薛立飛,朱紅波
(東北師范大學(xué)物理學(xué)院,吉林 長春 130024)
自從C.M.Bender等人[1-2]提出了PT對稱的概念以來,PT對稱理論的潛在應(yīng)用已經(jīng)吸引了眾多學(xué)者的研究興趣.當(dāng)參數(shù)達到某一臨界值時,PT對稱的非厄米系統(tǒng)將會發(fā)生相變,這一臨界值稱為異常點,也稱為自發(fā)的PT對稱斷裂點(EP).[1-3]當(dāng)參數(shù)低于異常點時,非厄米哈密頓量的本征值為實數(shù);當(dāng)高于異常點時,哈密頓量的本征值部分或全部為復(fù)數(shù),這種現(xiàn)象通常被看做是PT對稱性破缺.PT對稱性破缺將導(dǎo)致一系列有趣的現(xiàn)象.例如,人們已經(jīng)在PT對稱結(jié)構(gòu)中觀察到了非相互作用的單光子傳輸[4-10],并預(yù)測了由于場局域化而引起的非線性相互作用的加強.[11-12]PT對稱系統(tǒng)在各個領(lǐng)域都有潛在的應(yīng)用,如量子計算、耗散現(xiàn)象、超聲波光學(xué)混沌等.[13-14]另外,耦合腔系統(tǒng)廣泛應(yīng)用于連續(xù)地控制光子傳輸.在無限長耦合腔陣列中,可以引入破缺來構(gòu)建頻率轉(zhuǎn)換器[15]、單光子開關(guān)[16-17]和路由器[18].目前,人們已經(jīng)可以實現(xiàn)兩體耦合腔的實驗,例如狀態(tài)傳輸[19]與相干極化[20].
本文研究了PT對稱的兩體耦合腔系統(tǒng),該體系由對稱的光場增益和耗散的兩腔組成,并且兩腔之間具有線性耦合,構(gòu)成了耦合腔陣列.分析了該體系的PT相變以及PT對稱相和對稱破缺相中的單光子傳輸特點.
研究系統(tǒng)是一個有PT對稱性的兩體耦合腔陣列,2個單模腔(A和B)中分別有光場的耗散(腔A)和增益(腔B),并且增益腔與耗散腔之間發(fā)生線性耦合,如圖1所示.
A腔有光場的耗散;B腔有光場的增益
對于這個兩體耦合腔系統(tǒng),令?=1,體系的哈密頓量可寫為
(1)
其中:a1,a2(a1+,a2+)分別是耗散腔A與增益腔B的光場湮滅(產(chǎn)生)算符;ω1,ω2分別是兩腔的諧振頻率;J是兩腔之間的線性耦合系數(shù),其大小可以通過改變增益腔與耗散腔之間的距離來調(diào)節(jié);γ1(γ1>0)是A腔的光子數(shù)耗散率;γ2(γ2>0)是B腔的光子數(shù)增益率.在研究體系PT相變的過程中,考慮兩腔的諧振頻率相同(ω1=ω2=ω)和光子數(shù)的增益率與耗散率相同(γ1=γ2=γ)的情況下,此時哈密頓量滿足PT對稱性即[H1,PT]=0.這里P表示空間對稱算符1?2,T表示時間反演算符it?-it[1].
其中N±是正交歸一化常數(shù),為了方便我們把|E±〉寫作兩分量向量,并且
a:E±的實部隨J/γ變化規(guī)律; b:E±的虛部隨J/γ的變化規(guī)律;c:|a±|隨J/γ的變化規(guī)律圖2 兩體耦合腔的透射率
E±的實部和虛部隨J/γ的變化規(guī)律及分量的相對幾率幅絕對值隨J/γ的變化規(guī)律見圖2(ω=5γ,γ=1).由圖2可以看出,系統(tǒng)的本征值是對稱分布的.在PT對稱相中,增益的光子快速地從增益腔轉(zhuǎn)移到耗散腔,光子在增益腔和耗散腔中對稱分布;當(dāng)J=γ時系統(tǒng)發(fā)生PT相變,在PT對稱性破缺相中,增益的光子也是從增益腔轉(zhuǎn)移到耗散腔,足夠長的時間過后,光子局域化在耗散腔中.
(2)
(3)
研究單光子在PT對稱相中的傳輸行為.此時J>γ,首先考慮初始時刻單光子在耗散腔中的情況,即α(0)=1,β(0)=0.通過計算獲得光子分別在兩腔中的概率幅為:
(4)
(5)
(6)
(7)
a:初始時刻光子在耗散腔中;b:初始時刻光子在增益腔中
單光子在PT對稱性破缺相中傳輸,J<γ.首先考慮初始時刻單光子處于耗散腔,即α(0)=1,β(0)=0,通過計算可以明確獲得光子在兩腔中的概率幅為
(8)
(9)
(10)
(11)
單光子在兩體耦合腔系統(tǒng)PT對稱性破缺相中傳輸?shù)母怕嗜鐖D4(ω=10γ,J=0.5γ,γ=1)所示,分別給出初始時刻單光子處于耗散腔和增益腔.圖4中所展示的動力學(xué)性質(zhì)與上面PT對稱相的情況截然不同.但是,同樣在PT對稱性破缺相中也可以觀察到單向性的現(xiàn)象.如圖4a,當(dāng)單光子初始時刻處于耗散腔,光子將首先經(jīng)歷耗散,然后在增益腔內(nèi)的增益將補償耗散,隨著時間的推移,光子處于增益腔內(nèi)的幾率將增大,而在耗散腔中光子的幾率先減小之后也將增大.圖4b是初始時刻單光子處于增益腔中的情況.在這種情況下,增益效應(yīng)隨著時間逐漸展現(xiàn)出來,并且在所有腔里找到光子的可能性是隨時間單調(diào)遞增的,但是在增益腔中增加的更快.所以在PT對稱性破缺相中也表現(xiàn)出了單光子傳輸?shù)膯蜗蛐?
a:初始時刻光子在耗散腔中; b:初始時刻光子在增益腔中
研究了有對稱增益和耗散的兩體耦合腔陣列的PT相變.在PT對稱相中所有的本征值都是實數(shù),對應(yīng)的本征態(tài)在增益腔和耗散腔中對稱分布;在PT對稱性破缺相中本征值出現(xiàn)復(fù)數(shù),并且出現(xiàn)場局域化現(xiàn)象.隨著PT對稱相變的出現(xiàn),單光子在兩相中的傳輸行為也存在差異.結(jié)果表明:當(dāng)光子由PT對稱相向PT對稱性破缺相傳輸時,周期性的動力學(xué)性質(zhì)被破壞,但是光子在兩相中的傳輸都具有單向性.這些研究方法可以推廣到具有PT對稱的三體耦合腔陣列,以及多體耦合腔陣列體系.對日后基于耦合腔陣列的光學(xué)設(shè)備的研究有一定的幫助.
[參考文獻]
[1]BENDER C M.Making sense of non-Hermitian Hamiltonians[J].Reports on Progress in Physics,2007,70:947-1018.
[2]BENDER C M,BOETTCHER S.Real spectra in non-Hermitian Hamiltonians having PT symmetry[J].Physical Review Letters,1998,80(24):5243-5246.
[3]MOSTAFAZADEH A.Pseudo-Hermiticity versus PT symmetry:the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian[J].Journal of Mathematical Physics,2002,43(1):205-214.
[4]LIN Z,RAMEZANI H,EICHELKRAUT T,et al.Unidirectional invisibility induced by PT-symmetric periodic structures[J].Physical Review Letters,2011,106(21):213901.
[5]BENDER N,BODYFELT J D,RAMEZANI H,et al.Observation of a symmetric transport in structures with active nonlinearities[J].Physical Review Letters,2013,110(23):234101.
[6]WU J H,ARTONI M,LA ROCCA G C.Non-Hermitian degeneracies and unidirectional reflectionless atomic lattices[J].Physical Review Letters,2014,113(12):123004.
[7]RAMEZANI H,KOTTOS T,ELGANAINY R,et al.Unidirectional nonlinear PT-symmetric optical structures[J].Physical Review A,2010,82(4):1015-1018.
[8]CHANG L,JIANG X,HUA S,et al.Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators[J].Nature Photonics,2014,8(7):524-529.
[9]FENG L,XU Y L,F(xiàn)EGADOLLI W S,et al.Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies[J].Nature Materials,2013,12(2):108-113.
[10]LI J,ZHAN X,DING C,et al.Enhanced nonlinear optics in coupled optical microcavities with an unbroken and broken parity-time symmetry[J].Physical Review Letters A,2015,92(7):043830.
[11]LI J,YU R,WU Y.Proposal for enhanced photon blockade in parity-time-symmetric coupled microcavities[J].Physical Review Letters A,2015,92(5):053837.
[12]LUY X Y,JING H,MA J Y,et al.PT-symmetry-breaking chaos in optomechanics[J].Physical Review Letters,2015,114(25):253601.
[13]WEST C T,KOTTOST,PROSEN T.PT-symmetric wave chaos[J].Physical Review Letters,2010,104(5):054102.
[14]MEI B,XU H S,TU X L,et al.Origin of odd-even staggering in fragment yields:impact of nuclear pairing and shell structure on the particle-emission threshold energy[J].Physical Review C,2014,89(5):675-687.
[15]WANG Z H,LI Y,ZHOU D L,et al.Single-photon scattering on a strongly dressed atom[J].Physical Review A,2011,86(2):023824.
[16]ZHOU L,GONG Z R,LIU Y X,et al.Controllable scattering of a single photon inside a one-dimensional resonator waveguide[J].Physical Review Letters,2008,101(10):100501.
[17]ZHOU L,YANG L P,LI Y,et al.Quantum routing of single photons with a cyclic three-level system[J].Physical Review Letters,2013,111(10):103604.
[18]OGDEN C D,IRISH E K,KIM M S.Dynamics in a coupled-cavity array[J].Physical Review A,2008,78(6):5175-5179.
[19]LIU Y C,LUAN X,LI H K,et al.Coherent polariton dynamics in coupled highly-dissipative cavity quantum electrodynamics[J].Physics,2014,112(21):213602.
[20]FELICETTI S,ROMERO G,ROSSINI D,et al.Photon transfer in ultrastrongly coupled three-cavity arrays[J].Physical Review A,2014,89(1):013853.