM. Quantification of transcripts from the ICP4 and thymidine kinase genes in mouse ganglia latently infected with herpes simplex virus[J]. J Virol, 1995, 69(3): 1389-1399.
[35] Tang S, Patel Akrause PR. Novel less-abundant viral microRNAs encoded by herpes simplex virus 2 latency-associated transcript and their roles in regulating ICP34.5 and ICP0 mRNAs[J]. J Virol, 2009, 83(3): 1433-1442. DOI:10.1128/JVI.01723-08
[36] Smith MC, Boutell C, Davido DJ. HSV-1 ICP0: paving the way for viral replication[J]. Future Virol, 2011, 6(4): 421-429. DOI:10.2217/fvl.11.24
[37] Duan F, Liao J, Huang Q, et al. HSV-1 miR-H6 inhibits HSV-1 replication and IL-6 expression in human corneal epithelial cells in vitro[J]. Clin Dev Immunol, 2012, 2012(6): 121-129. DOI:10.1155/2012/192791
[38] Umbach JL, Kramer MF, Jurak I, et al. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs[J]. Nature, 2008, 454(7205): 780-783.DOI:10.1038/nature07103
[39] Ali MM, Aleth C, Camille C, et al. Latency entry of herpes simplex virus 1 is determined by the interaction of its genome with the nuclear environment[J]. PLoS Pathog, 2016, 12(9): e1005834. DOI:10.1371/journal.ppat.1005834
[40] Zheng SQ, Li YX, Zhang Y, et al. MiR-101 regulates HSV-1 replication by targeting ATP5B[J]. Antiviral Res, 2011, 89(3): 219-226. DOI:10.1016/j.antiviral.2011.01.008
[41] Wang X, Diao C, Yang X, et al. ICP4-induced miR-101 attenuates HSV-1 replication[J]. Sci Rep, 2016, 6: 23205. DOI:10.1038/srep23205
[42] Dembowski JA, Deluca NA. Selective recruitment of nuclear factors to productively replicating herpes simplex virus genomes[J]. PLoS Pathog, 2015, 11(5): e1004939. DOI:10.1371/journal.ppat.1004939
[43] You Y, Cheng AC, Wang MS, et al. The suppression of apoptosis by α-herpesvirus[J]. Cell Death Dis, 2017, 8(4): e2749. DOI:10.1038/cddis.2017.139
[44] Leopardi R, Roizman B. The herpes simplex virus major regulatory protein ICP4 blocks apoptosis induced by the virus or by hyperthermia[J]. Proc Natl Acad Sci U S A, 1996, 93(18): 9583.
[45] Peri P, Nuutila K, Vuorinen T, et al. Cathepsins are involved in virus-induced cell death in ICP4 and Us3 deletion mutant herpes simplex virus type 1-infected monocytic cells[J]. J Gen Virol, 2011, 92(1): 173-180. DOI:10.1099/vir.0.025080-0
[46] Wuest T, Zheng M, Efstathiou S, et al. The herpes simplex virus-1 transactivator infected cell protein-4 drives VEGF-A dependent neovascularization[J]. PLoS Pathog, 2011, 7(10): 515-534. DOI:10.1371/journal.ppat.1002278
[47] Albrecht MA, Deluca NA, Byrn RA, et al. The herpes simplex virus immediate-early protein, ICP4, is required to potentiate replication of human immunodeficiency virus in CD4+ lymphocytes[J]. J Virol, 1989, 63(63): 1861-1868.
[48] Liu M, Rakowski B, Gershburg E, et al. ICP0 antagonizes ICP4-dependent silencing of the herpes simplex virus ICP0 gene[J]. Plos One, 2010, 5(1): 8837.DOI:10.1371/journal.pone.0008837
[49] Orzalli MH, Conwell SE, Berrios C, et al. Nuclear interferon-inducible protein 16 promotes silencing of herpesviral and transfected DNA[J]. Proc Natl Acad Sci U S A, 2013, 110(47): 4492-4501. DOI:10.1073/pnas.1316194110
[50] Muller MT. Binding of the herpes simplex virus immediate-early gene product ICP4 to its own transcription start site[J]. J Virol, 1987, 61(3): 858-865.
[51] Mbong EF, Woodley L, Frost E, et al. Deletion of UL21 causes a delay in the early stages of the herpes simplex virus 1 replication cycle[J]. J Virol, 2012, 86(12): 7003-7007. DOI:10.1128/JVI.00411-12
[52] Xu X, Fan S, Zhou J, et al. The mutated tegument protein UL7 attenuates the virulence of herpes simplex virus 1 by reducing the modulation of α-4 gene transcription[J]. Virol J, 2016, 13(1): 152.DOI:10.1186/s12985-016-0600-9
[53] Samaniego LA, Webb AL, Deluca NA. Functional interactions between herpes simplex virus immediate-early proteins during infection: gene expression as a consequence of ICP27 and different domains of ICP4[J]. J Virol, 1995, 69(9): 5705-5715.
[54] Rojas S, Corbinlickfett KA, Escuderopaunetto L, et al. ICP27 phosphorylation site mutants are defective in herpes simplex virus 1 replication and gene expression[J]. J Virol, 2010, 84(5): 2200-2211. DOI:10.1128/JVI.00917-09