摘 要 利用算子理論方法證明了Hilbert C*-模上的可伴算子序列是g-Riesz基且有唯一對(duì)偶g-框架當(dāng)且僅當(dāng)相應(yīng)的合成算子是一線性同胚,這修正了已有的一個(gè)結(jié)論.進(jìn)一步,作為該結(jié)果的直接應(yīng)用,給出了Hilbert C*-模中的g-Riesz基具有唯一對(duì)偶g-框架的保界等價(jià)刻畫.
關(guān)鍵詞 Hilbert C*-模;g-框架;g-Riesz基;對(duì)偶g-框架
中圖分類號(hào) O177.1文獻(xiàn)標(biāo)識(shí)碼 A文章編號(hào) 1000-2537(2017)06-0080-07
Abstract The present paper proves, by utilizing the method of operator theory, that a sequence of adjointable operators on a Hilbert C*-module is a g-Riesz basis with unique dual g-frame if and only if the corresponding synthesis operator is a homeomorphism, which provides a correction to one existing conclusion and further, as a direct application of this result, it gives an equivalent characterization for g-Riesz bases with unique dual g-frames in Hilbert C*-modules, which preserves the g-frame bounds.
Key words Hilbert C*-module; g-frame; g-Riesz basis; dual g-frame
參考文獻(xiàn):
[1] DUFFIN R J, SCHAEFFER A C. A class of nonharmonic Fourier series [J]. Trans Am Math Soc, 1952,72(2):341-366.
[2] DAUBECHIES I, GROSSMANN A, MEYER Y. Painless nonorthogonal expansions [J]. J Math Phys, 1986,27(5):1271-1283.
[3] CHRISTENSEN O. An introduction to frames and Riesz bases [M]. Boston: Birkhuser, 2002.
[4] 郭訓(xùn)香. Hilbert空間上的預(yù)框架算子[J].應(yīng)用數(shù)學(xué)學(xué)報(bào), 2012,35(5):795-803.
[5] 楊守志,鄭賢偉.L2(Rd)上的半正交多小波框架[J].中國科學(xué):數(shù)學(xué), 2014,44(3):249-262.
[6] 吳國昌,曹懷信,魯大勇.波包Parseval框架的刻畫及應(yīng)用[J].數(shù)學(xué)學(xué)報(bào), 2015,58(1):91-102.
[7] SUN W C. G-frames and g-Riesz bases [J]. J Math Anal Appl, 2006,322(1):437-452.
[8] FRANK M, LARSON D. Frames in Hilbert C*-modules and C*-algebras [J]. J Operator Theory, 2002,48(2):273-314.
[9] KHOSRAVI A, KHOSRAVI B. Fusion frames and g-frames in Hilbert C*-modules [J]. Int J Wavelets Multiresolut Inf Process, 2008,6(3):433-446.
[10] ARAMBASIC L, BAKIC D. Frames and outer frames for Hilbert C*-modules [J]. Linear Multilinear A, 2017,65(2):381-431.
[11] HAN D G, JING W, LARSON D, et al. Dilation of dual frame pairs in Hilbert C*-modules [J]. Results Math, 2013,63(1-2):241-250.
[12] XIANG Z Q. A note on the stability of g-frames in Hilbert C*-modules [J]. Int J Wavelets Multiresolut Inf Process, 2016,14(4):ID1650031.
[13] XIANG Z Q, LI Y M. G-frames for operators in Hilbert C*-modules [J]. Turk J Math, 2016,40(2):453-469.
[14] ALIJANI A. Generalized frames with C*-valued bounds and their operator duals [J]. Filomat, 2015,29(7):1469-1479.
[15] 相中啟,簡(jiǎn)輝華. Hilbert C*-模中對(duì)偶g-框架的穩(wěn)定性[J].湖南師范大學(xué)自然科學(xué)學(xué)報(bào), 2015,38(2):68-73.
[16] XIAO X C, ZENG X M. Some properties of g-frames in Hilbert C*-modules [J]. J Math Anal Appl, 2010,363(2):399-408.
[17] ARAMBASIC L. On frames for countably generated Hilbert C*-modules [J]. Proc Am Math Soc, 2007,135(2):469-478.
[18] XU Q X, SHENG L J. Positive semi-definite matrices of adjointable operators on Hilbert C*-modules [J].Linear Algebra Appl, 2008,428(4):992-1000.