楊 濤 單秀娟,2 金顯仕,2 陳云龍 滕廣亮 魏秀錦
?
萊州灣春季魚類群落關(guān)鍵種的長期變化*
楊 濤1單秀娟1,2①金顯仕1,2陳云龍1滕廣亮1魏秀錦1
(1. 農(nóng)業(yè)部海洋漁業(yè)可持續(xù)發(fā)展重點實驗室 山東省漁業(yè)資源與生態(tài)環(huán)境重點實驗室 中國水產(chǎn)科學研究院黃海水產(chǎn)研究所 青島 266071;2. 青島海洋科學與技術(shù)國家實驗室 海洋漁業(yè)科學與食物產(chǎn)出過程功能實驗室 青島 266071)
萊州灣;魚類群落;食物網(wǎng)拓撲結(jié)構(gòu);網(wǎng)絡(luò)分析法;關(guān)鍵種
關(guān)鍵種(Keystone species)是指當群落中單個這樣種發(fā)生變化,會引起群落結(jié)構(gòu)振蕩,甚至導致生態(tài)功能紊亂乃至整個系統(tǒng)崩潰,因此,關(guān)鍵種對整個生態(tài)系統(tǒng)結(jié)構(gòu)和功能發(fā)揮了重要作用。關(guān)鍵種可以是瀕危種、土著種、外來種,甚至是廣布種(Mills, 1993; Libralato, 2006; Modlmeiera, 2015),并且隨著區(qū)域、時間、生態(tài)系統(tǒng)的變化而不同,環(huán)境條件的改變也會導致其更替(Jordán, 2002;Gili, 2002),關(guān)鍵種決定了水域生態(tài)系統(tǒng)食物網(wǎng)結(jié)構(gòu)變化的方向,了解生態(tài)關(guān)鍵種的長期變化有助于解析整個生態(tài)系統(tǒng)的演替過程(Pauly, 2001)。如何篩選和識別關(guān)鍵種就變得尤為關(guān)鍵,也成為近年來漁業(yè)生態(tài)學的國際研究熱點(Libralato, 2006; Jordán, 2009; Coll, 2012; Eddy, 2014; Modlmeiera, 2015; Valls, 2015; Torres, 2017)。國內(nèi)對關(guān)鍵種的報道主要是綜述性的文章(葛寶明等, 2004; 陳清潮, 2012; 杜洪業(yè)等, 2012),有關(guān)水域生態(tài)系統(tǒng)關(guān)鍵種的篩選僅見于張豫等(2013)、楊濤等(2016)等。本研究基于1959~2015年萊州灣春季漁業(yè)資源調(diào)查數(shù)據(jù),構(gòu)建了該水域魚類群落食物網(wǎng)拓撲結(jié)構(gòu),分析了該水域關(guān)鍵種的長期變化,以期為萊州灣生態(tài)系統(tǒng)的演變和漁業(yè)資源的適應(yīng)性管理提供科學依據(jù)。
本研究基于1959年、1982年、1993年、2003年和2015年萊州灣春季(5月)底拖網(wǎng)漁業(yè)資源調(diào)查數(shù)據(jù),其中1959~2003年數(shù)據(jù)參考金顯仕等(1998, 2000, 2001, 2005)、鄧景耀等(2000)、Jin(2004)、Jin等(2013)和李顯森等(2008)。2015年數(shù)據(jù)來源于中國水產(chǎn)科學研究院黃海水產(chǎn)研究所973項目萊州灣調(diào)查,調(diào)查站位延續(xù)中國水產(chǎn)科學研究院黃海水產(chǎn)研究所歷史調(diào)查站位設(shè)計方案(圖1),調(diào)查船租用205 kW雙拖漁船,調(diào)查網(wǎng)具參數(shù)為網(wǎng)口高度6 m,網(wǎng)口寬度22.6 m,網(wǎng)口周長1740目,網(wǎng)目63 mm,囊網(wǎng)網(wǎng)目20 mm,拖速3 kn,拖網(wǎng)1 h。漁獲物中所有魚類種類均被記錄,并留取胃樣品進行實驗室胃含物分析。食性數(shù)據(jù)參考鄧景耀等(1988a, 1988b)、唐啟升等(1990)、金顯仕等(1999, 2005)及調(diào)查取樣的胃含物分析。
魚類群落食物網(wǎng)拓撲結(jié)構(gòu)指標計算參考楊濤 等(2016),群落多樣性指數(shù)計算參照金顯仕等(1999),群落種間聚類系數(shù)計算參照Watts等(1998)。
魚類群落食物網(wǎng)拓撲結(jié)構(gòu)節(jié)點密度(Density,D)、種間關(guān)聯(lián)度(Connectance,)參照Dunne等(2002),具體如下:
節(jié)點密度D:
D=S/
種間關(guān)聯(lián)度指數(shù):
式中,為魚類群落中種類數(shù)量;為群落內(nèi)各種間存在的攝食關(guān)系的數(shù)量,值越大,說明群落內(nèi)存在的攝食關(guān)系越多;D為節(jié)點密度,D值越大,群落內(nèi)物種的攝食關(guān)系的平均值就越大;為種間關(guān)聯(lián)度,值越大,2個物種間存在捕食-被捕食關(guān)系的概率就越大。
采用群落離散變量(Fragmentation differences,?¢)和距離權(quán)重離散變量(Distance~weighted fragmentation differences,?F') (Borgatti, 2013)評估魚類群落中某些種類的消失對群落結(jié)構(gòu)離散程度的影響,其中,?>0,則群落離散程度增大;?=0,則離散度不變;?<0,則離散度降低。
圖1 萊州灣漁業(yè)資源調(diào)查站位
1959~2015年,萊州灣漁業(yè)資源調(diào)查共捕獲魚類66種(表1),隸屬于10目34科56屬,其中1982年種類最多,共48種,隸屬于8目24科42屬。其中1982~2015年春季萊州灣魚類優(yōu)勢種見表2,1959年優(yōu)勢種為:帶魚、小黃魚、半滑舌鰨()、鲬()和白姑魚() (金顯仕等,2000),可知萊州灣春季魚類群落優(yōu)勢種群經(jīng)歷了由1950年代的帶魚、半滑舌鰨等重要經(jīng)濟種類向鳀、黃鯽()等小型經(jīng)濟種類演替,再經(jīng)本世紀初的小黃魚、銀 鯧()等重要經(jīng)濟物種向六絲矛尾蝦虎魚、短吻紅舌鰨()和方氏云 鳚()等低質(zhì)底層魚類演替過程。
本研究通過豐富度指數(shù)()、Shannon-Weaver多樣性指數(shù)(¢)和均勻度指數(shù)(¢)分析了萊州灣魚類群落的多樣性。萊州灣魚類多樣性在年間變化較大(圖 2),其中,種類豐富度指數(shù)(R和R分別表示以重量和數(shù)量計算的,H'、H'和J'、J'與此相同)總體呈下降趨勢,1982年最高,隨后逐漸降低,至2003年降至最低,然后略有回升。多樣性指數(shù)總體呈增加趨勢,'在1982年后略有降低,2003年后開始回升并超過1982年,而¢一直升高,但H'在各年份均未超過H'。均勻度指數(shù)('和')在1982到2015年期間變化并不大,但均有少量增加,2015年增至最高。
表1 1959~2015年萊州灣春季魚類種類組成
Tab.1 Fish species composition of the Laizhou Bay in spring during 1959~2015
表2 1982~2015年萊州灣春季魚類優(yōu)勢種組成
Tab.2 Dominant species composition of the Laizhou Bay in spring during 1982~2015
圖2 1959~2015年萊州灣春季魚類多樣性變化
1959~2015年,萊州灣春季魚類食物網(wǎng)包含物種21~46,攝食關(guān)系數(shù)量70~296個,平均值為146.6,其中,攝食關(guān)系數(shù)量1982年最多,2003年最低;食物網(wǎng)拓撲結(jié)構(gòu)密度為0.155~0.300,平均密度為0.227,2003年最高,1982年最低;種間關(guān)聯(lián)度為0.140~ 0.182,平均值為0.158,最高值出現(xiàn)在1993年,最低值出現(xiàn)在1982年;聚類系數(shù)為0.207~0.326,加權(quán)聚類系數(shù)為0.194~0.235,平均值分別為0.255和0.214 (圖3)。魚類食物網(wǎng)拓撲學指標在1959~2015年期間呈先增加后降低再增加的趨勢,但魚類群落物種數(shù)量整體呈下降趨勢;從1959年到1982年呈上升趨勢,此后迅速下降,2003年以后保持相對穩(wěn)定;D、、和-從1959年到1982年均呈下降趨勢,而-下降相對緩慢,1982年到1993年期間均緩慢增加;1993年D和開始上升,而緩慢下降,-基本穩(wěn)定;2003年后D、、和-均開始下降,降幅最大。這與豐富度指數(shù)R和R的變化趨勢基本相反,其中D與R呈極顯著負相關(guān)(< 0.01),與R呈顯著負相關(guān)(<0.05) (表3)。
圖3 1959~2015年萊州灣春季魚類食物網(wǎng)拓撲結(jié)構(gòu)屬性
(Links)為攝食關(guān)系數(shù)量,(Species)為魚類群落中物種數(shù)量,D(Density)為魚類群落食物網(wǎng)拓撲結(jié)構(gòu)的節(jié)點密度,(Connectance)為魚類群落中種間關(guān)聯(lián)度,(Clustering coefficient)為聚類系數(shù),(Weighted clustering coefficient)為加權(quán)聚類系數(shù)
(Links): The number of predator-prey relationships in the food web;(Species): Species number of fish community;D(Density): Node density in food-web topological structure;(Connectance): Connectance between species in fish community;: Clustering coefficient;: Weighted clustering coefficient
表3 萊州灣魚類多樣性指數(shù)與食物網(wǎng)拓撲學指標的相關(guān)性
Tab.3 Correlations between fish biodiversity indices and topological indicators of food web in Laizhou Bay
*:在<0.05水平(雙側(cè))上相關(guān)性顯著;**:在<0.01水平(雙側(cè))相關(guān)性顯著
*: Correlation was significant at the 0.05 level (2-tailed); **: Correlation was significant at the 0.01 level (2-tailed)
圖4 萊州灣魚類群落食物網(wǎng)拓撲結(jié)構(gòu)(1959~2015)
1) a:1959年;b:1982年;c:1993年;d:2003年;e:2015年;2) 圖中數(shù)字代表魚類種類,見表1,下同
1) a: 1959; b: 1982; c: 1993; d: 2003; e: 2015; 2) The numbers represented different kinds of fish species, the details were shown in Tab. 1, the same below
1993年共捕獲魚類29種,其中,絲蝦虎魚和尖海龍與該魚類群落其余27種魚類無任何攝食關(guān)系,因此,不將上述2種魚類作為研究對象。通過構(gòu)建其余27種魚類食物網(wǎng)拓撲結(jié)構(gòu)(圖4c)、計算出其拓撲學指標發(fā)現(xiàn),帶魚與群落中17種魚類存在捕食和被捕食關(guān)系,=D+D=17,其中,D=1,D=16,這說明帶魚主要以捕食者的角色存在于該魚類群落,被其捕食的種類達16種,但也會出現(xiàn)被其他魚類捕食的情況,如被藍點馬鮫捕食。因此,帶魚不僅可以通過捕食其他魚類影響群落結(jié)構(gòu),還可以改變自身種群密度影響魚類群落結(jié)構(gòu)。鳀和長蛇鯔與16種魚類均存在攝食關(guān)系,其中,鳀為被捕食者(=D=16),是該群落中重要的餌料魚類,而長蛇鯔在該群落中的生態(tài)地位與帶魚相似,攝食關(guān)系共包括 2 部分:=D+D,D=15,D=1。另外,27種魚類中帶魚的、1、7、、?和?F'值均最大,即其對群落內(nèi)信息交換的控制能力及擴散能力最強、傳遞信息速度最快,當帶魚從該群落中剔除時,群落結(jié)構(gòu)的離散變量和距離權(quán)重離散變量均增加,且增加量最大。藍點馬鮫的和K值最大,=K=15.45,藍點馬鮫對該群落能量流動和信息傳遞影響最大,且該影響全部來自于下行控制效應(yīng)。鳀的K值最大為5.92,說明鳀對該群落的上行控制效應(yīng)最大,因此,鳀通過生物量的變化影響與其他魚類的種間關(guān)系,進而作用于群落結(jié)構(gòu)的穩(wěn)定(表4)。
綜合上述分析結(jié)果,取各指標中最大種類為關(guān)鍵種(Jordán, 2006),1959~2015年萊州灣春季魚類群落關(guān)鍵種見表5。
近60年來,萊州灣水域春季魚類群落結(jié)構(gòu)發(fā)生了明顯改變,魚類種群趨于小型化、低質(zhì)化,群落結(jié)構(gòu)組成趨于簡單化,平均營養(yǎng)級明顯下降(Shan, 2013; 張波等, 2015)。生物多樣性變化較大,種類豐度指數(shù)整體呈下降趨勢,多樣性指數(shù)和均勻度指數(shù)整體呈增加趨勢。生態(tài)群落結(jié)構(gòu)的改變會對魚類群落食物網(wǎng)的結(jié)構(gòu)和功能產(chǎn)生一定影響,如人類活動對海洋生物資源的選擇性開發(fā)已導致種群結(jié)構(gòu)與數(shù)量的變動,使得全球海洋漁獲物的營養(yǎng)級由50年代的3.3下降至1994年的3.1 (Pauly, 1998)。本研究中,D與R呈極顯著負相關(guān)(<0.01),與R呈顯著負相關(guān)(<0.05),一定程度上可以反映出魚類群落多樣性的變化直接影響著群落食物網(wǎng)的結(jié)構(gòu)和功能。而食物網(wǎng)結(jié)構(gòu)可以幫助確定生態(tài)系統(tǒng)中物種的營養(yǎng)關(guān)系,并能夠評估在不同營養(yǎng)級種類間直接或間接影響(Jordán, 2001; Kitchell, 2002; Navia, 2010; Bornatowski, 2014))。萊州灣魚類群落食物網(wǎng)經(jīng)歷了以魚食性種類為主的食物網(wǎng)到以底棲生物食性種類為主的食物網(wǎng)的演變過程(張波等, 2015)。1959~ 2015年萊州灣春季魚類群落食物網(wǎng)拓撲結(jié)構(gòu)中D的取值為0.155~0.300,最高值出現(xiàn)在2003年,最低值出現(xiàn)在1982年,不同年間存在較大波動情況,這與巴西南部巴拉那沿岸等其他的海洋生態(tài)系統(tǒng)的食物網(wǎng)拓撲結(jié)構(gòu)相似(Dunne, 2002; Gaichas, 2008; Bornatowski, 2014);而在Cohen等(1984)早期研究結(jié)果認為,物種多樣性不同的食物網(wǎng)可能具有相同的種間關(guān)聯(lián)度,但因該研究的數(shù)據(jù)質(zhì)量和研究方法等原因使得這一研究結(jié)果受到Riede等(2010)的質(zhì)疑。在本研究中萊州灣春季魚類群落的關(guān)聯(lián)度值為0.140~0.182,較為穩(wěn)定,在0.03~0.30的范圍以內(nèi),基本可以排除該群落內(nèi)種群的攝食可能存在某種特定關(guān)系或群落受到外界因素干擾等情況(Dunne2002; Bornatowski, 2014);而過于極端取值可能出現(xiàn)上述情況,如Martinez等(1999)在對Grassland生態(tài)群落攝食關(guān)系的研究中,值相對較小為0.026,其原因可能是該生態(tài)群落中作為被捕食者的基層物種較少,群落能量流動的來源過于單一;而在Polis(1991)對Coachella Valley的研究中,因受人為因素影響導致值相對偏大。因此,本研究認為1959~ 2016年萊州灣春季魚類群落符合自然條件下的群落種間攝食關(guān)系。
海洋中的物質(zhì)能量通過食物鏈(食物網(wǎng))轉(zhuǎn)化為海洋生態(tài)系統(tǒng)各營養(yǎng)層次的生產(chǎn)力,同時,海洋生態(tài)系統(tǒng)對各種物理化學過程的響應(yīng)通常表現(xiàn)為食物網(wǎng)結(jié)構(gòu)的變化。關(guān)鍵種的生物量未必較高,并不依靠生物量影響群落結(jié)構(gòu),而是通過種群間的攝食關(guān)系密切聯(lián)系群落的其他種群,并經(jīng)過食物網(wǎng)的拓撲關(guān)系控制著群落的結(jié)構(gòu)和能流,而優(yōu)勢種最明顯的特征則是依靠龐大的生物量影響群落結(jié)構(gòu)(Power, 1996)。本研究中發(fā)現(xiàn)萊州灣5個不同時期的關(guān)鍵種中,既是關(guān)鍵種又是優(yōu)勢種的僅有鳀1個種類,分別為1982年、1993年和2003年萊州灣魚類群落關(guān)鍵種。而1982年、1993年鳀既是關(guān)鍵種又是優(yōu)勢種,2003年鳀是關(guān)鍵種但非優(yōu)勢種。關(guān)鍵種在一定時間內(nèi)對其他物種的分布起著直接或間接的調(diào)控作用,其存在對于維持群落的種類組成、生態(tài)群落的功能和物種多樣性等比其他的物種更重要,對生物群落穩(wěn)定性、物種多樣性和許多生態(tài)過程的持續(xù)和改變起決定性作用,是生態(tài)系統(tǒng)的物質(zhì)循環(huán)、能量流動和生物量的調(diào)控者。關(guān)鍵捕食者可以通過捕食作用控制著群落中其他重要食物競爭者和捕食者密度,關(guān)鍵被捕食者則可以通過維持捕食者的密度來限制另外被捕食者的密度,是魚類群落種間關(guān)系的第一紐帶,其種群數(shù)量的變動影響著其他種群的生長、發(fā)育和繁殖,是決定魚類群落動態(tài)的重要因素(陳大剛, 1997)。關(guān)鍵捕食者的能量流動與轉(zhuǎn)換又是影響該水域生態(tài)系統(tǒng)結(jié)構(gòu)與功能穩(wěn)定的重要因素,其演變趨勢對魚類群落結(jié)構(gòu)組的發(fā)展有一定的誘導作用。
Borgatti SP. Analyzing social networks. Sage, 2013
Bornatowski H, Navia AF, Braga RR,. Ecological importance of sharks and rays in a structural foodweb analysis in southern Brazil. ICES Journal of Marine Science, 2014, 71(7): 1586–1592
Chen DG. Fishery resources biology. Beijing: China Agricultrue Press, 1997: 80–100 [陳大剛. 漁業(yè)資源生物學. 北京: 中國農(nóng)業(yè)出版社, 1997: 80–100]
Chen QC. Conservation and sustainable development of marine keystone species. Green Leaf, 2012(10): 35–38 [陳清潮. 保護海洋關(guān)鍵物種與可持續(xù)發(fā)展. 綠葉, 2012(10): 35–38]
Cohen JE, Briand F. Trophic links of community food webs. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(13): 4105–4109
Coll M, Libralato S. Contributions of food web modelling to the ecosystem approach to marine resource management in the Mediterranean Sea. Fish and Fisheries, 2012, 13(1): 60–88
Coll M, Palomera I, Tudela S. Decadal changes in a NW Mediterranean Sea food web in relation to fishing exploitation. Ecological Modelling, 2009, 220(17): 2088– 2102
Deng JY, Jin XS. Study on fishery biodiversity and its conservation in Laizhou Bay and Yellow River Estuary. Zoological Research, 2000, 21(1): 76–82 [鄧景耀, 金顯仕. 萊州灣及黃河口水域漁業(yè)生物多樣性及其保護研究. 動物學研究, 2000, 21(1): 76–82]
Deng JY, Meng TX, Ren SM,. Species composition, abundance and distribution of fishes in the Bohai Sea. Marine Fisheries Research, 1988a, 9: 11–89 [鄧景耀, 孟田湘, 任勝民, 等. 渤海魚類種類組成及數(shù)量分布. 海洋水產(chǎn)研究, 1988a, 9: 10–89]
Deng JY, Meng TX, Ren SM. Food web of fishes in the Bohai Sea. Marine Fisheries Research, 1988b, 9: 151–171 [鄧景耀, 孟田湘, 任勝民. 渤海魚類的食物關(guān)系. 海洋水產(chǎn)研究, 1988b, 9: 151–171]
Drezner TD. The paradoxical distribution of a shallow~rooted keystone species away from surface water, near the water~ limited edge of its range in the Sonoran Desert: Seed~ seedling conflicts. Acta Oecologica, 2013, 47: 81–84
Du HY, Xu CY. Research progress of the relationship between keystone species and the dynamic of community in forestry ecosystem. World Forestry Research, 2012, 25(5): 35–39 [杜洪業(yè), 徐程揚. 森林生態(tài)系統(tǒng)中關(guān)鍵種與群落動態(tài)的關(guān)系研究進展. 世界林業(yè)研究, 2012, 25(5): 35–39]
Dunne JA, Williams RJ, Martinez ND. Food~web structure and network theory: the role of connectance and size. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99: 12917–12922
Eddy TD, Pande A, Gardner JPA. Massive differential site~ specific and species~specific responses of temperate reef fishes to marine reserve protection. Global Ecology and Conservation, 2014, 1: 13–26
Fan W, Cheng YH, Shen XQ. Effects of global environment change and human activity on fishery resources. Journal of Fishery Sciences of China, 2001, 8(4): 91–94 [樊偉, 程炎宏, 沈新強. 全球環(huán)境變化與人類活動對漁業(yè)資源的影響. 中國水產(chǎn)科學, 2001, 8(4): 91–94]
Gaichas SK, Francis RC. Network models for ecosystem-based fishery analysis: a review of concepts and application to the Gulf of Alaska marine food web. Canadian Journal of Fisheries and Aquatic Sciences, 2008, 65: 1965–1982
Ge BM, Bao YX, Zheng X. A review on key species study in ecology. Chinese Journal of Ecology, 2004, 23(6): 102–106. [葛寶明, 鮑毅新, 鄭祥. 生態(tài)學中關(guān)鍵種研究綜述. 生態(tài)學雜志, 2004, 23(6): 102–106]
Gili JM. Towards a transitory or ephemeral key habitat concept. Trends in Ecology and Evolution, 2002, 17(10): 453
Jin XS, Deng JY. Variations in community structure of fishery resources and biodiversity in the Laizhou Bay. Chinese Biodiversity, 2000, 8(1): 65–72 [金顯仕, 鄧景耀. 萊州灣漁業(yè)資源群落結(jié)構(gòu)和生物多樣性的變化. 生物多樣性, 2000, 8(1): 65–72]
Jin XS, Deng JY. Yearly variations of fishery resources and biodiversity in the Laizhou Bay. Marine Fisheries Research, 1999, 20(1): 6–12 [金顯仕, 鄧景耀. 萊州灣春季漁業(yè)資源及生物多樣性的年間變化. 海洋水產(chǎn)研究, 1999, 20(1): 6–12]
Jin XS, Dou SZ. Shan XJ,. Hot spots of frontiers in the research of sustainable yield of chinese inshore fishery. Progress in Fishery Sciences, 2015, 36(1): 124–131 [金顯仕, 竇碩增, 單秀娟, 等. 我國近海漁業(yè)資源可持續(xù)產(chǎn)出基礎(chǔ)研究的熱點問題. 漁業(yè)科學進展, 2015, 36(1): 124–131]
Jin XS, Shan XJ, Li XS,. Long-term changes in the fishery ecosystem structure of Laizhou Bay, China. Science China Earth Sciences, 2013, 56(3): 366–374
Jin XS, Tang QS. The structure, distribution and variation of the fishery resources in the Bohai Sea. Journal of Fishery Sciences of China, 1998, 5(3): 18–24 [金顯仕, 唐啟升. 渤海漁業(yè)資源結(jié)構(gòu)、數(shù)量分布及其變化. 中國水產(chǎn)科學, 1998, 5(3): 18–24]
Jin XS, Zhao XY, Meng TX,. The yellow sea and bohai sea biological resources and habitats. Beijing: Science Press, 2005: 262–351 [金顯仕, 趙憲勇, 孟田湘, 等. 黃、渤海生物資源與棲息環(huán)境. 北京: 科學出版社, 2005: 262–351]
Jin XS. Long-term changes in fish community structure in the Bohai Sea, China. Estuarine, Coastal and Shelf Science, 2004, 59(1): 163–171
Jin XS. The dynamics of major fishery resources in the Bohai Sea. Journal of Fishery Sciences of China, 2001, 7(4): 22–26 [金顯仕. 渤海主要漁業(yè)生物資源變動的研究. 中國水產(chǎn)科學, 2001, 7(4): 22–26]
Jordán F, Liu WC, Davis AJ. Topological keystone species: measures of positional importance in food webs. Oikos, 2006, 112(3): 535–546
Jordán F, Scheuring I. Searching for keystones in ecological networks. OIKOS, 2002, 99(3): 607–612
Jordán F. Keystone species and food webs. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 2009, 364(1524): 1733–1741
Jordán F. Trophic fields. Community ecology, 2001, 2: 181–185
Kitchell JF, Essington TE, Boggs CH,. The role of sharks and longline fisheries in a pelagic ecosystem of the Central Pacific. Ecosystems, 2002, 5: 202–216
Li XS, Niu MX, Dai FQ. The characteristics of structure and distribution of spawning stock of fishery species in the Bohai Sea. Marine Fisheries Research, 2008, 29(4): 15–21 [李顯森, 牛明香, 戴芳群. 渤海漁業(yè)生物生殖群體結(jié)構(gòu)及其分布特征. 海洋水產(chǎn)研究, 2008, 29(4): 15–21]
Libralato S, Christensen V, Pauly D. A method for identifying Keystone species in food web models. Ecological Modelling, 2006, 195(3–4): 153–171
Martinez ND, Hawkins BA, Dawah HA,. Effects of sampling effort on characterization of food web structure. Ecology, 1999, 80: 1044–1055
Mills LS, Soule ME, Doak DF. The keystone-species concept in ecology and conservation. BioScience, 1993, 43(4): 219–224
Modlmeiera AP, Laskowskib KL, Brittinghama HA,. Adult presence augments juvenile collective foraging in social spiders. Animal Behaviour, 2015, 109: 9–14
Navia AF, Cortés E, Mejía-Falla PA. Topological analysis of the ecological importance of elasmobranch fishes: a food web study on the Gulf of Tortugas, Colombia. Ecological Modelling, 2010, 221: 2918–2926
Pauly D, Christensen VV, Dalsgaard J,. Fishing down marine food webs. Science, 1998, 279(5352): 860–863
Pauly D, Palomares ML, Froese R,. Fishing down Canadian aquatic food webs. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58(1): 51–62
Pitcher TJ. Fisheries managed to rebuild ecosystems? Reconstructing the past to salvage the future. Ecological Applications, 2001, 11(2): 601–617
Polis GA. Complex desert food webs: An empirical critique of food web theory. American Naturalist, 1991, 138: 123–155
Power ME, Tilman D, Estes JA,. Challenges in the quest for keystones. BioScience, 1996, 46(8): 609–620
Riede JO, Rall BC, Banasek-Richter C,. Scaling of food-web properties with diversity and complexity across ecosystems. In: Woodward G (ed): Advances in ecological research. Burlington: Academic Press, 2010, 139–170
Sanford E. Regulation of keystone predation by small changes in ocean temperature. Science, 1999, 283(5410): 2095–2097
Shan XJ, Chen YL, Jin XS. Projecting fishery ecosystem health under climate change scenarios: Yangtze River Estuary and Yellow River Estuary. Progress in Fishery Sciences, 2017, 38(2): 1–7 [單秀娟, 陳云龍, 金顯仕. 氣候變化對長江口和黃河口漁業(yè)生態(tài)系統(tǒng)健康的潛在影響. 漁業(yè)科學進展, 2017, 38(2): 1–7]
Shan XJ, Sun PF, Jin XS,. Long-term changes in fish assemblage structure in the Yellow River Estuary ecosystem, China. Marine and Coastal Fisheries: Dynamics, Management and Ecosystem Science, 2013, 5: 65–78
Tang QS, Ye MZ. The exploitation and conservation of nearshore fisheries resources off Shandong. Beijing: China Agriculture Press, 1990: 90–115 [唐啟升, 葉懋中. 山東近海漁業(yè)資源開發(fā)與保護. 北京: 農(nóng)業(yè)出版社, 1990: 90–115]
Torres MA, Casini M, Huss M,. Food-web indicators accounting for species interactions respond to multiple pressures. Ecological Indicators, 2017, 77: 67–79
Valls A, Coll M, Christensen V. Keystone species: toward an operational concept for marine biodiversity conservation. Ecological Monographs, 2015, 85(1): 29–47
Wang YZ, Sun DR, Lin ZJ,. Analysis on responses of hairtail catches to fishing and climate factors in the Yellow Sea and Bohai Sea, China. Journal of Fishery Sciences of China, 2012, 19(6): 1043–1050 [王躍中, 孫典榮, 林昭進, 等. 捕撈壓力和氣候因素對黃渤海帶魚漁獲量變化的影響. 中國水產(chǎn)科學, 2012, 19(6): 1043–1050]
Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature, 1998, 393(6684): 440–442
Yang T, Shan XJ, Jin XS,. The keystone species of fish community in the Laizhou Bay. Journal of Fisheries of China, 2016, 40(10): 1613–1623 [楊濤, 單秀娟, 金顯仕, 等. 萊州灣魚類群落關(guān)鍵種. 水產(chǎn)學報, 2016, 40(10): 1613–1623]
Zhang B, Wu Q, Jin XS. Interannual variation in the food web of commercially harvested species in Laizhou Bay from 1959 to 2011. Journal of Fishery Sciences of China, 2015, 22(2): 278–287 [張波, 吳強, 金顯仕. 1959~2011年萊州灣漁業(yè)資源群落食物網(wǎng)結(jié)構(gòu)的變化. 中國水產(chǎn)科學, 2015, 22(2): 278–287]
Zhang Y, Guo FQ, Hu SJ,. Priority of conservation of keystone species of aquatic ecosystem in Huizhou reach of the Dongjiang main river. Journal of Anhui University (Natural Science Edition), 2013, 37(5): 100–108 [張豫, 郭鳳清, 胡順軍, 等. 東江干流(惠州段)水生生態(tài)系統(tǒng)關(guān)鍵物種的優(yōu)先保護順序. 安徽大學學報(自然科學版), 2013, 37(5): 100–108]
(編輯 江潤林)
Long-term Changes in Keystone Species in Fish Community in Spring in Laizhou Bay
YANG Tao1, SHAN Xiujuan1,2①, JIN Xianshi1,2, CHEN Yunlong1, TENG Guangliang1, WEI Xiujin1
(1. Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Shandong Provincial Key Laboratory of Fishery Resources and Eco-Environment, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071; 2. Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071)
Keystone species play an important role in the structure and function of an ecosystem. Changes in keystone species can cause oscillations in community structure and ecological succession, or even result in the dysfunction and collapse of ecosystems. Therefore, understanding long-term changes in keystone species of an ecosystem provides insights into the processes of ecological succession. We built a food-web topological structure for the fish community in Laizhou Bay for each of five years, based on the spring bottom trawl survey data for Laizhou Bay during 1959, 1982, 1993, 2003, and 2015, and then, conducted network analysis to evaluate long-term changes in keystone fish species from 1959 to 2015. The constructed food webs included 21~46 different fish species and 70~296 prey-predator relationships. The structural density of these food webs ranged from 0.155 to 0.300, and interspecific connectivity ranged between 0.140 and 0.182, which matched the ecology of fish communities under natural conditions. The keystone fish species in Laizhou Bay changed from,,andin 1959 to,andin 1982, and then, to,andin 1993. After ten years,,andbecame the new keystone fish species, which were replaced by,andin 2015. Conclusively, the keystone fish species in Laizhou Bay gradually changed from economically valuable species (e.g.,,and) to those of less economic value (e.g.,and). Meanwhile, the diversity of the keystone fish species reduced from different pelagic or groundfishes (e.g.,and) to those inhabiting only the bottom. These changes have simplified the topological structure of food webs in Laizhou Bay, which to some extent, has reduced the functional stability of the fish community.
Laizhou Bay; Fish community; Food-web topological structure; Network analysis; Keystone species
SHAN Xiujuan, E-mail: shanxj@ysfri.ac.cn
2017-09-12,
2017-10-23
A
2095-9869(2018)01-0001-11
10.11758/yykxjz.20170912001
http: //www.yykxjz.cn/
* 國家重點基礎(chǔ)研究發(fā)展計劃(2015CB453303)、中央級公益性科研院所基本科研業(yè)務(wù)費(20603022016003)、農(nóng)業(yè)部財政項目“黃渤海漁業(yè)資源調(diào)查”、山東省泰山學者專項基金和青島海洋科學與技術(shù)國家實驗室‘鰲山人才’培養(yǎng)計劃項目(2017ASTCP-ES07)共同資助[This work was supported by the National Basic Research Program of China (2015CB453303), Central Public-Interest Scientific Institution Basal Research Fund, YSFRI, CAFS (20603022016003), Ministry of Agriculture Financial Project “Fisheries Assessment in the Yellow Sea & Bohai Sea” Special Funds for Taishan Scholar Project of Shandong Province, and Aoshan Talents Cultivation Program Supported by Qingdao National Laboratory for Marine Science and Technology (2017ASTCP-ES07)]. 楊 濤,E-mail: yangtao@ysfri.ac.cn
單秀娟,副研究員,E-mail: shanxj@ysfri.ac.cn
S931
楊濤, 單秀娟, 金顯仕, 陳云龍, 滕廣亮, 魏秀錦. 萊州灣春季魚類群落關(guān)鍵種的長期變化. 漁業(yè)科學進展, 2018, 39(1): 01–11
Yang T, Shan XJ, Jin XS, Chen YL, Teng GL, Wei XJ. Long-term changes in keystone species in fish community in spring in Laizhou Bay. Progress in Fishery Sciences, 2018, 39(1): 01–11