葛玉猛 李玉順 童科挺 張家亮
摘 要:本文提出組合效應(yīng)更好的薄壁型鋼-重組竹組合工字形梁,薄壁型鋼-重組竹組合工字形梁是將冷彎薄壁型鋼與重組竹通過(guò)結(jié)構(gòu)粘合劑或者結(jié)構(gòu)粘合劑加自攻螺釘復(fù)合而成。以剪跨比、型鋼厚度、腹板厚度和腹板高度等為參數(shù)進(jìn)行12根組合梁的受剪性能試驗(yàn),觀測(cè)組合梁破壞過(guò)程、變形特征和分析受剪承載力的影響因素,并提出組合梁受剪承載力計(jì)算公式。研究結(jié)果表明,薄壁型鋼-重組竹組合工字形梁整體工作性能良好,組合效應(yīng)顯著,具有較高的受剪承載力;組合梁的受剪承載力主要受剪跨比影響,隨著剪跨比的增大其受剪承載力降低,當(dāng)剪跨比較小時(shí)試件發(fā)生剪切破壞,隨著剪跨比的增大組合梁破壞形態(tài)由剪切破壞過(guò)渡到彎曲破壞;本文提出的組合梁受剪承載力計(jì)算公式所得結(jié)果與試驗(yàn)結(jié)果之間吻合良好。
關(guān)鍵詞:重組竹;冷彎薄壁型鋼;組合工字形梁;剪跨比;受剪承載力
中圖分類號(hào):TU758文獻(xiàn)標(biāo)識(shí)碼:B文章編號(hào):1006-8023(2018)06-0072-08
Study on Shear Behavior of Thin-Wall Steel-Recombinant Bamboo Composite Beams
GE Yumeng, LI Yushun*, TONG Keting, ZHANG Jialiang
(School of Architecture Engineering and Environment, Ningbo University, Ningbo 315211)
Abstract: In this paper, it is proposed that the combination effect is better for the thin-walled steel-recombined bamboo composite I-beam. The thin-walled steel-recombined bamboo composite I-beam is composed of the cold-formed thin-walled steel and the recombined bamboo through the structural adhesive or the structural adhesive with the self tapping screw. The shear behavior test of 12 composite beams was carried out with parameters of shear span ratio, profile steel thickness, web thickness, and web height as parameters. The failure process and deformation characteristics of composite beams are observed, and the influencing factors of shear capacity are analyzed. The calculation formula of shear capacity of composite beams is proposed. The results show that the thin-walled steel-reconstituted bamboo composite I-beam has good overall work performance, significant combined effect, and high shear bearing capacity; the shear bearing capacity of the composite beam is mainly affected by the shear-span ratio. When the ratio increases, the shear capacity decreases. When the shear span is relatively small, the specimen undergoes shear failure. With the increase of the shear span ratio, the composite beam failure mode transitions from shear failure to bending failure. The results produced by the calculation formula of shear capacity of composite beams which is proposed in this paper are in good agreement with the experimental results.
Keywords: Reconstituted bamboo; cold-formed thin-wall steel; I-shaped composite beam; shear-span ratio; shear capacity
0 引言
傳統(tǒng)房屋建筑的梁柱主要使用鋼筋混凝土結(jié)構(gòu),隨著生活質(zhì)量的提高,現(xiàn)代人對(duì)建筑中的梁柱結(jié)構(gòu)有了新的要求,例如,梁要美觀、輕質(zhì)高強(qiáng)和綠色天然等。為了適應(yīng)這一現(xiàn)狀,一些新型結(jié)構(gòu)的研究逐漸開(kāi)始,尤其是綠色的竹木材料與高強(qiáng)度的鋼材組合成工字形梁,最具推廣價(jià)值和實(shí)用價(jià)值。在我國(guó)使用竹木作為建筑材料的歷史非常悠久[1-2],木材雖然也有質(zhì)量輕和強(qiáng)度高的特點(diǎn),但是近些年來(lái)我國(guó)木材供需矛盾不斷加劇,嚴(yán)重制約了我國(guó)新型建筑材料的發(fā)展;而國(guó)外對(duì)鋼結(jié)構(gòu)的建筑形式也研究頗深[3],目前國(guó)內(nèi)的鋼材也處在產(chǎn)能過(guò)剩的狀態(tài),在此基礎(chǔ)上,本文考慮將冷彎薄壁型鋼和重組竹組合為工字形梁。
(2)鋼板厚度。以試件L-9、L-10為例,試件中型鋼厚度為2.0 mm和1.5 mm,L-9比L-10承載力提高了30.43%,如圖10(a)所示。
(3)腹板截面高度。試件L-1、L-2腹板高度分別為120、140 mm,隨腹板截面高度增加其受剪承載力提高了16 kN,如圖10(b),所示。
(4)腹板重組竹厚度。組合梁L-8比L-7腹板重組竹厚度高出5 mm,試件破壞時(shí),L-8所受荷載極限比L-7高出8 kN。
3 跨中撓度及截面承載力
3.1 跨中撓度
根據(jù)組合梁L-1 ~ L-12跨中變形達(dá)到容許撓度6.4 mm時(shí)所對(duì)應(yīng)加載的荷載P,再將P代入簡(jiǎn)支梁撓度計(jì)算式(1)計(jì)算理論容許撓度,計(jì)算公式由本文作者參考文獻(xiàn)[18-19]提出,結(jié)果見(jiàn)表4。
式中:a為集中力作用點(diǎn)至近端支座距離;l為組合梁跨度;βb為鋼-竹組合構(gòu)件變形發(fā)展系數(shù),當(dāng)l ≤ 3.0 m時(shí),βb取1.2;α = a/l。
分析表4中,數(shù)據(jù),薄壁型鋼-重組竹組合工字形梁跨中的理論撓度與試驗(yàn)撓度誤差較小,基本控制在11%以內(nèi),組合梁L-4、L-5、L-8、L-12試驗(yàn)撓度曲線與計(jì)算所得理論撓度曲線對(duì)比(圖11),由圖11可知,組合梁理論容許撓度均大于試驗(yàn)撓度值,在工程應(yīng)用中屬于較安全。
3.2 受剪承載力
本文組合梁為工字型,主要由腹板承擔(dān)所受剪力,計(jì)算時(shí)將重組竹腹板兩側(cè)的薄壁型鋼考慮為加強(qiáng)重組竹腹板的抗剪能力(將薄壁型鋼腹板截面換算成等高度的重組竹截面),并引入以下假定:① 重組竹抗剪強(qiáng)度均勻;② 彈性體假定和平截面假定;③ 重組竹發(fā)生剪切破壞即表示組合梁被破壞。
根據(jù)參考文獻(xiàn)[20-22],本文作者提出了組合工字形梁受剪承載力計(jì)算公式(2)和(3)??紤]剪跨比產(chǎn)生的影響,根據(jù)公式(2)和公式(3)分別計(jì)算出薄壁型鋼和重組竹的承載能力。受剪承載力公式:
式中:λ為剪跨比;fτ為重組竹順紋抗剪強(qiáng)度,fτ = 14.79MPa;ζ為組合梁翼緣對(duì)組合梁受剪承載力的影響,ζ = 1.04;In為薄壁型鋼的腹板截面慣性矩;Sn為 考慮薄壁型鋼的腹板截面面積,Sn = (bh2+2tsαhs2)/8;hs為薄壁型鋼腹板位置截面高度;bn為薄壁型鋼的腹板截面有效寬度,bn = b+2tsα;b、h為腹板位置重組竹厚度與高度;α為重組竹換算系數(shù),α = Es/Ec;ts為腹板位置薄壁型鋼截面厚度。
重組竹截面剪力計(jì)算公式:
式中:Sc為腹板位置重組竹截面面積矩;Ic為腹板位置重組竹截面慣性矩。
分析表5中對(duì)比結(jié)果可知,組合梁斜截面受剪承載力試驗(yàn)值與理論值誤差不超過(guò)11%。斜截面受剪承載力計(jì)算公式(2)考慮將薄壁型鋼腹板截面換算成等高度的重組竹截面,薄壁型鋼黏貼在腹板重組竹上,用以提高組合梁的抗剪性能,在工程應(yīng)用中這種方法比較安全。
4 結(jié)論
(1)組合梁由薄壁型鋼和重組竹通過(guò)結(jié)構(gòu)膠復(fù)合而成,整體性能突出,組合效應(yīng)良好,加載過(guò)程中兩種材料連接狀況良好,發(fā)揮了各自良好的材料性能,有很大的發(fā)展前景和實(shí)用價(jià)值。
(2)本次試驗(yàn)中組合梁受剪承載力隨剪跨比增大而減小;組合梁腹板位置的重組竹厚度和腹板處鋼材厚度增加能有效地提高其受剪承載力;翼緣位置重組竹和型鋼厚度變化基本不影響受剪承載力。
(3)組合梁破壞形態(tài)主要受剪跨比影響。當(dāng)剪跨比λ≤2.0時(shí),試件均出現(xiàn)了明顯的剪切破壞特征;剪跨比λ = 2.5時(shí),組合梁破壞形態(tài)向彎曲破壞發(fā)展。
(4)本文所提出的組合梁撓度與斜截面受剪承載力計(jì)算公式較為合理。組合梁L-1 ~ L-12跨中撓度與受剪承載力試驗(yàn)結(jié)果與理論計(jì)算值相近,誤差基本控制在11%以內(nèi)。
【參 考 文獻(xiàn)】
[1]柳菁, 張家亮, 郭軍, 等.現(xiàn)代竹結(jié)構(gòu)建筑的發(fā)展現(xiàn)狀[J].森林工程, 2013,29(5):126-130.
LIU J, ZHANG J L, GUO J, et al. The development of modern bamboo structure architecture[J]. Journal of Forest Engineering, 2013,29(5):126-130.
[2]龔正,袁少飛,張建,等.重組竹材生產(chǎn)設(shè)備現(xiàn)狀及發(fā)展趨勢(shì)[J].林業(yè)機(jī)械與木工設(shè)備,2018,46(9):4-9.
LONG Z, YUAN S F, ZHANG J, et al. Research status and development trend of reconstituted bamboo lumber production equipment[J]. Forestry Machinery & Woodworking Equipment,2018,46(9):4-9.
[3]費(fèi)本華, 王戈, 任海清, 等. 我國(guó)發(fā)展木結(jié)構(gòu)房屋的前景分析[J]. 木材工業(yè), 2002,16(5):6-9.
FEI B H, WANG G, REN H Q, et al. Prospect analysis of developing wooden structure housing in China[J]. Timber Industry, 2002,16(5): 6-9.
[4]ROSOWSKY D V, ELLINGWOOD B R. Performance-based engineering of wood frame housing: fragility analysis methodology[J]. Journal of Structural Engineering, 2002,28(1):32-38.
[5]張齊生.中國(guó)竹材工業(yè)化利用[M]. 北京:中國(guó)林業(yè)出版社, 1995.
ZHANG Q S. Industrial utilization of bamboo in China[M]. Beijing: China Forestry Publishing House, 1995.
[6]宋孝金,劉曉輝.竹材的工業(yè)化利用[J].林業(yè)科技,2011,36(6):55-57.
SONG X J, LIU X H. Study on industrial utilization of bamboo[J]. Forestry Science & Technology,2011,36(6):55-57.
[7]黃祖波, 李春寶, 吳巖, 等.竹材在土木建筑中的應(yīng)用[J].森林工程,2007,22(2):79-80.
HUANG Z B, LI C B, WU Y, et al. Application of bamboo in civil engineering[J]. Forest Engineering, 2007,22(2): 79-80.
[8]單煒, 李玉順.竹材在建筑結(jié)構(gòu)中的應(yīng)用前景分析[J].森林工程, 2008,24(2):62-65.
SHAN W, LI Y S. Application prospect analysis of bamboo in building structure[J]. Forest Engineering, 2008,24(2):62-65.
[9]吳巖, 李玉順, 葛貝德, 等.改性竹材的應(yīng)用與前景[J].森林工程, 2008,24(6):68-71.
WU Y, LI Y S, GE B D, et al. Application and prospect of modified bamboo[J]. Forest Engineering, 2008,24(6):68-71.
[10]李和麟, 陳滔. 高性能重組竹制造技術(shù)研究[J]. 世界竹藤 通訊, 2010,8(4):27-29.
LI H L, CHEN T. Research on manufacturing technology of high performance reconstituted bamboo[J]. World Bamboo and Rattan Communication, 2010,8(4):27-29.
[11]汪孫國(guó), 華毓坤. 重組竹制造工藝的研究[J]. 木材工業(yè), 1991,5(2):14-18.
WANG S G, HUA Y K. Research on the manufacturing technology of reconstituted bamboo[J]. Timber Industry, 1991,5(2):14-18.
[12]魏萬(wàn)姝, 覃道春. 4種防霉劑對(duì)重組竹性能的影響[J]. 東北林業(yè)大學(xué)學(xué)報(bào), 2011,39(4):93-95.
WEI W S, QIN D C. Effects of 4 fungicides on the properties of reconstituted bamboo[J]. Journal of Northeast Forestry University, 2011,39(4):93-95.
[13]張建,袁少飛,范慧,等.不同處理工藝對(duì)重組竹防腐防霉性能的影響[J].林業(yè)機(jī)械與木工設(shè)備,2017,45(11):37-40.
ZHANG J, YUAN S F, FAN H, et al. Influence of different treatment processes on anti-mildew and preservation properties of bamboo scrimber[J]. Forestry Machinery & Woodworking Equipment,2017,45(11):37-40.
[14]朱建東, 臧慧蘭. 綠色建筑的新型建筑材料-重組竹[J]. 新型建筑材料, 2011,38(7):44-47.
ZHU J D, ZANG H L. A new building material for green building restructured bamboo[J]. New Building Material, 2011,38(7): 44-47.
[15]王忠和, 杜艷軍, 董廣.鋼結(jié)構(gòu)建筑的應(yīng)用及發(fā)展[J].森林工程, 2002,18(3):54-55.
WANG Z H, DU Y J, DONG G. Application and development of steel structure buildings[J]. Forest Engineering, 2002,18(3): 54-55.
[16]吳健梅, 陸明.未來(lái)的人居建筑及其設(shè)計(jì)策略[J].森林工程, 2003,19(6):67-68.
WU J M, LU M. Future residential building and its design strategy[J]. Forest Engineering, 2003,19(6):67-68.
[17] 中華人民共和國(guó)建設(shè)部. (GB50017-2003)鋼結(jié)構(gòu)設(shè)計(jì)規(guī)范[S]. 北京:中國(guó)計(jì)劃出版社, 2003.
Ministry of construction of People's Republic of China. (GB50017-2003) code for design of steel structures[S]. Beijing: China Planning Publishing House, 2003.
[18]李廉錕. 結(jié)構(gòu)力學(xué)[M]. 北京:高等教育出版社, 1996
LI L K. Structural mechanics[M]. Beijing: Higher Education Press, 1996.
[19]《建筑結(jié)構(gòu)靜力計(jì)算手冊(cè)》編寫組.建筑結(jié)構(gòu)靜力計(jì)算手冊(cè)(2版)[M].北京:中國(guó)建筑工業(yè)出版社, 2000.
Compiling group of manual for static calculation of building structures. Manual for static calculation of building structures (Second Edition) [M]. Beijing: China Construction Industry Press, 2000.
[20]李玉順, 沈煌瑩, 單煒, 等.鋼-竹組合工字梁受剪性能試驗(yàn)研究[J].建筑結(jié)構(gòu)學(xué)報(bào), 2011,32(7):80-86.
LI Y S, SHEN H Y, SHAN W, et al. Experimental study on the performance of steel bamboo combination i-liang shoujian[J]. Journal of Building Structures, 2011,32(7): 80-86.
[21]趙天石, 王鈞, 張野.內(nèi)置H型鋼P(yáng)C組合梁受剪承載力試驗(yàn)研究[J].森林工程, 2010,26(2):74-76.
ZHAO T S, WANG J, ZHANG Y. Experimental study on shear bearing capacity of H composite steel PC composite beams[J]. Forest Engineering, 2010, 26(2):74-76.
[22]DL/T 5085-1999. Code for design of steel-concrete composite structures[S]. 1999.