曹麗英,楊左文,焦 巍,張玉寶,張躍鵬,張弘玉
?
錘片式粉碎機噪聲源識別及降噪方法
曹麗英1,楊左文1,焦 巍2,張玉寶1,張躍鵬1,張弘玉1
(1. 內(nèi)蒙古科技大學(xué)機械工程學(xué)院,包頭 014010; 2. 中國農(nóng)業(yè)科學(xué)院草原研究所,呼和浩特 010010)
為了解決錘片式飼料粉碎機工作過程中噪聲大的問題,運用虛擬儀器測試技術(shù)和臺架試驗相結(jié)合的方法,對粉碎機的噪聲信號進(jìn)行采集和分析,針對影響噪聲的主要因素如錘片、篩網(wǎng)、進(jìn)料口、出料口和轉(zhuǎn)子轉(zhuǎn)速等進(jìn)行相應(yīng)的聲壓級和頻譜測試分析,尋找粉碎機主要噪聲源及其與主要影響因素之間的規(guī)律,并通過對粉碎機各部件的結(jié)構(gòu)參數(shù)進(jìn)行改進(jìn)設(shè)計,達(dá)到降低整機噪聲的目的。研究結(jié)果表明:粉碎機噪聲信號主要包含48、180、200、361、893和1 263 Hz共6種頻率成分;篩網(wǎng)、進(jìn)料口和出料口對主頻成分沒有影響,只影響噪聲頻率的幅值;篩網(wǎng)具有降噪作用;進(jìn)料口和出料口都不同程度地增強了噪聲聲壓級;通過對主軸轉(zhuǎn)速為2 400~2 800 r/min時的空載噪聲頻譜圖分析知,當(dāng)轉(zhuǎn)速升高時,噪聲幅值急劇升高,可見轉(zhuǎn)速對粉碎機的噪聲有影響;對不同錘片數(shù)量的空載噪聲頻譜圖分析知,錘片數(shù)量只影響噪聲幅值,對主要頻率變化影響較小。此外,對粉碎機進(jìn)料口、出料口、篩網(wǎng)的結(jié)構(gòu)參數(shù)進(jìn)行改進(jìn)設(shè)計,以出料口的改進(jìn)設(shè)計為例,基于有限元法對改進(jìn)前后分離裝置內(nèi)的流場湍動能分布情況經(jīng)行了模擬,將改進(jìn)前后的結(jié)果進(jìn)行對比分析發(fā)現(xiàn):出料口改進(jìn)后分離裝置內(nèi)氣流的湍動能較小,流動較為穩(wěn)定。通過臺架試驗表明:當(dāng)選用改進(jìn)后的出料口時,粉碎機整機噪聲得到明顯改善,噪聲總聲壓級降低了3 dB(A),各測點噪聲聲壓級降低1.9~3.6 dB(A),進(jìn)一步粉碎試驗表明使用改進(jìn)后的出料口并未影響粉碎機的生產(chǎn)效率以及噸料電耗,研究所采用的降噪措施可行,此法可為控制粉碎機噪聲提供理論依據(jù)。
農(nóng)業(yè)機械;加工;機械化;粉碎機;噪聲;降噪;頻率
錘片式粉碎機是飼料加工中應(yīng)用最廣泛的一種粉碎機,也是飼料加工廠最大的噪聲源之一[1-2]。粉碎機噪聲不僅給操作工人的身體健康和周圍的環(huán)境帶來了極大的危害,還降低了機器的使用壽命[3-4]。因此,尋找粉碎機噪聲源、進(jìn)行降噪設(shè)計具有重要意義。
關(guān)于粉碎機早期的研究主要集中在篩分效率[5-13]、粉碎能耗[14-15]、粉碎過程、粉碎機理[16-18]以及粉碎機結(jié)構(gòu)優(yōu)化等方面[19-22]。關(guān)于粉碎機噪聲方面的研究還比較少見,對噪聲的測試也主要借助傳統(tǒng)的測量儀器。在噪聲研究方面,有學(xué)者提出了一些新的識別機械系統(tǒng)周期性噪聲的方法[23],由于粉碎機的噪聲源形式復(fù)雜,將新方法應(yīng)用到粉碎機噪聲研究中還未見有文獻(xiàn)報道。武佩通過對5臺錘片式粉碎機的噪聲進(jìn)行測試分析,證明了在空載和額定負(fù)載下的主要噪聲源為空氣動力性噪聲[24]。范文海在結(jié)構(gòu)力學(xué)與振動理論的基礎(chǔ)上分析了粉碎機的結(jié)構(gòu)特點,并且基于虛擬儀器平臺構(gòu)造了粉碎機的振動和噪聲測試系統(tǒng)[25]。李青等利用魚骨圖總結(jié)了粉碎機產(chǎn)生振動與噪聲的主要原因,提出了一些減振降噪措施[26]。
本文針對課題組研發(fā)的一種軸流式的錘片式粉碎機的噪聲進(jìn)行研究,目的是尋找粉碎機噪聲源及其與主要影響因素之間的規(guī)律,在此基礎(chǔ)上分析降噪措施。
基于LabVIEW 2013軟件平臺實現(xiàn)對粉碎機噪聲信號的實時采集和頻譜測量。將傳感器采集到的噪聲信號經(jīng)前置放大器放大,放大后的信號經(jīng)過NI數(shù)據(jù)采集卡 輸入到PC機上的LabVIEW數(shù)據(jù)處理分析平臺,進(jìn)行結(jié)果分析和顯示。信號采集程序包括數(shù)據(jù)的采集、顯示以及保存3部分。信號分析程序包括聲壓、聲壓級和頻譜分析[27-30]。
試驗用的錘片式飼料粉碎機共有4組錘片,每組含 4個錘片,交錯對稱排列。主軸額定轉(zhuǎn)速2 800 r/min,生產(chǎn)率800 kg/h,以含水率控制在14%的玉米顆粒為試驗 原料。
根據(jù)GB/T6971-2007飼料粉碎機實驗方法中噪聲測試標(biāo)準(zhǔn)進(jìn)行聲壓級測量[31]。試驗共布置5個測點,在與轉(zhuǎn)軸同一水平面布置4個測點,第5個測點位于粉碎機的正上方,測點距粉碎機表面50 cm。采用聲壓法測量噪聲信號。測點分布如圖1所示,圖中測點3的位置在與測點2相對的粉碎機的另一側(cè)面,距離粉碎機和地面的間距與測點2一致。
1. 回料管 2. 出料口 3. 篩片 4. 分離裝置 5. 錘片 6. 進(jìn)料口
試驗內(nèi)容主要包括空、負(fù)載工況下整機測試分析、噪聲信號分離試驗、轉(zhuǎn)速與錘片數(shù)量對粉碎機噪聲的影響研究3部分。
1.3.1 空載和負(fù)載工況下整機測試分析
分別對空載、負(fù)載2種工況下的粉碎機進(jìn)行整機聲壓級測試。待粉碎機運轉(zhuǎn)平穩(wěn)后,記錄各測點的噪聲聲壓級。對于每個測點,每隔5 s記錄1個值,1 min內(nèi)共記錄12個值,求其平均值作為該點的噪聲總聲壓級。5個測點的聲壓級統(tǒng)計值如表1所示。
表1 額定轉(zhuǎn)速下空載和負(fù)載工況下噪聲統(tǒng)計
從表1知,噪聲最高值出現(xiàn)在測點1而不是距電機最近的測點4和或距粉碎機主軸最近的測點2或3。通過進(jìn)一步分析,測點1的噪聲是由于錘片旋轉(zhuǎn)引起的空氣動力性噪聲通過出料口向外輻射造成;測點4噪聲最低是因為此點遠(yuǎn)離出料口,受到的輻射較?。粶y點5的噪聲較高是由于殼體的輻射噪聲引起的。整體上空載時聲壓級大于負(fù)載時聲壓級,最大差值為2.6 dB(A),可見空氣動力性噪聲為主要噪聲;
因測點5位于粉碎機的正上方,噪聲值受干擾因素較其余4點少。以測點5的數(shù)據(jù)為分析代表,圖2為粉碎機額定轉(zhuǎn)速時空、負(fù)載2種工況下測點5的噪聲頻譜圖,表2為5個測點的主頻值。
圖2 空載和負(fù)載工況下測點5的噪聲頻譜
表2 空載和負(fù)載時的主頻值
將測點1到測點5的頻譜圖經(jīng)過統(tǒng)計后得到表2中的頻率數(shù)據(jù)。由于粉碎機的高階振型對粉碎機噪聲研究意義不大,故本研究只對前4階振型對應(yīng)的頻率進(jìn)行分析。由圖2知,負(fù)載和空載時主頻變化趨勢基本相同;由表2知,負(fù)載和空載時相比,1~3階主頻變化不大,第4階時,各測點的主頻變化明顯。
旋轉(zhuǎn)噪聲是由轉(zhuǎn)子高速旋轉(zhuǎn)攪動周圍空氣激發(fā)的。粉碎機轉(zhuǎn)子在旋轉(zhuǎn)過程中,周期性的拍打空氣質(zhì)點,其頻率計算式為:
式中為主軸轉(zhuǎn)速,r/min;為錘片數(shù),為諧波數(shù)(=1, 2, 3, …)
粉碎機旋轉(zhuǎn)噪聲的基頻如表3所示。
表3 旋轉(zhuǎn)噪聲的基頻
由表2和表3數(shù)據(jù)可知物料加載與否對噪聲源的主要特征影響很小,只改變峰值的大小,故對粉碎機進(jìn)行噪聲設(shè)計的關(guān)鍵是降低其空載噪聲。
1.3.2 噪聲信號分離試驗
粉碎機在工作時存在多種噪聲源,各噪聲進(jìn)行疊加,產(chǎn)生的頻率不容易被識別。這種情況下很可能存在多源耦合問題,本研究運用分布運轉(zhuǎn)法對錘片、篩網(wǎng)、進(jìn)料口以及出料口進(jìn)行噪聲測試試驗。以下內(nèi)容以測點5的數(shù)據(jù)為例進(jìn)行分析。由于轉(zhuǎn)子是連接轉(zhuǎn)軸與錘片的結(jié)構(gòu),故先對轉(zhuǎn)子進(jìn)行頻譜分析得到轉(zhuǎn)子的基頻噪聲。
將錘片、篩網(wǎng)全部拆去,測量粉碎機噪聲聲壓級值統(tǒng)計得圖3單轉(zhuǎn)子基礎(chǔ)噪聲頻譜圖。
圖3 單轉(zhuǎn)子基礎(chǔ)噪聲頻譜圖
由圖3試驗結(jié)果統(tǒng)計知,單轉(zhuǎn)子基礎(chǔ)噪聲聲壓級 的最大值是87.8 dB(A),最小值是87.2 dB,平均值是 87.5 dB(A)。與圖2結(jié)果對比知,單轉(zhuǎn)子運轉(zhuǎn)時,噪聲聲壓級總體上很小,說明錘片對噪聲影響很大;頻譜圖中有突出的3個峰值,48、893和1 263 Hz,對比圖2a可知,48 Hz是轉(zhuǎn)子基頻噪聲,其余2個峰值對應(yīng)的離散噪聲是結(jié)構(gòu)振動引起的。
對不同結(jié)構(gòu)影響狀態(tài)進(jìn)行識別,試驗結(jié)果如表4所示。
由表4知,在額定工況下,錘片通過周期性拍打空氣產(chǎn)生的噪聲最大。單篩網(wǎng)時噪聲最小,比轉(zhuǎn)子基礎(chǔ)噪聲小3.6 dB(A),說明篩網(wǎng)阻礙了空氣動力性噪聲通過出料口向外輻射,因此,篩網(wǎng)具有降低噪聲的作用。
表4 不同結(jié)構(gòu)噪聲聲壓級(dB(A))及對應(yīng)主頻值
通過不同結(jié)構(gòu)組合時的整機噪聲聲壓級進(jìn)行噪聲識別,可以發(fā)現(xiàn)錘片與出料口組合時,粉碎機噪聲較其余組合大;篩網(wǎng)具有降噪作用;在進(jìn)、出料口處噪聲較大;無錘片時,最大聲壓級是87.8 dB(A),平均聲壓級只有87.5 dB(A),與其余狀態(tài)的相同指標(biāo)對比聲壓級最低,氣動噪聲有所降低,此時振動噪聲占了主要地位,有2個主要噪聲的頻率峰值,即旋轉(zhuǎn)噪聲基頻47 Hz和振動噪聲主頻1263 Hz。
1.3.3 轉(zhuǎn)速與錘片數(shù)量對粉碎機噪聲的影響
轉(zhuǎn)子的轉(zhuǎn)速直接影響粉碎機的工作效率,轉(zhuǎn)子的工作轉(zhuǎn)速在2 400~2 800 r/min。分別選取2 400、2 500、 2 600、2 700和2 800 r/min作為試驗因素進(jìn)行粉碎機噪聲測量,表5為不同轉(zhuǎn)速下噪聲聲壓級和旋轉(zhuǎn)噪聲頻率測試結(jié)果。
表5 不同轉(zhuǎn)速時噪聲聲壓級和旋轉(zhuǎn)噪聲頻率
圖4 2 400~2 700 r/min噪聲頻譜圖
由表5知,轉(zhuǎn)速越大各測點噪聲聲壓越大。在2 400~2 800 r/min轉(zhuǎn)速內(nèi),粉碎機噪聲會隨著轉(zhuǎn)速增加而加劇。結(jié)合圖2a和圖4知,在轉(zhuǎn)速為2 400~2 800 r/min時,主要噪聲源與粉碎機的噪聲基頻、二次諧波頻率有很好的吻合,說明轉(zhuǎn)速在2 400~2 800 r/min內(nèi)變化時,粉碎機的主要噪聲源是空氣動力性噪聲。轉(zhuǎn)速2 600 r/min以前,粉碎機的噪聲頻率信號中寬頻信號能量較大,說明粉碎機噪聲在低速時渦流噪聲占優(yōu)勢;轉(zhuǎn)速2 600 r/min以后,粉碎機的噪聲頻率信號中離散信號能量較大,說明高速時旋轉(zhuǎn)噪聲占優(yōu)勢。
在空載額定轉(zhuǎn)速下,分別對無錘片、單排錘片、2排錘片、3排錘片以及4排錘片時粉碎機的噪聲聲壓級進(jìn)行測試,統(tǒng)計結(jié)果見表6;錘片數(shù)量對粉碎機旋轉(zhuǎn)噪聲頻率影響以測點5為例進(jìn)行分析,測量結(jié)果如圖5所示。
表6 不同錘片數(shù)量時噪聲聲壓級
圖5 不同錘片數(shù)量時測點5頻譜圖
由表6知,錘片數(shù)量增加,錘片與空氣沖擊噪聲增大,粉碎機總聲壓級迅速升高;由圖5知,隨著錘片數(shù)增加,粉碎機噪聲幅值不斷增大,可見錘片數(shù)量只影響到噪聲幅值,對主頻影響較小,進(jìn)一步說明錘片數(shù)量不會改變噪聲源,噪聲主要來自錘片與空氣的沖擊噪聲,即空氣動力性噪聲。結(jié)合表4試驗結(jié)果知,進(jìn)料口、出料口對粉碎機空氣動力性噪聲的影響較大。因此,降低粉碎機噪聲的關(guān)鍵在于降低空氣動力性噪聲。
篩網(wǎng)具有降噪作用,可以適當(dāng)增大篩網(wǎng)面積,如設(shè)計球面型篩網(wǎng)等。由于氣動噪聲是粉碎機的主要噪聲源,進(jìn)料口與出料口都不同程度上增強了噪聲,結(jié)合空氣動力性理論設(shè)計進(jìn)料口與出料口結(jié)構(gòu)形狀,通過改善氣流的流動狀態(tài)來降低噪聲。
在主要噪聲源中,除旋轉(zhuǎn)噪聲外,另一噪聲源主要是由于氣流經(jīng)進(jìn)料口進(jìn)入到出料口流出的整個過程中,形成的流體表面壓力脈動和紊流產(chǎn)生的。在改進(jìn)設(shè)計中,將進(jìn)料口改進(jìn)為半圓形,以降低進(jìn)料口處的表面壓力脈動。將出料口上壁面改為圓弧面,以減弱出料口上壁面空氣流的紊流現(xiàn)象。改進(jìn)后樣機如圖6所示。
圖6 出料口改進(jìn)后的粉碎機
用ANSYS中ICEM-FLUENT模塊對改進(jìn)前后的分離裝置內(nèi)的湍流進(jìn)行模擬,結(jié)果如圖7所示。
圖7 改進(jìn)前后分離裝置湍動能分布
圖7知,較原分離裝置而言,改進(jìn)后分離裝置內(nèi)湍動能較低,流場分布較均勻,紊流現(xiàn)象較弱,表面脈動壓力較小,空氣動力性噪聲可得到有效改善。
此外,還可采取在粉碎機與地基之間安置彈性襯墊材料、包裹吸聲材料,搭建隔聲罩等方式進(jìn)行被動降噪。
將出料口改進(jìn)后,對粉碎機空載時各測點噪聲聲壓級進(jìn)行測試,結(jié)果如表7所示。
表7 出料口改進(jìn)后粉碎機各測點空載噪聲
從表1和表7對比知,出料口改進(jìn)后,總聲壓級降幅為3.0 dB(A),各測點的平均聲壓級降幅為1.9~3.6 dB(A),說明出料口改進(jìn)后粉碎機噪聲得到一定程度的改善。
根據(jù)GB/T6971-2007《飼料粉碎機試驗方法》,以含水率為14%的玉米顆粒為試驗原料,粉碎機功率7.5 kW,工作轉(zhuǎn)速為2 800 r/min,喂料量為13.3 kg/min,進(jìn)行粉碎試驗。對出料口改進(jìn)后粉碎機的生產(chǎn)力進(jìn)行評價。由表8知,改進(jìn)后樣機的生產(chǎn)率相對誤差為1.4%,噸料電耗相對誤差為3.6%。出料口改進(jìn)前后生產(chǎn)率及噸料電耗相當(dāng),即出料口改進(jìn)設(shè)計后,整機生產(chǎn)力無顯著變化。
表8 改進(jìn)前后樣機生產(chǎn)率統(tǒng)計
1)對粉碎機進(jìn)行噪聲設(shè)計的關(guān)鍵是降低其空載氣動噪聲。
2)錘片對噪聲產(chǎn)生的作用最大;篩網(wǎng)、進(jìn)料口和出料對主頻成分沒有影響,只影響噪聲頻率的幅值;篩網(wǎng)具有降噪作用;進(jìn)料口、出料口不同程度增強了噪聲聲壓級。
3)從頻譜圖可知,當(dāng)轉(zhuǎn)速在2 400~2 800 r/min范圍內(nèi)變化時,粉碎機噪聲幅值會隨著轉(zhuǎn)速增加而加劇,說明轉(zhuǎn)速對粉碎機的噪聲影響顯著;錘片數(shù)量只影響噪聲幅值,對主要頻率變化影響較??;低轉(zhuǎn)速時渦流噪聲占優(yōu)勢,高轉(zhuǎn)速時旋轉(zhuǎn)噪聲占優(yōu)勢。
4)改進(jìn)粉碎機出料口等結(jié)構(gòu)的參數(shù)可以有效降低粉碎機噪聲,改進(jìn)前后粉碎機生產(chǎn)率分別為790.08和789.24 kg/h,噸料電耗分別為9.94和9.75 kW×h/t,因此改進(jìn)前后生產(chǎn)力無顯著變化。
[1] 曹麗英. 新型錘片式粉碎機物料分離特性的模擬與測試分析[D]. 呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2010. Cao Liying. Measuring and Simulation Analysis on Material- Sieving Properties for a New Hammer mill[D]. Hohhot: Inner Mongolia Agricultural University, 2010. (in Chinese with English abstract)
[2] 武佩,柏大槳. 爪式粉碎機噪聲源的識別分析[J]. 農(nóng)業(yè)機械學(xué)報,1990,3:61-66. Wu Pei, Bai Daqi.Identification of noise sources of the disk mill[J]. Journal of Agricultural Machinery, 1990, 3: 61-66. (in Chinese with English abstract)
[3] Rayeight R J W S. Theory of sound[J]. Docer Publications, 1976, 2: 41-44.
[4] 房菁. 基于LabVIEW和MATLAB的飼料粉碎機振動信號采集與處理[J]. 工藝設(shè)備,2016,37(11):16-18. Fang Jing. Acquisition and processing of the mechanical vibration signal of feed hammer mill based on LabVIEW and MATLAB[J]. Feed Industry. 2016, 37(11): 16-18. (in Chinese with English abstract)
[5] 曹麗英,張躍鵬,張玉寶,等. 篩片參數(shù)優(yōu)化對飼料粉碎機篩分效率的影響[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(22): 284-288. Cao Liying, Zhang Yuepeng, Zhang Yubao, et al. Influence of screen parameters optimization on screening efficiency of feed hammer mill[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(22): 284-288. (in Chinese with English abstract)
[6] 曹麗英,賀龍,張玉寶. 錘片式粉碎機物料粒度分布特性對透篩效率的影響規(guī)律研究[J]. 飼料工業(yè),2014,35(23):11-16. Cao Liying, He Long, Zhang Yubao.Effect of particle size distribution of the material on the screening efificiency in the grinder[J]. Feed industry. 2014, 35(23): 11-16. (in Chinese with English abstract)
[7] 白羽. 新型錘片式粉碎機分離裝置設(shè)計研究[D]. 包頭:內(nèi)蒙古科技大學(xué),2013. Bai Yu.Research on the Design of a New Type of Hammer Mill Separator[D]. Baotou: Inner Mongolia University of Science and Technology, 2013. (in Chinese with English abstract)
[8] 王亮,曹麗英. 一種關(guān)于提高飼料粉碎機顆粒過篩率綜合效果方法的討論[J]. 飼料工業(yè),2014,35(7):12-14. Wang Liang, Cao Liying. A discussion of net effect for improving the sieving rate of feed mill[J].Journal of food science and technology, 2014, 35(7):12-14. (in Chinese with English abstract)
[9] 曹麗英,史興華,石煒,等. 錘片式粉碎機粉碎室內(nèi)流場仿真分析[J].農(nóng)機化研究,2017,39(8):22-26. Cao Liying, Shi Xinghua, Shi Wei, et al. Simulation and Analysis on Flow Field in Crashing Cavity of New-type Feed Hammer Mill[J]. Journal of agricultural mechanization, 2017, 39(8): 22-26. (in Chinese with English abstract)
[10] 曹麗英,武佩,馬彥華,等. 基于FLUENT的錘片式粉碎機單相流場分析[J]. 糧食與飼料工業(yè),2010,12:45-47.Cao Liying, Wu Pei, Ma Yanhua, et al. Analysis on single- phase flow field of hammer mill based on FLUENT[J]. Cereal & feed industry, 2010, 12: 45-47. (in Chinese with English abstract)
[11] 曹麗英,武佩. 粉碎機分離裝置氣-固兩相流研究—基于FlUENT[J]. 農(nóng)機化研究,2013,2:23-26.Cao Liying, Wu Pei. Study on Air-solid Two-phases Flow in the Sieving Set-up of a Hammer Mill-Based on FLUENT [J]. Journal of agricultural mechanization, 2013, 2: 23-26. (in Chinese with English abstract)
[12] 劉憲,吉穎風(fēng),李博強,等. 錘片式飼料粉碎機內(nèi)碎物料分離速度的分析[J]. 農(nóng)業(yè)機械學(xué)報,2004,35(1):182-183. Liu Xian, Ji Yingfeng, Li Boqiang, et al. Analysis of the separation speed of the broken material in the hammer mill[J]. Journal of agricultural machinery, 2004, 35(1): 182-183. (in Chinese with English abstract)
[13] 周向農(nóng),史建新. 飼料粉碎機環(huán)流分布的試驗研究[J]. 農(nóng)業(yè)工程學(xué)報,1997,13(4):140-143. Zhou Xiangnong, Shi Jianxin. Experimental studies on circulation distribution of a hammer mill[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1997, 13(4): 140-143. (in Chinese with English abstract)
[14] Rittinger P R Von. Textbook of the science of preparation, systematical presented according to the lastest development and improvements [M]. Berlin, Ernst. U. kotn, 1867.
[15] Bond F C. Third theory of commination[J].Mining Engineering, 1952, 4: 484.
[16] Friedrich, w. The process of combination in a hammer mill dependent upon the values influencing in[J]. Muhle, 1959, 48: 648, 49: 660.
[17] 朱新華,郭文川,閻曉利,等. 錘片式粉碎機的理論分析和結(jié)構(gòu)改進(jìn)措施探討[J]. 西北農(nóng)業(yè)大學(xué)學(xué)報,1999,27(1):108-111. Zhu Xinhua, Guo Wenchuan, Yan Xiaoli, etal.Theoretical analysis and improvement measures of hammer mill[J]. Actauniv. Agric Boreali-occidentalis, 1999, 27(1): 108-111. (in Chinese with English abstract)
[18] 戴麗燕. 關(guān)于Rosin-Rammler粒徑分布函數(shù)的研究[J]. 有色礦冶,2000,16(3):15-16. Dai liyan. Study on Rosin-Rammler particle size distribution function[J]. Non-ferrous mining and metallurgy. 2000, 16(3): 15-16. (in Chinese with English abstract)
[19] 汪建新,張廣義,曹麗英. 新型錘片式飼料粉碎機分離流道內(nèi)物料運動規(guī)律[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(9):18-23. Wang Jianxin, Zhang Guangyi, Cao Liying. Research of materials motion law in separation flow of new type hammer feed grinder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(9): 18-23. (in Chinese with English abstract)
[20] 曹麗英,賀龍,張玉寶,等. 錘片式飼料粉碎機內(nèi)氣固兩相流場壓強的測試方法[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(11):90-97. Cao Liying, He Long, Zhang Yubao, etal. Pressure test method of gas-solid two-phase flow field in grinding chamber with hammer mill[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(11): 90-97. (in Chinese with English abstract)
[21] 賀龍. 粉碎機粉碎室內(nèi)氣固兩相流場特性的測試[D]. 包頭:內(nèi)蒙古科技大學(xué),2015. He Long.The Test about the Property of Solid Flow Field in the Crushing Chamber of the Grinder[D]. Baotou: Inner Mongolia University of Science and Technology, 2015. (in Chinese with English abstract)
[22] Barnwal P, Singh K K, Sharma Alka, etal. Influence of pin and hammer mill on grinding characteristics, thermal and antioxidant properties of coriander power[J]. Journal of food science and technology, 2015, 52(12): 77-83.
[23] Louis Lefebvre, Frederic Laville. Noise source identification for mechanicalsystems generating periodic impacts[J]. Apphlied Acoustics. March, 2007, 5: 83-86.
[24] 武佩. 錘片式粉碎機噪聲的測試分析[J]. 內(nèi)蒙古農(nóng)牧學(xué)院學(xué)報,1994,15(3):61-66. Wu Pei.Measurement analysison noise of hammer mill[J]. Journal of Inner Mongolia College of agriculture and animal husbandry, 1994, 15(3): 61-66. (in Chinese with English abstract)
[25] 范文海. 錘片式粉碎機機座結(jié)構(gòu)優(yōu)化與振動噪聲分析[D]. 無錫:江南大學(xué),2009. Fan Wenhai. Structure Optimum of Hammer Pulverator’s Frame and Its Vibration and Noise Analysis[D]. Wuxi: Jiangnan university, 2009. (in Chinese with English abstract)
[26] 李青,李娜,張運文. 齒爪式粉碎機振動與噪聲工藝優(yōu)化分析[J]. 農(nóng)業(yè)裝備與車輛工程,2014,52(8):66-68.Li Qing, Li Na, Zhang Yunwen. Process optimization analysis on vibration and noise of tooth-claw-type pulverized [J]. Agriculture equipment & vehicle and noise engineering, 2014, 52(8): 66-68. (in Chinese with English abstract)
[27] 許肖梅. 聲學(xué)基礎(chǔ)[M]. 北京:科學(xué)出版社,2003.
[28] 張勇,孫健. LabVIEW程序設(shè)計基礎(chǔ)與提高[M]. 北京:機械工業(yè)出版社,2013.
[29] 李增光.機械振動噪聲設(shè)計入門[M]北京:化學(xué)工業(yè)出版社,2013
[30] 張恩慧,殷金英,邢書仁. 噪聲與振動控制[M]. 北京:冶金工業(yè)出版社,2013.
[31] 中華人民共和國質(zhì)量監(jiān)督檢驗檢疫總局,中國國家標(biāo)準(zhǔn)化管理委員會. GB/T691-2007飼料粉碎機實驗方法[S]. 北京:中國標(biāo)準(zhǔn)出版社,2007.
Noise sources identification and noise reduction methods of hammer mill
Cao Liying1, Yang Zuowen1, Jiao Wei2, Zhang Yubao1, Zhang Yuepeng1, Zhang Hongyu1
(1.014010,; 2.010010,)
In order to solve the problem of big noise during the working process of the hammer mill, and search for the main noise source and noise reduction method of hammer mill, the noise signals were collected and analyzed by the virtual instrument software LabVIEW and bench test on the hammer mill. The sound pressure level of the hammer mill was tested and analyzed in no-load and load conditions, and the spectrum of the hammer mill was tested. The result of this test shows the no-load sound pressure level of the hammer mill is bigger than the load sound pressure level. The material loading or not only changes the size of the peak of the noise. Thus it can be seen the key of absorbing the noise is to reduce the no-load aeromechanic noise. The noise sources of hammer mill were superimposed, bringing about the multivariate source coupling problem. The distribution operation method was used to test the noise of the hammer, screen, feeding inlet and feeding outlet. Sound pressure level and frequency spectrum were analyzed to find the main noise sources of the hammer mill, according to the main factors of noise such as the hammers, screen, feeding inlet and feeding outlet. Noise pressure level was tested and spectrum was analyzed in the state of noise with a single factor and combination of multiple factors. The results are as follows: The noise signals contain 47, 180, 200, 361, 893 and 1263 Hz. The screen, feeding inlet and outlet have no effect on the main frequency component. The screen has the noise reduction function; the feeding inlet and outlet enhance the noise pressure in different degrees. The sound pressure level of the single rotor is very small, which reveals that the hammer has a great influence on the noise. The noise is strengthened when the hammer and the outlet work together; the noise of hammer mill is greatly reduced when it has no hammer piece. Based on the analysis of no-load noise spectrum of 2400-2800 r/min, when the speed increases, the noise amplitude increases dramatically, indicating that the effect of noise on high-speed grinder is evident.When the speed is 2400-2800 r/min, the main noise source is in good agreement with the noise base frequency and the second-harmonic frequency of the hammer mill; when the speed is lower than 2600 r/min, the broadband signal energy to noise frequency signal of grinder is larger, indicating mill noise of vortex at low speed is dominant; when the speed is higher than 2600 r/min, the discrete signal energy to noise frequency signal of hammer mill is larger, that is to say the rotating noise is dominant at high speed. In the working condition of no load and rated speed, the noise sound pressure level of the hammer mill was tested with no hammer, single row hammer, 2 row hammers, 3 row hammers and 4 row hammers respectively. It is known that the number of hammers only affects the amplitude of the noise and has little influence on the change of the main frequency by analyzing the spectrum diagram of the no-load noise with different numbers of hammer pieces. Besides, the structure of feeding inlet, outlet and screen was improved in design. Taking the outlet improvement design as an example, turbulent kinetic energy of original and improved separation device was simulated. The comparison results show that the kinetic energy of the improved outlet is less. It is proved that the improvement of the outlet is beneficial to the noise reduction in the experiment, the total sound pressure level was reduced by 3 dB(A), the sound pressure levels of test points were reduced by 1.9-3.6 dB(A), and the hammer mill production was not greatly affected. Some other methods of noise reduction were proposed. This research provides theoretical evidence for the noise reduction design of the hammer mill.
agricultural machinery; processing; mechanization; hammer mill; noise; noise reduction; frequency
曹麗英,楊左文,焦 巍,張玉寶,張躍鵬,張弘玉. 錘片式粉碎機噪聲源識別及降噪方法[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(7):59-65. doi:10.11975/j.issn.1002-6819.2018.07.008 http://www.tcsae.org
Cao Liying, Yang Zuowen, Jiao Wei, Zhang Yubao, Zhang Yuepeng, Zhang Hongyu. Noise sources identification and noise reduction methods of hammer mill[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 59-65. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.07.008 http://www.tcsae.org
2017-05-01
2018-02-02
國家自然科學(xué)基金資助項目(51105189);內(nèi)蒙古自然科學(xué)基金資助項目(2014MS0534);內(nèi)蒙古自治區(qū)高等學(xué)??茖W(xué)研究項目(NJZC13153)
曹麗英,女,內(nèi)蒙古土左旗人,副教授,博士,主要研究方向為農(nóng)產(chǎn)品加工裝備設(shè)計,機械優(yōu)化設(shè)計,工程測試等。Email:kdcly@imust.cn
10.11975/j.issn.1002-6819.2018.07.008
S226.3
A
1002-6819(2018)-07-0059-07