韓如夢 劉東毅
摘要:為了研究輸入時滯對Timoshenko梁系統(tǒng)穩(wěn)定性的影響,鎮(zhèn)定邊界具有輸入時滯和載荷的Timoshenko梁系統(tǒng),利用Backstepping方法,設(shè)計(jì)了一種新的控制器來補(bǔ)償輸入時滯帶來的影響,從而得到一個穩(wěn)定的閉環(huán)系統(tǒng)。首先,給出一個與原時滯系統(tǒng)等價的無時滯系統(tǒng);然后,構(gòu)造一個Backstepping線性變換,并證明這個線性變換是有界可逆的;最后,通過這個變換將無時滯系統(tǒng)轉(zhuǎn)化為一個穩(wěn)定的目標(biāo)系統(tǒng),并設(shè)計(jì)出相應(yīng)的控制器。結(jié)果表明,此無時滯系統(tǒng)與目標(biāo)系統(tǒng)是等價的,其反饋控制律可以鎮(zhèn)定原來的時滯系統(tǒng)。研究方法解決了輸入時滯對彈性系統(tǒng)的負(fù)面影響,豐富了分布參數(shù)控制系統(tǒng)的控制器設(shè)計(jì)方法及其穩(wěn)定性理論,在工程實(shí)踐中具有一定的借鑒意義。
關(guān)鍵詞:穩(wěn)定性理論;Timoshenko梁;漸近穩(wěn)定;反饋控制;Backstepping方法; 時滯; 載荷
中圖分類號:O231.4MSC(2010)主題分類:34D20文獻(xiàn)標(biāo)志碼:A
收稿日期:20171006;修回日期:20171228;責(zé)任編輯:張軍
基金項(xiàng)目:國家自然科學(xué)基金(61573252)
第一作者簡介:韓如夢(1993—),女,河北滄州人,碩士研究生,主要從事分布參數(shù)系統(tǒng)方面的研究。
通信作者:劉東毅副教授。Email:dyliu@tju.edu.cn
韓如夢,劉東毅.帶有輸入時滯的Timoshenko梁系統(tǒng)的控制器設(shè)計(jì)與穩(wěn)定性分析[J].河北科技大學(xué)學(xué)報(bào),2018,39(2):125134.
HAN Rumeng,LIU Dongyi.Controller design and stability analysis of Timoshenko beam with input delay[J].Journal of Hebei University of Science and Technology,2018,39(2):125134.Controller design and stability analysis of Timoshenko
beam with input delay
HAN Rumeng, LIU Dongyi
(School of Mathematics, Tianjin University, Tianjin 300354, China)
Abstract:In order to study the influence of input time delay on the stability of Timoshenko beam system and stabilize the Timoshenko beam system with input delay and load, by using the Backstepping method, a new controller is designed to compensate for the input delay, and then a stable closedloop system is obtained. At first, a delayfree system is given, which is equivalent to the original timedelay system. Then, a bounded linear transformation is constructed, and it is proved that the linear transformation is bounded and invertible. Finally, the delayfree system is transformed into a stable target system by the linear transformation, and the corresponding controller is given, which implies that the delayfree system is equivalent to the target system. Therefore, the original timedelay system can be stabilized by the feedback control law. The negative effect of input delay on elastic system is solved by this method, which enriches the controller design method and stability theory of distributed parameter control system, and has a certain theoretical significance in engineering practice.
Keywords:theory of stability; Timoshenko beam; asymptotic stability; feedback control; Backstepping method; timedelay; payload
在航空、海洋和土木等工程領(lǐng)域中,彈性結(jié)構(gòu)通常起著關(guān)鍵性的連接和承載作用。在外部干擾和載荷等的作用下,這些結(jié)構(gòu)會發(fā)生振動,給工程結(jié)構(gòu)造成一定的危害。一直以來,很多學(xué)者的研究致力于彈性系統(tǒng)的控制器設(shè)計(jì)與穩(wěn)定性分析。通過抵制時滯和外部干擾等不利因素來鎮(zhèn)定系統(tǒng)[19]。Timoshenko梁系統(tǒng)考慮了剪切效應(yīng)和旋轉(zhuǎn)效應(yīng)的影響,對于彈性桿的動力學(xué)行為有著準(zhǔn)確的描述,是一種非常精確的系統(tǒng)模型。河北科技大學(xué)學(xué)報(bào)2018年第2期韓如夢,等:帶有輸入時滯的Timoshenko梁系統(tǒng)的控制器設(shè)計(jì)與穩(wěn)定性分析很多學(xué)者對其產(chǎn)生了濃厚的興趣。本文以一個邊界上帶有載荷和輸入時滯的Timoshenko梁為研究對象,利用Backstepping方法,設(shè)計(jì)了一種新的控制器補(bǔ)償時滯所帶來的影響,使閉環(huán)系統(tǒng)達(dá)到漸近穩(wěn)定。系統(tǒng)模型如下:ρwtt(x,t)-κ(wxx-φx)(x,t)=0,Iρφtt(x,t)-EIφxx(x,t)-κ(wx-φ)(x,t)=0,mwtt(1,t)+κ(wx-φ)(1,t)=u1(t-τ),Jφtt(1,t)+EIφx(1,t)=u2(t-τ),w(0,t)=φ(0,t)=0,w(x,0)=w0(x),wt(x,0)=w1(x),φ(x,0)=φ0(x),φt(x,0)=φ1(x),u1(θ)=f1(θ),u2(θ)=f2(θ),θ∈(-τ,0),(1)其中:下標(biāo)字母表示對應(yīng)相應(yīng)變量的偏微分,x∈(0,1),t>0;函數(shù)fi(θ)在適當(dāng)?shù)目臻g是有界可測的,i=1,2;w(x,t)代表梁在其平衡狀態(tài)下的彈性撓度;φ(x,t)代表總旋轉(zhuǎn)角度;u1(t)和u2(t)分別代表邊界控制力和力矩;ρ,κ,Iρ和EI分別代表線密度、剪切彈性模量、梁橫截面的慣量矩和剛度系數(shù)。
當(dāng)系統(tǒng)無時滯時,即τ=0,輸出反饋控制律:u1(t)=-α1wt(1,t),u2(t)=-α2φt(1,t),(2)可以使系統(tǒng)(1)漸近穩(wěn)定[10]。
當(dāng)τ≠0時,即系統(tǒng)存在時滯現(xiàn)象時,在哪種反饋控制律的作用下,系統(tǒng)(1)也可以被鎮(zhèn)定呢?這是本文主要考慮的問題。對于時滯系統(tǒng),文獻(xiàn)\[11\]針對αu(t)+βu(t-τ)這類控制器研究了一維波方程的穩(wěn)定性并且得到了所謂的1/2法則。文獻(xiàn)\[12-14\]設(shè)計(jì)了一類新的動態(tài)反饋控制器,證明了條件|α|≠|(zhì)β|可以保證所得閉環(huán)系統(tǒng)的穩(wěn)定性?;贐ackstepping方法[1518],本文設(shè)計(jì)了一類新的控制器。在該反饋控制律的作用下,所得閉環(huán)系統(tǒng)是漸近穩(wěn)定的。
1控制器設(shè)計(jì)與穩(wěn)定性結(jié)論
筆者通過Backstepping方法設(shè)計(jì)原系統(tǒng)的控制器并給出相關(guān)的穩(wěn)定性結(jié)論,其主要思想是通過構(gòu)造一個可逆的有界線性變換,將原系統(tǒng)的穩(wěn)定性問題轉(zhuǎn)化為目標(biāo)系統(tǒng)的穩(wěn)定性問題[1518]。
所以變換(4)是有界可逆的。 證畢。
最后,證明定理3。
證明由定理2易知,無時滯系統(tǒng)(3)與目標(biāo)系統(tǒng)(11)和系統(tǒng)(12)是等價的。由引理2知,目標(biāo)系統(tǒng)是漸近穩(wěn)定的,故無時滯系統(tǒng)(3)也是漸近穩(wěn)定的,即反饋控制律(13)可以使得原系統(tǒng)(1)漸近穩(wěn)定。證畢。
3結(jié)論
基于Backstepping方法,針對邊界帶有載荷和輸入時滯的Timoshenko梁系統(tǒng)設(shè)計(jì)了一個新的控制器,證明了原系統(tǒng)在這個反饋控制律作用下是漸近穩(wěn)定的。研究重點(diǎn)在于控制器的設(shè)計(jì)與穩(wěn)定性分析,難點(diǎn)在于目標(biāo)系統(tǒng)的構(gòu)造和線性變換的選取。本文考慮的控制算子是有界的,當(dāng)控制算子是無界的時候,應(yīng)該如何考慮?這類控制器是否可以應(yīng)用到高維系統(tǒng)模型中?這都是將來要研究的問題。
參考文獻(xiàn)/References:
[1]MORGL , RAO B P, CONRAD F. On the stabilization of a cable with a tip mass[J]. IEEE Transactions on Automatic Control, 2002, 39(10): 21402145.
[2]BAICU C F, RAHN C D, DAWSON D M. Exponentially stabilizing boundary control of stringmass systems[J]. Journal of Vibration and Control, 1999, 5(3): 491502.
[3]D'ANDRANOVEL B, BOUSTANY F, CONRAD F. Control of an overhead crane: Stabilization of flexibilities[J]. Boundary Control and Boundary Variation, 1992,178(1): 126.
[4]D'ANDRANOVEL B, BOUSTANY F, CONRAD F, et al. Feedback stabilization of a hybrid PDEODE system: Application to an overhead crane[J]. Mathematics of Control, Signals, and Systems , 1994, 7(1): 122.
[5]GUO Baozhu, XU Chengzhong. On the spectrumdetermined growth condition of a vibration cable with a tip mass[J]. IEEE Transactions on Automatic Control, 2000, 45(1): 8993.
[6]ZHANG Shuang, HE Wei, GE S S. Modeling and control of a nonuniform vibrating string under spatiotemporally varying tension and disturbance[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(6): 11961203.
[7]HE Wei, ZHANG Shuang, GE S S. Adaptive control of a flexible crane system with the boundary output constraint[J]. IEEE Transactions on Industrial Electronics, 2014, 61(8): 41264133.
[8]HE Wei, GE S S. Cooperative control of a nonuniform gantry crane with constrained tension[J]. Automatica, 2016, 66: 146154.
[9]ZHANG Shuang, HE Wei, HUANG Deqing. Active vibration control for a flexible string system with input backlash[J]. IET Control Theory and Applications, 2016, 10(7): 800805.
[10]SHI DH, HOU S H, FENG D X. Feedback stabilization of a Timoshenko beam with an end mass[J]. International Journal of Control, 1998, 69(2): 285300.
[11]XU Genqi, YUNG S P, LI L K. Stabilization of wave systems with input delay in the boundary control[J]. ESAIM: Control Optimization and Calculus of Variations, 2006, 12(4): 770785.
[12]XU Genqi, WANG Hongxia. Stabilization of Timoshenko beam system with delay in the boundary control[J]. International Journal of Control, 2013, 86(6): 11651178.
[13]SHANG Yingfeng, XU Genqi. Stabilization of an EulerBernoulli beam with input delay in the boundary control[J]. Systems & Control Letters, 2012, 61(11): 10691078.
[14]WANG Hongxia, XU Genqi. Exponential stabilization of 1d wave equation with input delay[J]. Wseas Transactions on Mathematics, 2012, 12(10/11/12): 10011013.
[15]KRSTIC M. Delay Compensation for Nonlinear, Adaptive, and PDE Systems[M]. Boston: Birkhuser Boston Press, 2009.
[16]BEKIARISLIBERIS N, KRSTIC M. Nonlinear Control under Nonconstant Delays[M]. Philadelphia: SIAM, 2013.
[17]LIU Weijiu. Boundary feedback stabilization of an unstable heat equation[J]. SIAM Journal on Control and Optimization, 2003, 42(3): 10331043.
[18]KRSTIC M, SMYSHLYAEV A. Boundary Control of PDEs: A Course on Backstepping Designs[M]. Philadelphia: SIAM, 2008.
[19]郭寶珠, 柴樹根. 無窮維線性系統(tǒng)控制理論[M]. 北京: 科學(xué)出版社, 2012.
[20]TUCSNAK M, WEISS G. Observation and Control for Operator Semigroups[M]. Basel: BirkhauserVerlag, 2009.
[21]PAZY A. Semigroups of Linear Operators and Applications to Partial Differential Equations[M]. Berlin: SpringerVerlag, 1983.
第39卷第2期河北科技大學(xué)學(xué)報(bào)Vol.39,No.2
2018年4月Journal of Hebei University of Science and TechnologyApr. 2018