馬妮,張昌軍,3,刁紅錄,3*
(湖北醫(yī)藥學(xué)院 1.附屬人民醫(yī)院生殖醫(yī)學(xué)中心,十堰 442000;2.生物醫(yī)學(xué)工程學(xué)院,十堰 442000;3.胚胎干細(xì)胞湖北省重點(diǎn)實(shí)驗(yàn)室,十堰442000)
組蛋白甲基化轉(zhuǎn)移酶同源序列增強(qiáng)子(enhancer of zeste homolog,EZH)是由EZH基因編碼的一種組蛋白賴氨酸甲基化轉(zhuǎn)移酶,屬于多梳家族(Polycomb Group,PcG)蛋白成員,有EZH1和EZH2兩種亞型。PcG家族的成員相互結(jié)合形成的多聚蛋白復(fù)合物參與基因轉(zhuǎn)錄調(diào)控、DNA甲基化,促進(jìn)異染色質(zhì)的形成從而發(fā)揮沉默基因的功能、維持胚胎細(xì)胞的正常增殖與分化[1-2]。EZH2主要是通過(guò)表觀遺傳學(xué)發(fā)揮作用,在不改變核苷酸序列的情況下,使基因表達(dá)功能發(fā)生改變,并且可以穩(wěn)定地遺傳給下一代,其中主要作用機(jī)制有非編碼RNA調(diào)控、DNA甲基化、組蛋白修飾、染色體重塑、基因組印記等[3]。EZH2最初是通過(guò)研究腫瘤細(xì)胞中的甲基化而被大家所知,近年來(lái)關(guān)于EZH2在哺乳動(dòng)物生殖方面的研究越來(lái)越受到人們的關(guān)注,它主要參與到哺乳動(dòng)物生殖發(fā)育的配子形成、胚胎發(fā)育、胚胎著床和器官分化發(fā)育等過(guò)程及與生殖發(fā)育的相關(guān)疾病中。本文主要介紹EZH2的基本功能及其在哺乳動(dòng)物生殖和相關(guān)疾病中的作用。
PcG蛋白由三種亞型多梳抑制復(fù)合體1(Polycomb repressive complex 1,PRC1)、多梳抑制復(fù)合體2(PRC2)和PhoRC組成[4]。其中,PRC2在轉(zhuǎn)錄起始階段發(fā)揮作用,它有EZH2、EZH1兩個(gè)亞基,它們都具有組蛋白賴氨酸甲基化和抑制基因轉(zhuǎn)錄的功能,但是具有空間和時(shí)間特異性[4]。目前關(guān)于EZH2基本功能的研究比較透徹,而關(guān)于EZH1的研究還有待進(jìn)一步的探討。
EZH2是由EZH2基因編碼的一種組蛋白賴氨酸甲基轉(zhuǎn)移酶。EZH最初是在果蠅屬中被發(fā)現(xiàn),隨后又在哺乳動(dòng)物的同源序列中發(fā)現(xiàn)并被命名為EZH1和EZH2[5]。EZH2基因定位于染色體7q35位置上,包含20個(gè)外顯子,在基因組中約占40 kb,編碼由746個(gè)氨基酸殘基構(gòu)成的蛋白,其有4個(gè)保守區(qū)域:區(qū)域I、區(qū)域II、半胱氨酸富集區(qū)、C端的SET區(qū)域,其中SET區(qū)域是高度保守的序列結(jié)構(gòu),在EZH2介導(dǎo)的轉(zhuǎn)錄抑制中有至關(guān)重要的作用[6-7]。EZH2基因和它的同源染色體在植物、哺乳動(dòng)物、魚類、昆蟲的發(fā)育、細(xì)胞分化、細(xì)胞分裂等過(guò)程中均發(fā)揮重要作用[8],它是維持胚胎健康發(fā)育、控制細(xì)胞分化、參與基因調(diào)控的關(guān)鍵調(diào)控因子,可以使DNA甲基化和X染色體失活[9],促進(jìn)異染色質(zhì)的形成從而發(fā)揮沉默基因的功能[10]。
在小鼠實(shí)驗(yàn)研究中,發(fā)現(xiàn)有EZH1和EZH2兩種蛋白,它們可形成多聚抑制復(fù)合物EZH1-PcG和EZH2-PcG,兩者都可使組蛋白甲基化并發(fā)揮其生物學(xué)功能,但是EZH1甲基化能力比EZH2弱,壓縮和抑制染色體的機(jī)制不完全相同[4,11];EZH2編碼的蛋白(EZH2)屬于多梳家族(PcG)成員,PcG家族成員相互結(jié)合形成多聚蛋白復(fù)合物,這種復(fù)合物涉及到在細(xì)胞世代間維持基因的轉(zhuǎn)錄抑制狀態(tài),參與細(xì)胞的增殖與分化的調(diào)控[4,12],其主要機(jī)制是EZH2使H3K27甲基化并與分化相關(guān)基因的啟動(dòng)子區(qū)域結(jié)合而阻止其轉(zhuǎn)錄[13]。EZH1是EZH2的同源物,也具有催化組蛋白3賴氨酸27位甲基化功能,但是甲基化的機(jī)制不同,EZH1主要是通過(guò)抑制轉(zhuǎn)錄模板和壓縮染色體來(lái)抑制轉(zhuǎn)錄,而EZH2主要是通過(guò)甲基化H3K27來(lái)抑制轉(zhuǎn)錄;EZH1主要是在成年非增生組織中高表達(dá),而EZH2則主要在增生組織中高表達(dá);它們扮演的角色也不同,在沒有甲基供體的情況下可以壓制染色體發(fā)揮抑制轉(zhuǎn)錄功能[4,14]。已經(jīng)有研究證明在成體組織發(fā)育過(guò)程中EZH1對(duì)于EZH2的丟失具有補(bǔ)償作用[12]。
EZH2最初的研究主要集中于腫瘤細(xì)胞,EZH2可以使H3K27甲基化,這種能力在腫瘤細(xì)胞中表現(xiàn)突出,由此可以認(rèn)為EZH2可以促進(jìn)癌細(xì)胞的增長(zhǎng)與增殖。在胚胎早期發(fā)育過(guò)程中,各種細(xì)胞也呈現(xiàn)為一個(gè)高度增殖分裂的過(guò)程,所以腫瘤組織中的許多蛋白將會(huì)應(yīng)用于哺乳動(dòng)物生殖發(fā)育中[15]。
在大量癌組織中發(fā)現(xiàn)EZH2高表達(dá),包括乳腺癌、前列腺癌、大腸癌、子宮內(nèi)膜癌、腎癌以及黑色素瘤和淋巴瘤[16-17]。當(dāng)EZH2過(guò)度表達(dá)時(shí),腫瘤抑制性基因被抑制就可以導(dǎo)致腫瘤的發(fā)生,在一些臨床病例中使用EZH2抑制劑可以使惡性腫瘤縮小或者改善腫瘤癥狀,就是因?yàn)镋ZH2抑制劑解除了EZH2對(duì)腫瘤抑制性基因的沉默[18]。EZH2可以與PAF通過(guò)Wnt/Β-catenin信號(hào)通路共同激活調(diào)節(jié)基因c-myc 和細(xì)胞周期蛋白D1(cyclin D1)最終導(dǎo)致癌癥的發(fā)生[19]。EZH2還可以激活Ras和NF-κB的信號(hào)途徑,從而導(dǎo)致腫瘤的發(fā)生,有研究表明減少PcG蛋白或使H3K27去甲基化可以激活抑癌基因INK4a/ARF影響癌基因RAS的功能從而抑制腫瘤的發(fā)生[20]。約57%的卵巢透明細(xì)胞癌中發(fā)現(xiàn)ARID1A(染色質(zhì)重塑復(fù)合物)基因缺失而EZH2的表達(dá)上升,ARID1A和EZH2共同調(diào)節(jié)PIK3IP1(促進(jìn)細(xì)胞凋亡)的表達(dá),在卵巢癌中ARID1A和EZH2表達(dá)失衡就會(huì)使PIK3IP1的表達(dá)降低,從而誘發(fā)癌癥的發(fā)生[21]。所以,研究EZH2抑制劑對(duì)于一些腫瘤的發(fā)展與轉(zhuǎn)歸具有積極的作用,對(duì)于臨床靶向治療腫瘤具有極大的意義。
哺乳動(dòng)物生殖發(fā)育就是指配子成熟,受精卵結(jié)合后在母體子宮發(fā)育成胎兒并從母體分娩的連續(xù)復(fù)雜的動(dòng)態(tài)生物學(xué)過(guò)程。EZH2在此過(guò)程的各個(gè)階段都發(fā)揮重要的作用,任何一個(gè)環(huán)節(jié)的表達(dá)異常都會(huì)導(dǎo)致相應(yīng)的癥狀,包括配子發(fā)育、胚胎發(fā)育、母體子宮內(nèi)膜的變化、子宮內(nèi)膜與胚胎之間的相互對(duì)話等過(guò)程。
1.EZH2與配子發(fā)育:雌雄配子生成的過(guò)程即配子發(fā)生,是指原始的生殖細(xì)胞經(jīng)過(guò)減數(shù)分裂形成精子和卵母細(xì)胞的過(guò)程。在精子發(fā)生過(guò)程中的主要特點(diǎn)是細(xì)胞具有高度增殖分化的能力,在缺乏經(jīng)典PRC2-EZH2的情況下,EZH1可能補(bǔ)充EZH2的某些功能來(lái)維持精原干細(xì)胞的增殖分化能力和減數(shù)分裂過(guò)程中H3K27的甲基化狀態(tài)[22]。有研究表明EZH2蛋白參與精原干細(xì)胞的自我更新并維持其多能性,可以認(rèn)為是精原干細(xì)胞的一種分子標(biāo)志[23]。5氮雜2脫氧胞苷(5-Aza-2′ -deoxycitidine,5-Aza)對(duì)男性生殖系統(tǒng)有重大毒性,它可以降低睪酮的表達(dá)進(jìn)而導(dǎo)致精子質(zhì)量下降。有研究證明5-Aza作用于睪丸后可以通過(guò)影響EZH2而降低H3K27me3的表達(dá)最終影響男性精子的質(zhì)量[24]。精子的發(fā)生是一個(gè)復(fù)雜的細(xì)胞分化過(guò)程,包括減數(shù)分裂、單倍體基因表達(dá)、頂體和鞭毛的形成,最終分化成為精子[25]。在精子發(fā)生染色質(zhì)重構(gòu)過(guò)程中生殖細(xì)胞要經(jīng)歷大量的表觀遺傳過(guò)程,圓形精子細(xì)胞頭部是表觀遺傳發(fā)生的主要位置,有關(guān)研究認(rèn)為EZH2參與大鼠圓形精子的表觀調(diào)控過(guò)程,使染色質(zhì)發(fā)生重塑[26-27]。有研究認(rèn)為在正常睪丸組織中EZH2的表達(dá)較高,但在生精障礙的組織中表達(dá)會(huì)降低,由此可以認(rèn)為它的表達(dá)水平與生精障礙嚴(yán)重程度呈負(fù)相關(guān)[28]。
在卵細(xì)胞減數(shù)分裂的GVBD期到MII期,EZH2的表達(dá)上升,如果缺乏EZH2,就會(huì)導(dǎo)致染色體錯(cuò)位、異常紡錘體、非整倍體形成并加速第一極體的排出;如果增加EZH2的表達(dá)水平,同樣會(huì)導(dǎo)致染色體錯(cuò)位、非整倍體的形成和第一極體的排出[29]。有研究認(rèn)為EZH2可以和BubR1(調(diào)節(jié)紡錘體形成的一個(gè)蛋白)、PCAF(p300/cAMP應(yīng)答元件結(jié)合蛋白關(guān)聯(lián)因子)形成復(fù)合物,共同調(diào)節(jié)卵母細(xì)胞的減數(shù)分裂過(guò)程[29-30]。
在小鼠有關(guān)研究中發(fā)現(xiàn),EZH2-EED結(jié)合形成的復(fù)合物首先表達(dá)在受精卵的母原核中,如果母原核缺乏EZH2,就會(huì)干擾EZH2-EED復(fù)合物的結(jié)合及受精卵中親本組蛋白的甲基化,從而影響胚胎發(fā)育[31]。盡管在胚胎基因激活的時(shí)候EZH2可以恢復(fù)正常,但是如果敲除卵細(xì)胞中的EZH2就會(huì)影響胚胎的正常發(fā)育,說(shuō)明EZH2對(duì)早期染色質(zhì)重塑有重要的意義[32]??偠灾?,卵母細(xì)胞中EZH2的表達(dá)量會(huì)影響卵母細(xì)胞和胚胎的正常發(fā)育。
2.EZH2與胚胎發(fā)育:胚胎發(fā)育是指從受精卵分裂分化發(fā)育為完整個(gè)體的生物學(xué)過(guò)程。PRC2復(fù)合物影響早期胚胎發(fā)育過(guò)程。缺乏EZH2則無(wú)法完成原腸胚的形成,缺乏SUZ12(EZH2活化所需要的蛋白)的后果與缺乏EZH2一致,而缺乏EED的胚胎將會(huì)導(dǎo)致原腸胚的中胚層發(fā)育障礙[31]。有研究表明,在小鼠胚胎圍著床期,受精卵中EZH2表達(dá)最高,分裂為2細(xì)胞胚胎時(shí)EZH2表達(dá)下降,之后胚胎從2細(xì)胞分裂到8細(xì)胞過(guò)程中EZH2表達(dá)一直上升,從囊胚以后EZH2的表達(dá)下降,在胚胎的分裂分化過(guò)程中EZH2呈現(xiàn)出不同的變化規(guī)律,說(shuō)明在不同時(shí)期它所發(fā)揮的作用不同[32]。相關(guān)研究表明,在胚胎分裂1細(xì)胞到4細(xì)胞為胚胎基因激活階段,該階段H3K4me3的表達(dá)呈下降趨勢(shì),但是總體表達(dá)較高,可以認(rèn)為H3K4me3與胚胎基因激活的過(guò)程有關(guān);而H3K27me3表達(dá)從4細(xì)胞時(shí)開始上升直至囊胚期,與H3K27me3相關(guān)的因子如EZH2、EED、SUZ12的表達(dá)均升高,但是在外胚層H3K27me3的表達(dá)下降,說(shuō)明EZH2主要對(duì)細(xì)胞的增殖發(fā)揮作用[33]。H3K27me3存在于正常細(xì)胞囊胚的內(nèi)細(xì)胞團(tuán)和克隆細(xì)胞囊胚的內(nèi)細(xì)胞團(tuán),尤其表達(dá)于正常囊胚的內(nèi)細(xì)胞團(tuán),克隆胚胎在植入子宮不久后就死亡,可能是缺乏EZH2的表達(dá),使H3K27me3的表達(dá)降低,從而干擾胚胎的正常發(fā)育[34]。
在胚胎細(xì)胞增殖分化過(guò)程中,多能性基因的表達(dá)隨著細(xì)胞的增殖分化也呈現(xiàn)出一個(gè)先上升后下降的表達(dá)規(guī)律,這種規(guī)律的變化與EZH2的表達(dá)密切相關(guān)。在胚胎細(xì)胞增殖期多能性基因表達(dá)較高,在囊胚細(xì)胞分化期多能性基因表達(dá)下降,整個(gè)過(guò)程的變化可能是隨著OCT4和SOX2表達(dá)的增多而提高EZH2使H3K27甲基化的能力,這樣就會(huì)使OCT4和SOX2啟動(dòng)子處甲基化增多后抑制多能性基因的轉(zhuǎn)錄,促進(jìn)細(xì)胞的分化[35]。
綜上所述,在胚胎發(fā)育過(guò)程中EZH2可以調(diào)節(jié)多能性標(biāo)志基因OCT4、SOX2、Nanog的轉(zhuǎn)錄狀況,影響胚胎的分化發(fā)育[36]。
3. EZH2與子宮內(nèi)膜變化的關(guān)系:有研究表明在人類子宮內(nèi)膜中,各種分子都隨月經(jīng)周期性的變化而變化。在人類子宮內(nèi)膜增生期EZH2 mRNA表達(dá)比分泌期高,在分泌期EZH2 mRNA的表達(dá)在分泌前期表達(dá)最高在分泌中期表達(dá)最低;同樣,用Western Blot技術(shù)檢測(cè)出EZH2在增生期的表達(dá)是分泌期的1倍多,用實(shí)時(shí)定量PCR檢測(cè)分泌期EZH2的表達(dá)在分泌中期下降最多,約為分泌早期的1/3,說(shuō)明EZH2在蛻膜化細(xì)胞中呈現(xiàn)低表達(dá)模式,可能的機(jī)制是在孕激素和cAMP的作用下蛻膜化組織中EZH2的表達(dá)迅速下降,位于PRL和IGFBP1啟動(dòng)子區(qū)的H3K27me3表達(dá)下降,H3K27乙?;缴仙?,從而有助于蛻膜化分子PRL和IGFBP1的轉(zhuǎn)錄[37-38]。EZH2發(fā)揮作用主要是通過(guò)甲基化H3K27,在蛻膜化組織中EZH2的表達(dá)發(fā)生明顯的下降,使在兩種蛻膜化標(biāo)志基因啟動(dòng)子區(qū)域的H3K27me3表達(dá)下降,這樣兩種蛻膜化因子得以表達(dá),但是H3K27me3表達(dá)總量沒有變化[37],說(shuō)明在蛻膜化細(xì)胞中存在其他途徑激活H3K27甲基化并且不影響蛻膜化的表達(dá)。
綜上所述,在子宮蛻膜化組織中,有可能存在這樣的途徑促進(jìn)子宮內(nèi)膜基質(zhì)蛻膜化:孕激素通過(guò)cAMP途徑使EZH2表達(dá)水平下降,而使位于PRL和IGFBP1啟動(dòng)子區(qū)的H3K27的甲基能力下降、乙?;芰ι仙?,使蛻膜化標(biāo)志PRL和IGFBP1因子表達(dá)上調(diào),從而促進(jìn)基因的轉(zhuǎn)錄與細(xì)胞的分化[37,39]。
通過(guò)以上研究我們可以發(fā)現(xiàn)EZH2與配子發(fā)生、胚胎發(fā)育、胚胎著床和子宮內(nèi)膜周期性變化有密切的關(guān)系,我們推測(cè)EZH2可能對(duì)哺乳動(dòng)物生殖發(fā)育具有指導(dǎo)作用?,F(xiàn)在關(guān)于EZH2的研究主要集中于腫瘤的形成和針對(duì)該基因的治療,關(guān)于EZH2基因控制哺乳動(dòng)物生殖發(fā)育方面的機(jī)理及相互關(guān)系還值得進(jìn)一步深入探索?,F(xiàn)有的EZH研究尚未闡述胚胎著床及胚胎發(fā)育的具體機(jī)制,從該方面入手研究EZH是與哪些分子相互作用影響配子的發(fā)生,就可以指導(dǎo)臨床夫婦的備孕;研究EZH在胚胎著床中主要是在哪個(gè)環(huán)節(jié)發(fā)揮作用,就可以為臨床輔助生殖技術(shù)提供理論知識(shí);研究EZH在哺乳動(dòng)物胚胎發(fā)育并形成個(gè)體過(guò)程中的表達(dá)變化規(guī)律,可以了解胎兒發(fā)育過(guò)程中疾病的發(fā)生發(fā)展規(guī)律。研究該基因在哺乳動(dòng)物生殖發(fā)育過(guò)程中的作用及機(jī)制,可以為人類成功妊娠提供理論基礎(chǔ),為不孕不育患者帶來(lái)福音。
[1] Terranova R,Yokobayashi S,Stadler MB,et al. Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos[J]. Dev Cell,2008,15:668-679.
[2] Orlando V. Polycomb,epigenomes,and control of cell identity[J]. Cell,2003,112:599-606.
[3] Charney E. Cytoplasmic inheritance redux[J]. Adv Child Dev Behav,2013,44:225-255.
[4] Margueron R,Li G,Sarma K,et al. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms[J]. Mol Cell,2008,32:503-518.
[5] Chen H,Rossier C,Antonarakis SE. Cloning of a human homolog of the Drosophila enhancer of zeste gene(EZH2)that maps to chromosome 21q22.2[J]. Genomics,1996,38:30-37.
[6] Hillier LW,F(xiàn)ulton RS,F(xiàn)ulton LA,et al. The DNA sequence of human chromosome 7[J]. Nature,2003,424:157-164.
[7] Cardoso C,Mignon C,Hetet G,et al. The human EZH2 gene:genomic organisation and revised mapping in 7q35 within the critical region for malignant myeloid disorders[J]. Eur J Hum Genet,2000,8:174-180.
[8] 施子晗,李澤琴,張根發(fā).植物組蛋白賴氨酸化修飾參與基因表達(dá)調(diào)控的機(jī)理[J].遺傳,2014:208-219.
[9] Merzouk S,Deuve JL,Dubois A,et al. Lineage-specific regulation of imprinted X inactivation in extraembryonic endoderm stem cells[J]. Epigenetics Chromatin,2014,7:11.doi:10.1186/1756-8935-7-11. eCollection 2014.
[10] Levine SS,Weiss A,Erdjument-Bromage H,et al. The core of the polycomb repressive complex is compositionally and functionally conserved in flies and humans[J]. Mol Cell Biol,2002,22:6070-6078.
[11] Ho L,Crabtree GR. An EZ mark to miss[J]. Cell Stem Cell,2008,3:577-578.
[12] Bae WK,Kang K,Yu JH,et al. The methyltransferases enhancer of zeste homolog(EZH)1 and EZH2 control hepatocyte homeostasis and regeneration[J]. FASEB J,2015,29:1653-1662.
[13] Zhang M,Wang F,Kou Z,et al. Defective chromatin structure in somatic cell cloned mouse embryos[J]. J Biol Chem,2009,284:24981-24987.
[14] Watanabe S,Murakami A. Regulation of retinal development via the epigenetic modification of histone H3[J]. Adv Exp Med Biol,2016,854:635-641.
[15] Sun S,Yu F,Zhang L,et al. EZH2,an on-off valve in signal network of tumor cells[J]. Cell Signal,2016,28:481-487.
[16] Morera L,Lubbert M,Jung M. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy[J]. Clin Epigenetics,2016,8:57.doi:10.1186/s13148-016-0223-4. eCollection 2016.
[17] Guo S,Li X,Rohr J,et al. EZH2 overexpression in different immunophenotypes of breast carcinoma and association with clinicopathologic features[J]. Diagn Pathol,2016,11:41.doi:10.1186/s13000-016-0491-5.
[18] Lee JK,Kim KC. DZNep,inhibitor of S-adenosylhomocysteine hydrolase,down-regulates expression of SETDB1 H3K9me3 HMTase in human lung cancer cells[J]. Biochem Biophys Res Commun,2013,438:647-652.
[19] Jung HY,Jun S,Lee M,et al. PAF and EZH2 induce Wnt/beta-catenin signaling hyperactivation[J]. Mol Cell,2013,52:193-205.
[20] Barradas M,Anderton E,Acosta JC,et al. Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS[J]. Genes Dev,2009,23:1177-1182.
[21] Bitler BG,Aird KM,Garipov A,et al. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers[J]. Nat Med,2015,21:231-238.
[22] Mu W,Starmer J,Shibata Y,et al. EZH1 in germ cells safeguards the function of PRC2 during spermatogenesis[J]. Dev Biol,2017,424:198-207.
[23] Zhou Q,Guo Y,Zheng B,et al. Establishment of a proteome profile and identification of molecular markers for mouse spermatogonial stem cells[J]. J Cell Mol Med,2015,19:521-534.
[24] Choi JY,Lee S,Hwang S,et al. Histone H3 lysine 27 and 9 hypermethylation within the Bad promoter region mediates 5-Aza-2′-deoxycytidine-induced Leydig cell apoptosis:implications of 5-Aza-2′-deoxycytidine toxicity to male reproduction[J]. Apoptosis,2013,18:99-109.
[25] Kimmins S,Sassone-Corsi P. Chromatin remodelling and epigenetic features of germ cells[J]. Nature,2005,434:583-589.
[26] Lambrot R,Jones S,Saint-Phar S,et al. Specialized distribution of the histone methyltransferase Ezh2 in the nuclear apical region of round spermatids and its interaction with the histone variant H1t2[J]. J Androl,2012,33:1058-1066.
[27] Wawrzik M,Spiess AN,Herrmann R,et al. Expression of SNURF-SNRPN upstream transcripts and epigenetic regulatory genes during human spermatogenesis[J]. Eur J Hum Genet,2009,17:1463-1470.
[28] Hinz S,Magheli A,Weikert S,et al. Deregulation of EZH2 expression in human spermatogenic disorders and testicular germ cell tumors[J]. World J Urol,2010,28:631-635.
[29] Qu Y,Lu D,Jiang H,et al. EZH2 is required for mouse oocyte meiotic maturation by interacting with and stabilizing spindle assembly checkpoint protein BubRI[J]. Nucleic Acids Res,2016,44:7659-7672.
[30] Wan J,Zhan J,Li S,et al. PCAF-primed EZH2 acetylation regulates its stability and promotes lung adenocarcinoma progression[J]. Nucleic Acids Res,2015,43:3591-3604.
[31] Hinkins M,Huntriss J,Miller D,et al. Expression of Polycomb-group genes in human ovarian follicles,oocytes and preimplantation embryos[J]. Reproduction,2005,130:883-888.
[32] Ross PJ,Ragina NP,Rodriguez RM,et al. Polycomb gene expression and histone H3 lysine 27 trimethylation changes during bovine preimplantation development[J]. Reproduction,2008,136:777-785.
[33] Chen T,Dent SY. Chromatin modifiers and remodellers:regulators of cellular differentiation[J]. Nat Rev Genet,2014,15:93-106.
[34] Villasante A,Piazzolla D,Li H,et al. Epigenetic regulation of Nanog expression by Ezh2 in pluripotent stem cells[J]. Cell Cycle,2011,10:1488-1498.
[35] Gao Y,Hyttel P,Hall VJ. Regulation of H3K27me3 and H3K4me3 during early porcine embryonic development[J]. Mol Reprod Dev,2010,77:540-549.
[36] Zhang M,Wang F,Kou Z,et al. Defective chromatin structure in somatic cell cloned mouse embryos[J]. J Biol Chem,2009,284:24981-24987.
[37] Wu FR,Zhang Y,Ding B,et al. H3K27me3 may be associated with Oct4 and Sox2 in mouse preimplantation embryos[J]. Genet Mol Res,2014,13:10121-10129.
[38] Huang XJ,Wang X,Ma X,et al. EZH2 is essential for development of mouse preimplantation embryos[J]. Reprod Fertil Dev,2014,26:1166-1175.
[39] Grimaldi G,Christian M,Steel JH,et al. Down-regulation of the histone methyltransferase EZH2 contributes to the epigenetic programming of decidualizing human endometrial stromal cells[J]. Mol Endocrinol,2011,25:1892-1903.
[40] Diao H,Paria BC,Xiao S,et al. Temporal expression pattern of progesterone receptor in the uterine luminal epithelium suggests its requirement during early events of implantation[J]. Fertil Steril,2011,95:2087-2093.
[41] Cha J,Sun X,Dey SK. Mechanisms of implantation:strategies for successful pregnancy[J]. Nat Med,2012,18:1754-1767.