王永文 喬志琴 薛亞奎
摘要:為了豐富三維混沌系統(tǒng)的定性與分支理論,以具有三重零奇異平衡點的二次截斷規(guī)范型系統(tǒng)為研究對象,研究了此系統(tǒng)在不同參數(shù)條件下的平衡點的存在性及其附近的穩(wěn)定性與分支問題。使用數(shù)學(xué)分析的方法討論了在不同參數(shù)條件下,平衡點所對應(yīng)的特征方程實根的存在性,從而得到平衡點處豐富的局部流形情況,引出系統(tǒng)可能會產(chǎn)生的分支情形。利用卡爾丹諾公式仔細(xì)分析了平衡點為鞍焦點的參數(shù)條件,分析了產(chǎn)生一維Hopf分支的參數(shù)條件,通過計算得到超臨界Hopf分支與亞臨界Hopf分支的前提條件,結(jié)果表明系統(tǒng)具有豐富的穩(wěn)定性與分支情況,可為以后證明產(chǎn)生連接鞍焦點的同宿環(huán)或異宿環(huán)的存在性和產(chǎn)生Silnikov型混沌證明提供理論前提。研究方法可推廣到對其他高維非線性系統(tǒng)的研究。
關(guān)鍵詞:定性理論;鞍焦點;Hopf分支;超臨界;亞臨界
中圖分類號:O175.12MSC(2010)主題分類:16S40文獻(xiàn)標(biāo)志碼:A
收稿日期:20171225;修回日期:20180303;責(zé)任編輯:張軍
基金項目:國家自然科學(xué)基金(11401541);山西省自然科學(xué)基金(2015011009)
第一作者簡介:王永文(1980—),男,山西繁峙人,碩士研究生,主要從事生物數(shù)學(xué)方面的研究。
通信作者:薛亞奎教授。Email:ykxue@nuc.edu.cn
王永文,喬志琴,薛亞奎.一類三維系統(tǒng)的分支分析[J].河北科技大學(xué)學(xué)報,2018,39(2):135141.
WANG Yongwen,QIAO Zhiqin,XUE Yakui. Bifurcation analysis of a three dimensional system[J].Journal of Hebei University of Science and Technology,2018,39(2):135141.Bifurcation analysis of a three dimensional system
WANG Yongwen,QIAO Zhiqin,XUE Yakui
(School of Science, North University of China, Taiyuan, Shanxi 030051, China)
Abstract: In order to enrich the stability and bifurcation theory of the three dimensional chaotic systems, taking a quadratic truncate unfolding system with the triple singularity equilibrium as the research subject, the existence of the equilibrium, the stability and the bifurcation of the system near the equilibrium under different parametric conditions are studied. Using the method of mathematical analysis, the existence of the real roots of the corresponding characteristic equation under the different parametric conditions is analyzed, and the local manifolds of the equilibrium are gotten, then the possible bifurcations are guessed. The parametric conditions under which the equilibrium is saddlefocus are analyzed carefully by the Cardan formula. Moreover, the conditions of codimensionone Hopf bifucation and the prerequisites of the supercritical and subcritical Hopf bifurcation are found by computation. The results show that the system has abundant stability and bifurcation, and can also supply theorical support for the proof of the existence of the homoclinic or heteroclinic loop connecting saddlefocus and the Silnikov's chaos. This method can be extended to study the other higher nonlinear systems.
Keywords:stability theory; saddlefocus; Hopf bifurcation; supercritical; subcritical
隨著洛侖茲系統(tǒng)的發(fā)現(xiàn),許多學(xué)者致力于研究各種非線性系統(tǒng)現(xiàn)象,其中包含廣義的Lorenz系統(tǒng)[1],呂系統(tǒng)[23],陳系統(tǒng)[4],Genesio系統(tǒng)[5],Chua系統(tǒng)[6]等。除了利用李雅普諾夫指數(shù)證明一類系統(tǒng)具有混沌之外,更多學(xué)者利用Silnikov條件去構(gòu)造自治系統(tǒng)出現(xiàn)混沌,陳關(guān)榮等[1]根據(jù)Silnikov準(zhǔn)則構(gòu)造了同時具有洛侖茲吸引子和陳吸引子的呂系統(tǒng)。ZHOU等[5]在Genesio系統(tǒng)里找到一條Silnikov形式的同宿軌,得到Genesio系統(tǒng)里存在馬蹄混沌結(jié)論。河北科技大學(xué)學(xué)報2018年第2期王永文,等:一類三維系統(tǒng)的分支分析ZHOU等[7]構(gòu)造了一類新的簡單的具有連接鞍焦點的同宿軌的三維二次混沌系統(tǒng)。王煒等[8]對改進(jìn)的PID控制系統(tǒng)求出具有Silnikov形式的同宿軌的解析表達(dá)式,從而說明具有混沌現(xiàn)象的發(fā)生。其他學(xué)者[918]也對不同的系統(tǒng)做了相應(yīng)的分析。本研究主要在FRIEIRE等[19]討論三重零線性退化的標(biāo)準(zhǔn)型開折的基礎(chǔ)上,討論以下一類三維自治系統(tǒng):1=x2,2=x3,3=ax1+b2x2+cx3+A1x1x3+A2x1x2- x212 (1)的分支情況,其中a,b,c,A1,A2為參數(shù),此系統(tǒng)比Genesio系統(tǒng)[5]更一般化。
DENG Xueming. Analysis of bifurcation topological structure of nonlinear system[J]. Journal of Hebei University of Science and Technology, 2008, 29(3):182184.
[5]ZHOU Liangqiang, CHEN Fangqi. Hopf bifurcation and Shilnikov chaos of Genesio system[J]. Chaos Solitons & Fractals, 2009, 40(3): 14131422.
[6]EUZEBIO R, LLIBRE J. ZeroHopf bifurcation in a Chua system[J]. Nonlinear Analysis Real World Applications, 2017, 37: 3140.
[7]ZHOU Tianshou, CHEN Guanrong, YANG Qigui. Constructing a new chaotic system based on the Silnikov criterion[J]. Chaos Solitons & Fractals, 2004, 19(4): 985993.
[8]王煒,張琪昌. 一類三維PID控制系統(tǒng)的Shilnikov類型Smale馬蹄混沌[C]//第十二屆全國非線性振動暨第九屆全國非線性動力學(xué)和運動穩(wěn)定性學(xué)術(shù)會議論文集.鎮(zhèn)江:中國力學(xué)學(xué)會,2009:212219.
[9] 張康明. 一個具有唯一鞍焦點的三維混沌系統(tǒng)分析[J]. 數(shù)學(xué)的實踐與認(rèn)識, 2010, 40(14): 197202.
ZHANG Kangming. Analysis of a 3D chaotic system with only one saddle foci equilibrium[J]. Mathematics in Practice and Theory, 2010, 40(14): 197202.
[10]BAO Jianhong, YANG Qigui. A new method to find homoclinic and heteroclinic orbits[J]. Applied Mathematics and Computation, 2011, 217: 65266540.
[11]魏飛,李威,陳明. 構(gòu)造一類具有Silnikov鞍焦同宿軌的動力系統(tǒng)[J]. 北京化工大學(xué)學(xué)報(自然科學(xué)版), 2011, 38(1): 140143.
WEI Fei, LI Wei, CHEN Ming. Constrction of dynamic system having Silnikovs saddlefocus homoclinic orbit[J]. Journal of Beijing University of Chemical Technology(Natural Science), 2011, 38(1): 140143.
[12]朱道宇. 一類特殊三維混沌系統(tǒng)的退化Hopf分岔[J]. 湖北民族學(xué)院學(xué)報(自然科學(xué)版), 2014, 32(1): 7577.
ZHU Daoyu. Degenerate Hopf bifurcation in a special 3D chaotic system[J]. Journal of Hubei University for Nationalities(Natural Science Edition), 2014, 32(1): 7577.
[13]張娟. 一類三維混沌系統(tǒng)的音叉分岔分析[J]. 河南科學(xué), 2015, 33(4): 509511.
ZHANG Juan. The pitchfork bifucation analysis of 3D chaotic system[J]. Henan Science, 2015, 33(4): 509511.
[14]ALGEBA A, DOMINGUEZ M, MERINO M, et al. TakensBogdanov bifurcations of equilibria and periodic orbits in the Lorenz system[J]. Commun Nonlinear Sci Number Simulat, 2016, 30: 328343.
[15]HE Qiong, XIONG Haiyun. Shilnikv chaos and Hopf bifurcation in threedimensional differential system[J]. Optik International Journal for Light and Electron Optics,2016, 127(19): 74687655.
[16]ELSONBATY A, ELSADANY A. Bifurcation analysis of chaotic geomagnetic field model[J]. Chaos, Solitons & Fractals, 2017, 103: 325335.
[17]ALGABA A,F(xiàn)EMANDEESANCHEEF, MERINO M, et al. Comments on “Shilnikv chaos and Hopf bifurcation in threedimensional differential system”[J]. Optik International Journal for Light and Electron Optics, 2018, 155: 251256.
[18]WANG Haijun, LI Xianyi. A novel hyperchaotic system with infinitely many heteroclinic orbits coined[J]. Chaos, Solitons & Fractals, 2018, 106: 515.
[19]FRIEIRE E, GARMERO E, ALGABA A, et al. A note on the triple zero linear degeneracy: Normal forms, dynamical and bifurcation behaviors of an unfolding[J]. International Journal of Bifurcations and Chaos, 2002, 12(12): 27992820.
[20]KUZNETSOV Y. Elements of Applied Bifurcation Theory[M]. New York: SpringVerlag, 1998.第39卷第2期河北科技大學(xué)學(xué)報Vol.39,No.2
2018年4月Journal of Hebei University of Science and TechnologyApr. 2018