邵麗
摘 ?要: 針對(duì)當(dāng)前風(fēng)險(xiǎn)評(píng)估方法確定的運(yùn)動(dòng)損傷風(fēng)險(xiǎn)因素與目標(biāo)之間的關(guān)聯(lián)度較差,存在實(shí)際結(jié)果與評(píng)估結(jié)果偏差較大的問題,提出一種基于關(guān)聯(lián)規(guī)則的運(yùn)動(dòng)損傷風(fēng)險(xiǎn)評(píng)估方法。采用數(shù)據(jù)預(yù)處理方法對(duì)統(tǒng)計(jì)的不同競技項(xiàng)目高水平運(yùn)動(dòng)員損傷資料進(jìn)行處理,針對(duì)構(gòu)建的運(yùn)動(dòng)損傷風(fēng)險(xiǎn)評(píng)估初始指標(biāo)集,采用Apriori關(guān)聯(lián)規(guī)則分析實(shí)現(xiàn)對(duì)運(yùn)動(dòng)損傷有影響的關(guān)聯(lián)指標(biāo)的分析挖掘,對(duì)運(yùn)動(dòng)損傷致傷主要風(fēng)險(xiǎn)狀態(tài)量進(jìn)行分類整理,構(gòu)建運(yùn)動(dòng)員損傷風(fēng)險(xiǎn)綜合狀態(tài)量。依據(jù)歷史損傷數(shù)據(jù)統(tǒng)計(jì)結(jié)果與關(guān)聯(lián)規(guī)則的計(jì)算方法確定運(yùn)動(dòng)員損傷綜合狀態(tài)量中各個(gè)單項(xiàng)狀態(tài)量的權(quán)重系數(shù),計(jì)算運(yùn)動(dòng)員各損傷綜合狀態(tài)量中單項(xiàng)狀態(tài)量的評(píng)分。實(shí)驗(yàn)結(jié)果表明,所提方法對(duì)運(yùn)動(dòng)損傷風(fēng)險(xiǎn)因素?cái)?shù)據(jù)的篩選、分類以及提取過程是可行的,預(yù)處理后的運(yùn)動(dòng)損傷數(shù)據(jù)可用于關(guān)聯(lián)規(guī)則挖掘分析,且評(píng)估結(jié)果與開放式問卷帕累托分析結(jié)果基本一致。
關(guān)鍵詞: 關(guān)聯(lián)規(guī)則; 運(yùn)動(dòng)損傷; 風(fēng)險(xiǎn)評(píng)估; 權(quán)重系數(shù); 單項(xiàng)狀態(tài)量; 帕累托分析
中圖分類號(hào): TN911?34; TP309 ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)識(shí)碼: A ? ? ? ? ? ? ? ? ? ?文章編號(hào): 1004?373X(2018)10?0172?03
Abstract: In allusion to the problems that the correlation between the sports injury risk factor and the target is poor, and a big deviation exists between the actual results and the assessment results in the current risk assessment method, a sports injury risk assessment method based on association rules is proposed. The data preprocessing method is adopted to deal with the injury materials of high?level athletes for different athletic events. For the constructed initial index set of sports injury risk assessment, analysis of Apriori association rule is used to realize the analysis and excavation of the association indicators that affect sports injury. The comprehensive state quantity of athlete injury risk is constructed by means of classification of main risk state quantities of sports injury. According to the statistic results of historical injury data and the calculation method of association rules, the weight coefficient for each individual state quantity of athlete injury comprehensive state quantity is determined, and the score for the individual state quantity of athletes′ each injury comprehensive state quantity is calculated. The experimental results show that the proposed method for the screening, classification and extraction processes of sports injury risk factor data is feasible, the preprocessed sports injury data can be used for mining analysis of association rules, and the assessment result is basically consistent with that of open questionnaire using Pareto analysis.
Keywords: association rule; sports injury; risk assessment; weight coefficient; individual state quantity; Pareto analysis
在正常的體育活動(dòng)中處處隱藏著風(fēng)險(xiǎn),在競技體育中,許多項(xiàng)目都屬于高危險(xiǎn)性項(xiàng)目[1]。競技運(yùn)動(dòng)員根據(jù)周期性的運(yùn)動(dòng)訓(xùn)練,身體素質(zhì)、項(xiàng)目技巧、競賽心理等多方面水平才能不斷提高[2]。由于競技項(xiàng)目的特點(diǎn),以及比賽規(guī)則的變化導(dǎo)致運(yùn)動(dòng)員很多項(xiàng)目動(dòng)作的難度系數(shù)逐漸提高,這使得運(yùn)動(dòng)員身體損傷的風(fēng)險(xiǎn)逐漸加大[3]。運(yùn)動(dòng)員損傷風(fēng)險(xiǎn)不僅影響著運(yùn)動(dòng)員的身體健康,還影響著運(yùn)動(dòng)員的比賽生涯,對(duì)運(yùn)動(dòng)員本身以及該項(xiàng)競技項(xiàng)目的發(fā)展都產(chǎn)生了負(fù)面的影響[4]。在這種情況下,研究如何確立和評(píng)估運(yùn)動(dòng)損傷風(fēng)險(xiǎn)因素,盡最大可能避免運(yùn)動(dòng)損傷風(fēng)險(xiǎn),提出運(yùn)動(dòng)員損傷有效應(yīng)對(duì)策略,對(duì)運(yùn)動(dòng)員的訓(xùn)練計(jì)劃進(jìn)行合理制定具有一定的指導(dǎo)意義,對(duì)于教練員以及運(yùn)動(dòng)員調(diào)整技戰(zhàn)術(shù)具有非常重要的現(xiàn)實(shí)意義[5?6]。
王浩倫等人提出一種采用三角模糊軟集的運(yùn)動(dòng)損傷風(fēng)險(xiǎn)評(píng)估方法[7]。在對(duì)運(yùn)動(dòng)損傷風(fēng)險(xiǎn)評(píng)估中,每個(gè)評(píng)價(jià)專家選取運(yùn)動(dòng)損傷風(fēng)險(xiǎn)評(píng)估指標(biāo)集以及利用語言變量進(jìn)行評(píng)估,通過三角模糊軟集方法對(duì)每個(gè)評(píng)價(jià)專家給出的評(píng)價(jià)結(jié)果進(jìn)行綜合分析,分別獲得運(yùn)動(dòng)損傷風(fēng)險(xiǎn)評(píng)估指標(biāo)權(quán)重,依據(jù)指標(biāo)權(quán)重獲得運(yùn)動(dòng)員損傷的風(fēng)險(xiǎn)順序。該方法確定的運(yùn)動(dòng)損傷風(fēng)險(xiǎn)因素與目標(biāo)之間的關(guān)聯(lián)度較差,存在實(shí)際結(jié)果與評(píng)估結(jié)果偏差較大的問題,提出一種基于關(guān)聯(lián)規(guī)則的運(yùn)動(dòng)損傷風(fēng)險(xiǎn)評(píng)估方法。采用Apriori關(guān)聯(lián)規(guī)則分析實(shí)現(xiàn)對(duì)運(yùn)動(dòng)損傷有影響的關(guān)聯(lián)指標(biāo)的分析挖掘,依據(jù)歷史損傷數(shù)據(jù)統(tǒng)計(jì)結(jié)果與關(guān)聯(lián)規(guī)則的計(jì)算方法確定運(yùn)動(dòng)員損傷綜合狀態(tài)量中各個(gè)單項(xiàng)狀態(tài)量的權(quán)重系數(shù),計(jì)算運(yùn)動(dòng)員各損傷綜合狀態(tài)量中單項(xiàng)狀態(tài)量的評(píng)分。實(shí)驗(yàn)結(jié)果表明,所提方法與開放式問卷帕累托分析結(jié)果基本一致。
1.1 ?基于Apriori關(guān)聯(lián)規(guī)則挖掘運(yùn)動(dòng)損傷數(shù)據(jù)的過程
采用數(shù)據(jù)預(yù)處理方法對(duì)不同競技項(xiàng)目高水平運(yùn)動(dòng)員損傷資料進(jìn)行處理,針對(duì)構(gòu)建的運(yùn)動(dòng)損傷風(fēng)險(xiǎn)評(píng)估初始指標(biāo)集,采用Apriori關(guān)聯(lián)規(guī)則分析實(shí)現(xiàn)對(duì)運(yùn)動(dòng)損傷有影響的關(guān)聯(lián)指標(biāo)的分析挖掘,對(duì)運(yùn)動(dòng)損傷致傷主要風(fēng)險(xiǎn)狀態(tài)量進(jìn)行分類整理,構(gòu)建運(yùn)動(dòng)員損傷風(fēng)險(xiǎn)綜合狀態(tài)量。依據(jù)歷史損傷數(shù)據(jù)統(tǒng)計(jì)結(jié)果與關(guān)聯(lián)規(guī)則的計(jì)算方法確定運(yùn)動(dòng)員損傷綜合狀態(tài)量中各個(gè)單項(xiàng)狀態(tài)量的權(quán)重系數(shù),計(jì)算運(yùn)動(dòng)員各損傷綜合狀態(tài)量中單項(xiàng)狀態(tài)量的評(píng)分。由于關(guān)聯(lián)規(guī)則不能區(qū)別歷史運(yùn)動(dòng)損傷連續(xù)性數(shù)值數(shù)據(jù),需要對(duì)統(tǒng)計(jì)的歷史運(yùn)動(dòng)損傷數(shù)據(jù)進(jìn)行離散化處理,通過歸一化處理方法[8]對(duì)統(tǒng)計(jì)的運(yùn)動(dòng)損傷數(shù)據(jù)進(jìn)行分類,即:
采用Apriori關(guān)聯(lián)規(guī)則分析方法[9],第一階段通過逐層迭代搜索出觀測運(yùn)動(dòng)員損傷致傷數(shù)據(jù)集中所有項(xiàng)的頻繁項(xiàng)集;第二個(gè)階段從致傷危險(xiǎn)因素頻繁集中挖掘出滿足最低置信度的強(qiáng)關(guān)聯(lián)規(guī)則。為了找出給定的最小支持度與置信度閾值的致傷數(shù)據(jù)之間的關(guān)聯(lián)關(guān)系,以此關(guān)聯(lián)關(guān)系對(duì)運(yùn)動(dòng)員損傷致傷危險(xiǎn)因素?cái)?shù)據(jù)集進(jìn)行損傷風(fēng)險(xiǎn)因素頻繁項(xiàng)數(shù)據(jù)集的挖掘,并分析運(yùn)動(dòng)損傷風(fēng)險(xiǎn)因素頻繁項(xiàng)集之間的關(guān)聯(lián)關(guān)系,通過引入興趣度模型[10]來獲取有重要作用的關(guān)聯(lián)規(guī)則。考慮分析運(yùn)動(dòng)員損傷致傷數(shù)據(jù)的多個(gè)因子的關(guān)聯(lián)規(guī)則,則有:
式中:[S(A)=P(A)]表示運(yùn)動(dòng)員損傷致傷危險(xiǎn)因素[A]在損傷風(fēng)險(xiǎn)因素事務(wù)集[T]中出現(xiàn)的幾率;[S(B)=P(B)]用于描述致傷危險(xiǎn)因素[B]在損傷風(fēng)險(xiǎn)因素事務(wù)集[T]中出現(xiàn)的幾率;[P(BA)]用于描述在致傷危險(xiǎn)因素[A]發(fā)生的條件下,發(fā)生[B]的幾率;[S(A?B)]表示在含有致傷危險(xiǎn)因素[A],[B]的頻繁項(xiàng)集中同時(shí)出現(xiàn)的概率。
1.2 ?確定權(quán)重系數(shù)的運(yùn)動(dòng)損傷風(fēng)險(xiǎn)評(píng)估方法
依據(jù)運(yùn)動(dòng)員損傷致傷各綜合狀態(tài)量關(guān)聯(lián)規(guī)則[A→B]的置信度可計(jì)算出反映運(yùn)動(dòng)損傷狀態(tài)的各狀態(tài)量中某一狀態(tài)量[D]的置信度[D],將相同狀態(tài)量中的某一項(xiàng)狀態(tài)量的置信度進(jìn)行對(duì)比,通過相應(yīng)的置信度的大小來確定反映運(yùn)動(dòng)損傷狀態(tài)的各狀態(tài)量的權(quán)重系數(shù)。同理,可對(duì)運(yùn)動(dòng)員訓(xùn)練和比賽階段發(fā)生的導(dǎo)致運(yùn)動(dòng)損傷的其他狀態(tài)中各單項(xiàng)變量的權(quán)重系數(shù)進(jìn)行計(jì)算,可以獲得身體素質(zhì)、心理素質(zhì)等單項(xiàng)狀態(tài)量較為客觀的權(quán)重系數(shù)。采用變權(quán)重理論[11]描述綜合評(píng)估運(yùn)動(dòng)損傷狀態(tài)的均衡性能,并利用式(3)計(jì)算反映運(yùn)動(dòng)損傷狀態(tài)的綜合狀態(tài)量中各單項(xiàng)狀態(tài)的評(píng)分。
通過訪談某高校體育專業(yè)20位專家學(xué)者,并結(jié)合調(diào)查問卷的發(fā)放和回收方式對(duì)不同競技項(xiàng)目高水平運(yùn)動(dòng)員損傷致傷因素進(jìn)行問卷帕累托分析。選取的調(diào)查對(duì)象是50名不同競技項(xiàng)目的高水平運(yùn)動(dòng)員。共發(fā)放50份調(diào)查問卷,回收有效問卷數(shù)量為48份,利用本文方法對(duì)運(yùn)動(dòng)損傷風(fēng)險(xiǎn)因素進(jìn)行評(píng)估,并結(jié)合列表排序法對(duì)不同競技項(xiàng)目高水平運(yùn)動(dòng)員損傷致傷風(fēng)險(xiǎn)評(píng)分進(jìn)行排序。運(yùn)動(dòng)員生理素質(zhì)導(dǎo)致運(yùn)動(dòng)損傷風(fēng)險(xiǎn)評(píng)估結(jié)果如表1所示。
從表1可以看出,由運(yùn)動(dòng)員生理因素導(dǎo)致的損傷致傷風(fēng)險(xiǎn)中,運(yùn)動(dòng)員身體狀態(tài)、損傷史為運(yùn)動(dòng)損傷中等致傷風(fēng)險(xiǎn)因素。相關(guān)研究結(jié)果表明,以往由于訓(xùn)練項(xiàng)目受過傷病的運(yùn)動(dòng)員,在訓(xùn)練或是比賽過程中再次誘發(fā)運(yùn)動(dòng)損傷發(fā)生的可能性遠(yuǎn)高于未受過傷的運(yùn)動(dòng)員。調(diào)查結(jié)果表明,運(yùn)動(dòng)員過度訓(xùn)練導(dǎo)致其身體力量以及協(xié)調(diào)能力均顯著下降,通常情況下技術(shù)較為熟練的運(yùn)動(dòng)員,在上述情況下也極有可能發(fā)生技術(shù)動(dòng)作上的錯(cuò)誤,引起損傷。而訓(xùn)練或是比賽中身體狀況不佳如女運(yùn)動(dòng)員正趕上月經(jīng)期,生理機(jī)能下降,此階段若是不調(diào)整訓(xùn)練計(jì)劃或是技戰(zhàn)術(shù)水平,極易導(dǎo)致?lián)p傷的發(fā)生。身體協(xié)調(diào)能力以及運(yùn)動(dòng)員力量素質(zhì)為運(yùn)動(dòng)損傷低風(fēng)險(xiǎn)因素,將其視為可接受風(fēng)險(xiǎn),但在正常訓(xùn)練中也應(yīng)當(dāng)對(duì)此予以重視。
由表2可以看出,在運(yùn)動(dòng)員訓(xùn)練因素導(dǎo)致的運(yùn)動(dòng)員損傷致傷風(fēng)險(xiǎn)中,帶傷訓(xùn)練及比賽過程中動(dòng)作系數(shù)較大或是負(fù)荷較大等為中等運(yùn)動(dòng)損傷致傷風(fēng)險(xiǎn)因素,準(zhǔn)備活動(dòng)不充分為低風(fēng)險(xiǎn)因素。很多教練員以及運(yùn)動(dòng)員認(rèn)為在訓(xùn)練過程中,拉伸準(zhǔn)備活動(dòng)不充分導(dǎo)致肌肉力量以及身體協(xié)調(diào)性較差,容易引發(fā)損傷,而前期準(zhǔn)備活動(dòng)過量也容易引起機(jī)體疲勞,使得運(yùn)動(dòng)員在訓(xùn)練和比賽過程中誘發(fā)損傷。綜合上述給出的多個(gè)維度的不同競技項(xiàng)目高水平運(yùn)動(dòng)員損傷風(fēng)險(xiǎn)評(píng)估結(jié)果,可以看出導(dǎo)致運(yùn)動(dòng)員損傷的風(fēng)險(xiǎn)主要為損傷史、訓(xùn)練或比賽中情緒波動(dòng)較大、技術(shù)動(dòng)作的不規(guī)范、帶傷訓(xùn)練等。如圖1所示,此結(jié)果與開放式問卷帕累托分析結(jié)果基本一致。
針對(duì)傳統(tǒng)評(píng)估方法存在確定的運(yùn)動(dòng)損傷風(fēng)險(xiǎn)因素與目標(biāo)之間的關(guān)聯(lián)度較差,實(shí)際結(jié)果與評(píng)估結(jié)果偏差較大的問題,提出基于關(guān)聯(lián)規(guī)則的運(yùn)動(dòng)損傷風(fēng)險(xiǎn)評(píng)估方法。結(jié)合專家學(xué)者評(píng)價(jià)結(jié)果與問卷調(diào)查結(jié)果,獲得不同競技項(xiàng)目高水平運(yùn)動(dòng)員損傷風(fēng)險(xiǎn)因素,主要包含:生理因素、訓(xùn)練組織因素、技術(shù)動(dòng)作因素以及心理因素、環(huán)境因素等。導(dǎo)致運(yùn)動(dòng)員運(yùn)動(dòng)損傷的主要風(fēng)險(xiǎn)為帶傷訓(xùn)練、損傷史以及技術(shù)動(dòng)作不規(guī)范、身體素質(zhì)差、注意力不集中等。在訓(xùn)練和比賽環(huán)境中運(yùn)動(dòng)員在面對(duì)不同運(yùn)動(dòng)損傷風(fēng)險(xiǎn)時(shí)應(yīng)當(dāng)采取不同的應(yīng)對(duì)措施,通??刹扇』乇茱L(fēng)險(xiǎn)和盡可能降低風(fēng)險(xiǎn)。
[1] 劉和臣.高強(qiáng)度田徑訓(xùn)練與運(yùn)動(dòng)損傷關(guān)系優(yōu)化建模仿真[J].計(jì)算機(jī)仿真,2017,34(3):336?339.
LIU Hechen. High strength of track and field training and sports injuries relationship optimization modeling and simulation [J]. Computer simulation, 2017, 34(3): 336?339.
[2] 袁航.高強(qiáng)度運(yùn)動(dòng)下運(yùn)動(dòng)員風(fēng)險(xiǎn)評(píng)估仿真研究[J].計(jì)算機(jī)仿真,2016,33(12):370?373.
YUAN Hang. Under high intensity exercise athletes risk assessment simulation research [J]. Computer simulation, 2016, 33(12): 370?373
[3] 邱芬,秦子來,崔德剛.大學(xué)生的體育活動(dòng)風(fēng)險(xiǎn)認(rèn)知與運(yùn)動(dòng)損傷和鍛煉行為的關(guān)系[J].武漢體育學(xué)院學(xué)報(bào),2015,49(6):75?81.
QIU Fen, QIN Zilai, CUI Degang. Relationship among perception of risk in physical activity, sport injury and exercise behavior for undergraduates [J]. Journal of Wuhan Institute of Physical Education, 2015, 49(6): 75?81.
[4] 劉同眾,朱林,程曦,等.基于多體動(dòng)力學(xué)和有限元方法的三級(jí)跳運(yùn)動(dòng)人體膝關(guān)節(jié)沖擊損傷分析研究[J].振動(dòng)與沖擊,2015,34(17):44?49.
LIU Tongzhong, ZHU Lin, CHENG Xi, et al. Impact behaviors of human knee joint during triple?jump based on multi?body dynamics and finite element analysis [J]. Journal of vibration and shock, 2015, 34(17): 44?49.
[5] 高曉嶙,徐輝,黃鵬,等.應(yīng)用功能性動(dòng)作測試評(píng)估我國橄欖球運(yùn)動(dòng)員損傷風(fēng)險(xiǎn)的研究[J].中國運(yùn)動(dòng)醫(yī)學(xué)雜志,2017,36(5):410?415.
GAO Xiaolin, XU Hui, HUANG Peng, et al. Assessing sports injury risks of Chinese rugby athletes using functional movement screen [J]. Chinese journal of sports medicine, 2017, 36(5): 410?415.
[6] 周志鵬,曲峰.3種常見評(píng)估前交叉韌帶損傷風(fēng)險(xiǎn)落地動(dòng)作的對(duì)比研究[J].天津體育學(xué)院學(xué)報(bào),2016,31(5):455?460.
ZHOU Zhipeng, QU Feng. A comparative study of risk factors related to ACL injury among three jump landing tasks [J]. Journal of Tianjin University of Sport, 2016, 31(5): 455?460.
[7] 王浩倫,徐翔斌,甘衛(wèi)華.基于三角模糊軟集的FMEA風(fēng)險(xiǎn)評(píng)估方法[J].計(jì)算機(jī)集成制造系統(tǒng),2015,21(11):3054?3062.
WANG Haolun, XU Xiangbin, GAN Weihua. Risk evaluation method in FMEA based on triangular fuzzy soft sets [J]. Computer integrated manufacturing systems, 2015, 21(11): 3054?3062.
[8] 張劍杰.高強(qiáng)度運(yùn)動(dòng)訓(xùn)練下心肌損傷預(yù)防方法分析[J].科學(xué)技術(shù)與工程,2016,16(28):158?162.
ZHANG Jianjie. Analysis of prevention of myocardial injury in high intensity exercise training [J]. Science technology and engineering, 2016,16(28): 158?162.
[9] 邱文昊,連光耀,張西山,等.基于DSmT和模糊綜合評(píng)判的健康狀態(tài)評(píng)估方法[J].計(jì)算機(jī)測量與控制,2015,23(11):3697?3700.
QIU Wenhao, LIAN Guangyao, ZHANG Xishan, et al. Assessment method of health status based on DSmT and fuzzy comprehensive evaluation [J]. Computer measurement & control, 2015, 23(11): 3697?3700.
[10] 于淼.基于行為視覺分析的運(yùn)動(dòng)角度規(guī)范性智能判斷[J].科技通報(bào),2015,31(12):199?201.
YU Miao. Standard intelligent judgment of motion angle based on behavior visual analysis [J]. Bulletin of science and technology, 2015, 31(12): 199?201.
[11] 田朝輝.基于人體運(yùn)動(dòng)狀態(tài)識(shí)別的損傷風(fēng)險(xiǎn)監(jiān)測系統(tǒng)研究[J].現(xiàn)代電子技術(shù),2017,40(12):93?96.
TIAN Zhaohui. Research on damage risk monitoring system relying on human?body motion state recognition [J]. Modern electronics technique, 2017, 40(12): 93?96.