石建飛 戈寶軍 呂艷玲 韓繼超
摘 要:針對(duì)在永磁同步電機(jī)參數(shù)辨識(shí)過程中,由于“數(shù)據(jù)飽和”和噪聲影響,導(dǎo)致傳統(tǒng)的遞推最小二乘法存在參數(shù)估計(jì)誤差大和收斂慢的問題。利用改進(jìn)的遞推最小二乘法提高參數(shù)辨識(shí)的精度和收斂速度,以滿足伺服系統(tǒng)在不同工況下動(dòng)態(tài)性能。首先,結(jié)合永磁同步電機(jī)數(shù)學(xué)模型,設(shè)計(jì)了一種折息遞推最小二乘辨識(shí)算法,通過在傳統(tǒng)的最小二乘法中引入“折息因子”增強(qiáng)了算法的靈活性。然后,通過對(duì)存在白噪聲干擾的永磁同步電機(jī)模型進(jìn)行辨識(shí)算法的動(dòng)態(tài)仿真。最后,利用搭建的實(shí)驗(yàn)測(cè)試平臺(tái)進(jìn)行算法的實(shí)驗(yàn)驗(yàn)證。仿真和實(shí)驗(yàn)結(jié)果表明本文提出的折息遞推最小二乘算法,在參數(shù)辨識(shí)過程中降低了舊數(shù)據(jù)對(duì)辨識(shí)結(jié)果的影響,增強(qiáng)了算法對(duì)噪聲干擾的魯棒性,提高參數(shù)辨識(shí)結(jié)果的準(zhǔn)確性和實(shí)時(shí)性。
關(guān)鍵詞:永磁同步電機(jī);參數(shù)辨識(shí);折息遞推最小二乘;數(shù)據(jù)飽和
Abstract: In the process of parameter identification of permanent magnet synchronous motor, due to the influence of data saturation and noise, the traditional recursive least squares has the problems of high error and slow convergence in the parameter estimation. Using the improved recursive least squares algorithm can improve the identification accuracy and rate of convergence, thus meet the dynamic performance of servo system under different working conditions. First of all, combined with the mathematical model of the permanent magnet synchronous motor, a discount recursive least squares identification algorithm is designed, and the flexibility of the algorithm is enhanced by introducing the "discount factor" in the traditional recursive least square. Then, Dynamic simulation of identification algorithm was finished of the motor with white noise model. Finally, experiments were carried out using the experimental test platform. The simulation and experimental results show that the discount recursive least squares algorithm effectively reduce the influence of old data on the identification results and enhances the robustness to noise interference, and improves the accuracy of parameters identification and real time.
Keywords: permanent magnet synchronous motors; parameter identification; discount recursive least square; data saturation