王全九,許紫月,單魚洋,張繼紅
?
去電子處理微咸水礦化度對土壤水鹽運移特征的影響
王全九,許紫月,單魚洋,張繼紅
(西安理工大學西北旱區(qū)生態(tài)水利工程國家重點實驗室培育基地,西安 710048)
為探究去電子處理微咸水對土壤水鹽運移的影響,該文通過室內(nèi)土柱試驗,分析了不同礦化度微咸水(0.14、2、3、4、5 g/L)經(jīng)去電子處理后土壤水分入滲及鹽分分布規(guī)律。結(jié)果表明:不同礦化度去電子微咸水土壤入滲速率及濕潤鋒運移速率明顯大于未處理微咸水,入滲時間為200 min時,累積入滲量和濕潤鋒運移深度在礦化度為4 g/L時增加幅度最大。相同礦化度去電子微咸水與未處理微咸水相比,Philip入滲公式吸滲率、Green-Ampt入滲公式飽和導水率及濕潤鋒處吸力均顯著增加。去電子微咸水能夠顯著提高土壤的持水效率和上層土壤鹽分的淋洗效果,礦化度為4 g/L時,相對淋鹽率和Na+相對淋洗率最大。該研究表明去電子化處理能夠改善土壤水鹽運移特性,有利于微咸水安全利用。
土壤水分;鹽分;入滲;去電子微咸水;水鹽分布
隨著經(jīng)濟發(fā)展和人口增長,淡水資源短缺和水質(zhì)惡化問題使人類生存面臨著嚴峻的挑戰(zhàn),水資源危機導致農(nóng)業(yè)供水矛盾日益突出[1]。微咸水是指含鹽量為2~5 g/L的水資源[2]。中國微咸水資源儲量多、分布廣,遍及西北、華北及沿海地區(qū)。據(jù)統(tǒng)計,中國可開采利用微咸水總量約為130億m3[3]。國內(nèi)外大量研究結(jié)果表明,使用微咸水灌溉作物具有兩面性[4-6]。一方面,在極端干旱和水質(zhì)惡化地區(qū),合理地使用微咸水灌溉可以節(jié)約淡水資源、增加土壤墑情,降低土地干旱化、滿足作物需水要求,獲得更大經(jīng)濟效益。另一方面,微咸水灌溉導致土壤鹽分含量增多,容易誘發(fā)土壤次生鹽漬化,降低土地質(zhì)量,影響作物生長[7-9]。
在中國新疆等地,土壤鹽漬化問題已成為農(nóng)業(yè)可持續(xù)發(fā)展的主要障礙,據(jù)統(tǒng)計,新疆鹽堿土面積約為1 100萬hm2,占全國鹽堿土面積的1/3,鹽堿土形成條件差[10],對作物危害大,改良鹽堿土對于提高土地生產(chǎn)力,改善生態(tài)環(huán)境具有重要意義。目前土壤鹽漬化的改良方式包括物理、化學、生物改良等措施[11]。物理改良措施主要是通過合理深耕、平整土地以及水利灌溉來降低地下水位和減少表土返鹽。物理改良確有效果,但要求淡水資源充足,灌排設施完善,對于干旱缺水及水質(zhì)惡化地區(qū)具有局限性[12]。化學改良措施是通過在鹽堿土壤中施用石膏、硫磺、腐殖酸、硫酸亞鐵等化學改良劑來改變土壤酸堿度及土壤吸收性復合體中鹽基的組成等,降低鹽堿土中的鹽分含量[13-15]?;瘜W改良措施優(yōu)點是見效快,改善了土壤理化性質(zhì),但易對土壤造成二次污染[16]。生物改良方法主要為種植綠肥或耐鹽植物,周期長見效慢[17-18]。水處理技術(shù)近年來逐漸受到重視,其在農(nóng)業(yè)生產(chǎn)上的應用具有無毒無害、無化學殘留、不污染環(huán)境、高效快速等優(yōu)點[19-20]。張瑞喜等[21]將磁化技術(shù)和滴灌管道相結(jié)合,研究了不同磁感應強度處理條件下磁化水灌溉對鹽漬化農(nóng)田鹽分淋洗的影響,結(jié)果表明磁化水灌溉能夠加速土壤鹽分運移,300mT磁化處理淋鹽效果最佳。朱練峰等[22]使用F型變頻磁化水灌溉水稻,研究證明磁化處理對水稻生長發(fā)育起到積極作用,能夠增加水稻結(jié)實率和產(chǎn)量。
去電子水處理技術(shù)起初被用于工業(yè)水油分離,近年來被引入到農(nóng)業(yè)灌溉中,但目前在農(nóng)業(yè)方面的應用還有待深入研究。目前針對去電子水灌溉,國外沒有文獻進行系統(tǒng)的報道,但有一些成功案例。美國的ECO1ST公司通過案例研究發(fā)現(xiàn),去電子水灌溉可以提高水分利用效率,減輕土壤鹽分脅迫,同時能夠使棉花增產(chǎn)。國內(nèi)有關(guān)去電子技術(shù)的研究較少。王全九等[23]研究表明,去電子處理能夠改善微咸水的理化性質(zhì),不同礦化度微咸水經(jīng)去電子處理后表面張力均明顯減小,溶解氧明顯增加,而對PH值和電導率的影響較小。目前,去電子微咸水對土壤水分入滲特性和鹽分淋洗影響的研究依然不足,其影響機理仍需進一步分析,因此本文采用去電子法對不同礦化度微咸水進行處理,進一步研究去電子微咸水入滲條件下對土壤水分入滲及鹽分分布的影響,為微咸水的高效安全提供理論依據(jù),本研究對鹽堿地治理和維持土地可持續(xù)利用也具有重要意義。
試驗系統(tǒng)由微咸水去電子處理系統(tǒng)、試驗土柱、供水設備等組成。微咸水去電子處理系統(tǒng)由圖1所示。微咸水去電子處理系統(tǒng)包括去電子處理器、接地電阻、導線等。去電子處理器由韓國亞美華(北京)環(huán)境科技發(fā)展有限公司生產(chǎn),型號為W600DELF。安裝在直徑為25 mm的PVC管上,利用接地螺栓將其連接在接地電極上,接地電阻為5 Ω。試驗土柱由內(nèi)徑為5 cm,高45 cm的有機玻璃材料制作,土柱外側(cè)貼有便于濕潤峰讀數(shù)的刻度紙。供水設備為圓柱形馬氏瓶,由內(nèi)徑5 cm,高50 cm的有機玻璃材料制作,用來供水及控制水位。
供試土樣來源于新疆巴州水利管理局試驗站試驗田(86°10′E、41°35′N,海拔904.32m)表層0~20 cm的土壤,容重采用環(huán)刀法進行測定,為1.46 g/cm3。所取土樣經(jīng)過陰干、風干,碾壓、除去殘留物后過2 mm篩留用。采用Mastersizer2000型激光粒度分析儀測定其粒徑組成,土壤顆粒分級標準選用國際制,砂粒、粉粒和黏粒體積分數(shù)分別為78.1%、18.3%、3.6%,土壤類型為砂壤土。采用烘干法和稱重法分別測定土壤初始質(zhì)量含水率和飽和質(zhì)量含水率,將兩者轉(zhuǎn)化為體積含水率,初始體積含水率為0.06 cm3/cm3,飽和體積含水率為0.48 cm3/cm3,使用pH計測得土壤pH值為8.6,使用DDS307型電導率儀測定土壤溶液電導率,轉(zhuǎn)化得到土壤初始含鹽量為3.78g/kg,使用火焰分光光度計測定土壤中Ca2+、Mg2+、Na+、K+含量為0.17、0.53、0.27、0.10g/kg,使用原子吸收分光光度計測定Cl-含量為1.02 g/kg。
去電子處理前,進行微咸水配置,通過測定實驗室自來水pH值為7.2,礦化度為0.14 g/L,使用氯化鈉試劑和自來水配置其余4種礦化度微咸水(2、3、4、5 g/L),共計5種礦化度,對自來水中主要離子進行測定,其K+、Na+、Ca2+、Mg2+、Cl-含量分別為12.02、23.14、96.38、74.52、0.51 mg/L。
1.水源 2.進水閥門 3.蓄水桶 4.總控制閥門 5水泵 6.電磁流量計 7.去電子處理器 8.接地螺栓 9.引水閥門 10.循環(huán)水閥 11.循環(huán)水管道 12.回水閥門 13.排水閥門 14.排水管道 15.接地導線 16.接地銅棒 17.大地
試驗以去電子微咸水(I)作為處理,以未處理微咸水(CK)作為對照,進行不同礦化度(0.14、2、3、4、5 g/L)的去電子微咸水和未去電子微咸水入滲試驗,去電子和未去電子微咸水各5個處理,共計10個處理,每個處理重復3次,共計30個試驗土柱。去電子處理器的作用是通過接地電極將微咸水中的負電荷和電子導入地下,水體中的鹽分物質(zhì)只剩正電荷和正離子,從而制成去電子微咸水,將處理后的去電子化微咸水和未經(jīng)處理的微咸水裝入馬氏瓶中待用。本次試驗控制水頭高度約為1 cm,將土樣(容重為1.46 g/cm3,每層5 cm)裝入試驗土柱中,土壤高為40 cm,裝土過程中為使土樣充分接觸,使用細棍在層間打毛。為避免入滲時對土面的沖濺及土樣堵塞管道,填裝完成后在土壤頂部放置一層濾紙。入滲過程中使用秒表計時,記錄土柱濕潤鋒運移距離和馬氏瓶中水位變化。入滲結(jié)束時(濕潤鋒運移深度為27 cm)立刻停止供水,迅速用紙吸干土柱表層積水,將土柱水平放置進行分層取土,從表層開始至25 cm處每隔5 cm進行取土,濕潤鋒(27 cm)處再取一次,一個土柱共取6次土樣。測定土樣質(zhì)量含水率、含鹽量及Na+含量。試驗重復3次以確保其準確性,分析數(shù)據(jù)時取平均值,使用SPSS 21進行單因素方差分析,研究去電子和未處理微咸水入滲對于土壤水鹽運移影響的顯著性差異。
目前國內(nèi)外有很多土壤入滲公式,其中,Philip和Green-Ampt入滲公式計算簡單且物理意義清晰,在土壤水分入滲中應用廣泛[24-25]。
Philip[26]入滲公式為
式中為累積入滲量,cm;為土壤吸滲率,cm·min-0.5;為入滲時間,min。
Green等[27]于1911年提出了Green-Ampt入滲公式
式中為入滲率,cm/min;為土壤表面積水深度,cm;K為土壤表征飽和導水率,cm/min;Z為概化濕潤鋒深度,cm;h為濕潤鋒面吸力,cm。
當土壤表面積水深度較小且入滲時間較短時可將積水深度引起的壓力勢忽略,則式(2)簡化為
Green-Ampt公式假定濕潤鋒面以上土壤已飽和,則有
式中θ為土壤飽和含水率,cm3/ cm3;θ為土壤初始含水率,cm3/ cm3。
圖2為不同礦化度去電子微咸水入滲條件下,累積入滲量隨時間變化過程。相同礦化度下,2、3、4、5 g/L去電子處理與相應對照入滲到200 min時累積入滲量差異性顯著(<0.05),而0.14 g/L去電子與對照差異性不顯著(>0.05),這可能是因為微咸水經(jīng)去電子化處理后,負電荷及電子通過接地電極釋放到地下,水體中的鹽分物質(zhì)只剩正電荷和正離子,使得水體中金屬陽離子活性降低,改變了微咸水入滲特性;而淡水中金屬陽離子較少,導致去電子化處理對于淡水水質(zhì)的改變與微咸水相比較小,對土壤累積入滲量影響也較小。為進一步驗證去電子處理對于淡水入滲影響,對入滲結(jié)束(入滲至27cm處)后0.14 g/L去電子水和未處理水累積入滲量做顯著性分析,結(jié)果顯示差異性顯著(<0.05),說明去電子技術(shù)處理淡水同樣能夠促進土壤水分入滲。去電子和未處理微咸水入滲過程中同一礦化度累積入滲量均隨礦化度先增后減,3 g/L時累積入滲量最大,入滲最快,這與吳忠東等[28-29]得出的試驗結(jié)果相一致,3 g/L為一個臨界值,小于3 g/L時隨著入滲水礦化度的增加,增加了土壤膠體絮凝作用,土壤導水和持水能力增強,入滲速率增大,當?shù)V化度為3g/L時入滲率達到最大,之后隨著入滲水礦化度的升高,Na+數(shù)量增多,土壤顆粒膨脹、孔隙變小,入滲率反而減小。去電子處理能夠不同程度地增加微咸水入滲速率,以200 min的入滲時間為例,0.14、2、3、4、5 g/L的去電子微咸水累積入滲量相對于未處理微咸水分別增加了8.4%、18.0%、16.9%、20.5%、16%;微咸水礦化度為4 g/L時,累積入滲量增加幅度最大。這是由于微咸水經(jīng)去電子處理后,水體中的鹽分物質(zhì)只剩正電荷和正離子,由于正電同性相斥,水分與鹽分不再粘結(jié),改變了水的活性,從而增強了土壤的入滲能力,增加了土壤保水能力增加,這對于低滲透農(nóng)田的鹽分淋洗具有重要意義[23]。
圖2 去電子微咸水累積入滲量變化特征
去電子微咸水和未處理微咸水濕潤鋒運移情況見圖3。濕潤鋒運移深度隨時間的變化規(guī)律與累積入滲量保持一致。去電子微咸水入滲所需時間均小于對應的未處理微咸水,去電子與未處理微咸水入滲濕潤鋒運移速率均在3 g/L時達到最大。去電子微咸水與對照處理入滲到200 min時濕潤鋒運移深度差異性均顯著(<0.05),0.14、2、3、4、5 g/L去電子微咸水濕潤鋒運移深度相對于未處理微咸水分別增加了14.4%、15.7%、22.2%、23.1%、17.1%。微咸水礦化度為4 g/L時,濕潤鋒運移深度增加幅度最大。入滲結(jié)束時,礦化度0.14、2、3、4、5 g/L去電子微咸水相對于未處理微咸水入滲時間分別減小了20.4%、28.3%、31.3%、34.4%、31.0%。這是因為交換性Na+濃度的升高會使土壤分散度增加,土壤中大孔隙崩塌成小孔隙,土壤結(jié)構(gòu)性變差,從而導致土壤透水性變差,去電子處理能夠降低Na+的活性,改善土壤孔隙結(jié)構(gòu),增加了土壤水分的入滲速率[30]。
圖3 去電子微咸水濕潤鋒運移變化特征
土壤質(zhì)地、容重、含水量等會對土壤入滲參數(shù)產(chǎn)生影響[31]。為了進一步分析去電子微咸水對土壤水分運動的影響,表1通過實測數(shù)據(jù)對Philip和Green-Ampt公式進行參數(shù)計算。由擬合的決定系數(shù)來看,決定系數(shù)均能達到0.95以上,擬合的結(jié)果較好。大量研究表明,利用微咸水灌溉存在一個臨界礦化度值,小于臨界值,Philip公式中吸滲率和Green-Ampt公式中飽和導水率K隨礦化度的增大而增大,大于臨界值,和K隨礦化度的增大而減小[28-29]。本次試驗中去電子和未處理微咸水和K均在3g/L達到最大值。去電子微咸水和K均大于同一礦化度未處理微咸水。Green-Ampt公式中濕潤鋒處吸力h隨礦化度變化情況與K相反,去電子微咸水h均大于對應的未處理微咸水。為反映去電子微咸水礦化度對于和K的影響,建立和K與礦化度的關(guān)系,和K與礦化度之間均呈現(xiàn)較好的二次多項式關(guān)系,擬合方程分別為=?0.012 22+0.065 5+0.407 6 (2=0.932 1)和K=?0.000 82+0.004 5+0.006 2 (2=0.9032) Green-Ampt公式假定條件為濕潤鋒面以上土壤已飽和,且K為表征飽和導水率。但根據(jù)實測數(shù)據(jù)顯示,入滲過程中濕潤鋒以上并未完全飽和,因此去電子微咸水對土壤實際飽和導水率的影響有待進一步研究。
不同礦化度去電子微咸水對土壤體積含水率隨土層深度的變化過程如圖4所示。表層含水率均相差不大,約為飽和含水率,濕潤鋒以下含水率接近初始含水率。入滲過程中土壤含水量剖面呈由緩變急的變化趨勢,在0~20 cm深度范圍內(nèi),含水率減小緩慢,在20 cm以下,含水率急劇減小。同一礦化度相同濕潤鋒深度處,去電子微咸水土壤剖面含水量大于未處理微咸水,尤其是在20~25 cm深度范圍內(nèi)表現(xiàn)十分明顯,這可能是由于去電子處理改變了水的黏滯性,使得下滲阻力減小,導致含水量的深度梯度變化小,同時,去電子微咸水入滲降低了土壤溶液中的離子強度,土壤顆粒表面雙電層厚度逐漸增加,擴散層發(fā)生重疊,一定程度上分散了土壤團聚體,增加了土壤大孔隙,導致剖面含水量增加[32-33]。0.14、2、3、4、5 g/L去電子微咸水相對于對照,在25 cm深度處土壤含水率分別增加了18.9%、23.8%、27.3%、29.5%、25.3%,這是由于去電子處理改善了水分子結(jié)構(gòu),水分子更易填充土壤中的小孔隙,從而增加了土壤的保水性能[33]。
表1 入滲公式參數(shù)擬合結(jié)果
圖4 去電子微咸水入滲下土壤含水量分布
表2是試驗結(jié)束后不同土層土壤Na+含量和含鹽量值情況。由表2可知,土層深度小于20 cm,去電子微咸水土壤含鹽量均小于相應對照處理,表明去電子處理可以將土體中鹽分淋洗到底層,提高土壤脫鹽率,去電子微咸水入滲能夠增加土壤中可溶性鹽分淋洗效率。去電子微咸水土壤含鹽量在土層深度大于25 cm后明顯大于相應對照,且在27 cm處尤為明顯。入滲結(jié)束后,礦化度0.14、2、3、4、5 g/L的去電子微咸水灌水量分別為0.76、0.80、0.85、0.82、0.80 kg,未處理微咸水灌水量分別為0.74、0.78、0.83、0.80、0.75kg,鹽分平衡計算見表3。1為入滲結(jié)束后土壤中含鹽量總和,2為入滲土壤初始含鹽量和入滲水中含鹽量總和,Δ為含鹽量變化率。由表3得,同一處理情況下鹽分含量基本平衡,同一礦化度去電子微咸水入滲后的鹽分含量與未處理微咸水相比相差不大,說明短時間內(nèi)去電子微咸水入滲不會改變土壤鹽分總含量。土壤中Na+含量過多易導致土壤黏粒分散,土壤發(fā)生膨脹、潮解,從而阻塞孔隙,降低土壤入滲能力及透氣性[34]。表2中不同土層深度處土壤Na+含量的變化規(guī)律與土壤含鹽量基本一致,同一土層深度,土壤Na+含量隨礦化度的增大而增大;同一礦化度,土壤Na+含量大體隨土層深度的增大而增大,并在入滲結(jié)束土層深度為27 cm處明顯累積;土層深度小于20 cm,去電子微咸水土壤中Na+含量均小于未處理微咸水;土層深度大于20 cm時,去電子微咸水土壤Na+含量開始大于未處理微咸水,土層深度27 cm處,去電子微咸水土壤Na+含量及含鹽量均大于未處理微咸水。
表2 去電子微咸水入滲對土壤剖面Na+含量及鹽分含量的影響
注: CK指對照,I指去電子處理。不同小寫字母表示同一深度土層同一礦化度不同處理間差異性顯著(<0.05)。下同。
Note: CK refers to the control treatment; I refers to the de-electronic treatment. Different lowercase letters indicate significant difference among different treatment of the same mineralization degree in the same soil depth (<0.05).The same below.
表3 鹽分平衡計算
注: 土壤容重為1.46 g·cm-3,土柱體積為2.12×103cm3,入滲土柱中土壤總質(zhì)量為3.09 kg。
Note : The soil bulk density is 1.46 g·cm-3, the soil column volume is 2.12×103cm3, and the total soil mass of the infiltrated soil column is 3.09 kg.
表2顯示了入滲結(jié)束后土層深度為27 cm處Na+相對淋洗率和相對淋鹽率,礦化度為4 g/L時,相對淋鹽率和Na+相對淋洗率最大,相對淋洗效果最好,表明去電子微咸水灌溉可以加速土壤鹽分向下遷移,增加土壤淋鹽效果,對于合理利用微咸水灌溉、改良鹽堿地具有重大意義。
去電子技術(shù)通過改善土壤水鹽運移特性,能夠提高微咸水利用效率,緩解淡水資源供需矛盾,改善農(nóng)業(yè)生產(chǎn)環(huán)境,對于治理新疆等地土壤鹽堿化、防止土壤次生鹽堿化,提高作物水肥利用效率,保持土地資源的可持續(xù)發(fā)展具有積極的意義。且去電子處理技術(shù)同其他土壤改良措施相比,具有無毒無害、高效安全等優(yōu)點,在淡水資源匱乏,微咸水資源豐富及土壤鹽堿化嚴重地區(qū)具有很大的推廣應用前景。
但目前去電子微咸水灌溉機理方面的研究較為欠缺,土壤中易溶鹽成分直接影響著土壤和入滲水之間的離子交換作用,離子交換對于顆粒間相互作用和土壤帶電顆粒的表面性質(zhì)及更深層次的微觀過程有著重要影響,入滲過程中去電子微咸水和土壤中易溶鹽成分發(fā)生耦合會導致去電子微咸水入滲特性發(fā)生變化,后期會考慮對不同類型土壤進行去電子水入滲,定量研究去電子水灌溉條件下土壤類型、土壤易溶鹽成分等對去電子水入滲特性的影響。水中黏滯性作為水的固有物理屬性,易受溫度、溶質(zhì)及水處理技術(shù)等影響,從而導致土壤入滲速率和含水量深度梯度發(fā)生變化,已有研究表明電磁化處理能夠顯著降低水的黏滯性[35],去電子水處理技術(shù)去掉了水中負電荷及電子,改變了水分子結(jié)構(gòu),導致水的理化性質(zhì)發(fā)生變化,極可能改變水的黏滯性,不同礦化度微咸水中溶質(zhì)含量不同,因此不同礦化度微咸水經(jīng)去電子處理后黏滯性能變化有待進一步深入研究。本文運用Green-ampt活塞流置換模型對入滲結(jié)果進行擬合,進而分析去電子微咸水對于土壤入滲參數(shù)的影響。Green-ampt公式最初被用于薄層積水下的垂直入滲,具有計算簡單、物理意義明確等優(yōu)點。許多研究表明不同礦化度微咸水入滲情況下Green-ampt公式中K隨礦化度的升高呈先增后減的趨勢[3,28],但未對變化情況進行公式擬合,本文通過擬合顯示去電子處理后K與礦化度之間均呈現(xiàn)較好的二次多項式關(guān)系,對明確土壤入滲性能具有積極意義,后期會進一步研究去電子微咸水對土壤實際飽和導水率的影響,對模型擬合值進一步驗證。綜上,今后應更多地從機理方面定量分析去電子技術(shù)對微咸水處理和鹽堿土改良的影響,提高去電子技術(shù)在農(nóng)田灌溉方面的使用價值。
本研究系統(tǒng)的分析了去電子微咸水入滲后土壤水鹽分布規(guī)律,得出如下結(jié)論:
1)基于一維垂直入滲試驗,微咸水經(jīng)去電子處理后,土壤水分入滲速率及濕潤鋒運移速率顯著增加;入滲時間200 min時,微咸水礦化度為4 g/L的累積入滲量和濕潤鋒運移深度增加幅度最大,累積入滲量相對增加了20.5%,濕潤鋒運移深度相對增加了23.1%;入滲結(jié)束后,礦化度為4 g/L的去電子微咸水相對于未處理微咸水入滲時間減小了34.4%,減小幅度最大。
2)去電子處理改變了土壤水分運動參數(shù),Philip公式中吸滲率和Green-Ampt公式中飽和導水率K、濕潤鋒處吸力h與對照相比均有所增大,去電子微咸水吸滲率及飽和導水率K與礦化度之間可用二次多項式進行較好地擬合。
3)去電子微咸水灌溉能夠增加土壤持水能力,提高鹽分淋洗效果。同一土層深度去電子處理土壤體積含水率相對于對照明顯增加,4 g/L去電子微咸水土壤含水率在土層深度為25 cm處相對于對照增加了29.5%;去電子處理能夠提高土壤脫鹽率,土壤含鹽量及Na+含量在土層深度27 cm處均大于對照,礦化度為4 g/L相對淋鹽率和Na+相對淋洗率最大,相對淋洗效果最好。
[1] 盛豐,吳丹,張利勇. 再生水灌溉對農(nóng)田土壤水流運動影響的研究進展[J]. 農(nóng)業(yè)工程學報,2016,32(增刊2):46-51.
Sheng Feng, Wu Dan, Zhang Liyong. Review on effect of reclaimed water irrigation on soil water movement in cropland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(Supp.2): 46-51. (in Chinese with English abstract)
[2] 陳麗娟,馮起,王昱,等. 微咸水灌溉條件下含黏土夾層土壤的水鹽運移規(guī)律[J]. 農(nóng)業(yè)工程學報,2012,28(8):44-51.
Chen Lijuan, Feng Qi, Wang Yu, et al. Water and salt movement under saline water irrigation in soil with clay interlayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(8): 44-51. (in Chinese with English abstract)
[3] 王全九,單魚洋. 微咸水灌溉與土壤水鹽調(diào)控研究進展[J]. 農(nóng)業(yè)機械學報,2015,46(12):117-126.
Wang Quanjiu, Shan Yuyang. Review of research development on water and soil regulation with brackish water irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(12): 117-126. (in Chinese with English abstract)
[4] 馮棣,張俊鵬,曹彩云,等. 適宜棉花成苗的咸水灌溉方式及礦化度指標確定[J]. 農(nóng)業(yè)工程學報,2014,30(22):95-101.
Feng Di, Zhang Junpeng, Cao Caiyun, et al. Optimal irrigation method in pre-sowing irrigation with saline water and determination of mineralization degree index for cotton seedling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(22): 95-101. (in Chinese with English abstract)
[5] Karlberg L, Rockstrom J, Annandale J G, et al. Low-cost drip irrigation-a suitable technology for southern Africa: an example with tomatoes using saline irrigation water[J]. Agricultural Water Management, 2007, 89(1):59-70.
[6] 馬文軍,程琴娟,李良濤,等. 微咸水灌溉下土壤水鹽動態(tài)及對作物產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學報,2010,26(1):73-80.
Ma Wenjun, Cheng Qinjuan, Li Liangtao, et al. Effect of slight saline water irrigation on soil salinity and yield of crop[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(1): 73-80. (in Chinese with English abstract)
[7] 王詩景,黃冠華,楊建國,等. 微咸水灌溉對土壤水鹽動態(tài)與春小麥產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學報,2010,26(5):27-33.
Wang Shijing, Huang Guanhua, Yang Jianguo, et al. Effect of irrigation with saline water on water-salt dynamic and spring wheat yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(5): 27-33. (in Chinese with English abstract)
[8] 邱讓建,劉春偉,徐金勤,等. 灌溉水含鹽量對辣椒產(chǎn)量品質(zhì)及水分利用效率的影響[J]. 農(nóng)業(yè)工程學報,2016,32(10):75-80.
Qiu Rangjian, Liu Chunwei, Xu Jinqin, et al. Effect of irrigation water salinity on yield, quality and water use efficiency of hot peper[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(10): 75-80. (in Chinese with English abstract)
[9] 賀新,楊培嶺,任樹梅,等. 基于主成分分析的油葵微咸水調(diào)虧灌溉灌水效果評價[J]. 農(nóng)業(yè)機械學報,2014,45(S1):162-167.
He Xin, Yang Peiling, Ren Shumei, et al. Evaluation of regulated deficit irrigation performance with saline water based on principal component analysis[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(1): 162-167. (in Chinese with English abstract)
[10] 侯亞玲,周蓓蓓,王全九,等. 枯草芽孢桿菌對鹽堿土水分運動和水穩(wěn)性團聚體的影響[J]. 水土保持學報,2017,31(4):105-111.
Hou Yaling, Zhou Beibei, Wang Quanjiu, et al. Effects of Bacillus Subtilis on water movement and water stable aggregate in saline alkali soil[J]. Journal of Soil and Water Conservation, 2017. (in Chinese with English abstract)
[11] 王海江,石建初,張花鈴,等. 不同改良措施下新疆重度鹽漬土壤鹽分變化與脫鹽效果[J]. 農(nóng)業(yè)工程學報,2014,30(22):102-111.
Wang Haijiang, Shi Jianchu, Zhang Hualing, et al. Soil salinity dynamic change and desalting effect under different improvement measures in severe salinity soil in Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(22): 102-111. (in Chinese with English abstract)
[12] 劉虎俊,王繼和,楊自輝,等. 干旱區(qū)鹽漬化土地工程治理技術(shù)研究[J]. 中國農(nóng)學通報,2005,21(4):329-333.
Liu Hujun, Wang Jihe, Yang Zihui, et al. The Saline Soil Was Improved by Engineering Techniques[J]. Chinese Agricultural Science Bulletin, 2005, 21(4): 329-329. (in Chinese with English abstract)
[13] 劉易,馮耀祖,黃建,等. 微咸水灌溉條件下施用不同改良劑對鹽漬化土壤鹽分離子分布的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究,2015,33(1):146-152.
Liu Yi, Feng Yaozu, Huang Jian, et al. Effects of modifiers on saline soil salt distribution under brackish water irrigation conditions[J]. Agricultural Research in the Arid Areas, 2015, 33(1): 146-152. (in Chinese with English abstract)
[14] 張繼紅,王全九,譚帥,等. 微咸水入滲下施加石膏對鹽堿土水分運動特征的影響[J]. 水土保持學報,2016,30(4):130-135.
Zhang Jihong, Wang Quanjiu, Tan Shuai, et al. Effects of Gypsum on water movement characteristics of saline Alkali soil under brackish water infiltration[J]. Journal of Soil and Water Conservation, 2016, 30(4): 130-135. (in Chinese with English abstract)
[15] Rasouli F, Pouya A K, Karimian N, Wheat yield and physic-chemical properties of a sodic soil from semi-arid area of Iran as affected by applied gypsum[J]. Geoderma, 2013, 193(2): 246-255.
[16] 朱娛,李培櫻,楊明凱. 化學改良方法在溫室鹽堿化土壤上的應用[J]. 北方園藝,2008,2008(7):85-86.
Zhu Yu, Li Peiying, Yang mingkai. The Application of the Chemical Remediation for a Saline-sodic Soils in Greenhouse[J]. Northern Horticulture, 2008, 2008(7): 85-86. (in Chinese with English abstract)
[17] 林年豐,劉巖巖,湯潔,等. 俄羅斯黃花草木樨改良鹽堿化土壤的試驗性研究[J]. 土壤通報,2013,44(5):1198-1203.
Lin Nianfeng, Liu Yanyan, Tang Jie, et al. Experimental study on amelioration effect on saline-alkali land of melilotus offcinalia from russia[J]. Journal of Soil Science, 2013, 44(5): 1198-1203. (in Chinese with English abstract)
[18] 毛海濤,黃慶豪,龍順江,等. 土壤鹽漬化治理防護毯的研發(fā)及試驗[J]. 農(nóng)業(yè)工程學報,2015,31(17):121-127.
Mao Haitao, Huang Qinghao, Long Shunjiang, et al. Development and experiment on protective blanket for soil salination control[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(17): 121-127. (in Chinese with English abstract)
[19] Maheshwari B L, Grewal H S. Magnetic treatment of irrigation water: Its effects on vegetable crop yield and water produvtivity[J]. Agricultural Water Management, 2009, 96(8): 1229-1236.
[20] Gabrielli C, Jaouhari R, Maurin G, et al. Magnetic water treatment for scale prevention[J]. Water Research, 2001, 35(13): 3249-3259. (in Chinese with English abstract)
[21] 張瑞喜,王衛(wèi)兵,褚貴新. 磁化水在鹽漬化土壤中的入滲和淋洗效應[J]. 中國農(nóng)業(yè)科學,2014,47(8):1634-1641.
Zhang Ruixi, Wang Weibin, Chu Guixin. Impacts of magnetized water irrigation on soil infiltration and soil salt leaching[J]. Scientia Agricultura Sinica, 2014, 47(8): 1634-1641. (in Chinese with English abstract)
[22] 朱練峰,張均華,禹盛苗,等. 磁化水灌溉促進水稻生長發(fā)育提高產(chǎn)量和品質(zhì)[J]. 農(nóng)業(yè)工程學報,2014,30(19):107-114.
Zhu Lianfeng, Zhang Junhua, Yu Shengmiao, et al. Magnetized water irrigation enhanced rice growth and development, improved yield and quality[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(19): 107-114. (in Chinese with English abstract)
[23] 王全九,張繼紅,門旗,等. 磁化或電離化微咸水理化特性試驗[J]. 農(nóng)業(yè)工程學報,2016,32(10):60-66.
Wang Quanjiu, Zhang Jihong, Men Qi, et al. Experiment on physical and chemical characteristics of activated brackish water by magnetization or ionization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(10): 60-66. (in Chinese with English abstract)
[24] 王全九,邵明安,鄭紀勇,著. 土壤中水分運動與溶質(zhì)遷移[M]. 北京:中國水利水電出版社,2007:20.
[25] 唐勝強,佘冬立. 灌溉水質(zhì)對土壤飽和導水率和入滲特性的影響[J]. 農(nóng)業(yè)機械學報,2016,47(10):108-114.
Tang Shengqiang, She Dongli. Influence of water quality on soil saturated hydraulic conductivity and infiltration properties[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(10): 108-114.(in Chinese with English abstract)
[26] Philip J R. The theory of infiltration: 1. The infiltration equation and its solution[J]. Soil Science, 1957, 83(5): 345-357.
[27] Green W H, Ampt G A. Studies on soil physics[J]. The Journal of Agricultural Science, 1911, 1(4): 1-24.
[28] 吳忠東,王全九. 入滲水礦化度對土壤入滲特征和離子遷移特性的影響[J]. 農(nóng)業(yè)機械學報,2010,41(7):64-69.Wu Zhongdong, Wang Quanjiu. Effect on both soil infiltration characteristics and ion mobility features by mineralization degree of infiltration water[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(7): 64-69. (in Chinese with English abstract)
[29] 吳忠東,王全九. 微咸水波涌畦灌對土壤水鹽分布的影響[J].農(nóng)業(yè)機械學報,2010,41(1):53-58.
Wu Zhongdong, Wang Quanjiu. Effect of saline water surge flow border irrigation on soil water salt distribution[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(1): 53-58. (in Chinese with English abstract)
[30] 牛文全,薛萬來. 礦化度對微潤灌土壤入滲特性的影響[J]. 農(nóng)業(yè)機械學報,2014,45(4):163-172.
Niu Wenquan, Xue Wanlai. Effects of Mineralization Degrees on Soil Infiltration under Moistube-irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(4): 163-172. (in Chinese with English abstract)
[31] 張珂萌,牛文全,汪有科,等. 微咸水微潤灌溉下土壤水鹽運移特性研究[J]. 農(nóng)業(yè)機械學報,2017,48(1):175-182.
Zhang Kemeng, Niu Wenquan, Wang Youke,et al. Characteristics of water and salt movement in soil under moistube irrigation with brackish water[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(1): 175-182. (in Chinese with English abstract)
[32] 鄒獻中,徐建民,趙安珍,等. 離子強度和pH對可變電荷土壤與銅離子相互作用的影響[J]. 土壤學報,2003,40(6):845-851.
Zou Xianzhong, Xu Jianmin, Zhao Anzhen,et al.Effects of ionic strength and ph on interaction between Cu2+and variable charge soils[J]. Acta Pedologica Sinica, 2003. 40(6): 845-851. (in Chinese with English abstract)
[33] 吳志堅,劉海寧,張慧芳. 離子強度對吸附影響機理的研究進展[J]. 環(huán)境化學,2010,29(6):997-1003.
Wu Zhijian, Liu Haining, Zhang Huifang. Research progress on mechanisms about the effect of ionic strength on adsorption[J]. Environmental Chemistry, 2010, 29(6): 997-1003. (in Chinese with English abstract)
[34] 劉春成,李毅,郭麗俊,等. 微咸水灌溉對斥水土壤水鹽運移的影響[J]. 農(nóng)業(yè)工程學報,2011,27(8):39-45.
Liu Chuncheng, Li Yi, Guo Lijun, et al. Effect of brackish water irrigation on water and salt movement in repellent soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(8): 39-45. (in Chinese with English abstract)
[35] 丁振瑞,趙亞軍,陳鳳玲,等. 磁化水的磁化機理研究[J]. 物理學報,2011,60(6):0647011-0647017.
Ding Zhenrui, Zhao Yajun, Chen Fengling et al. Magnetization mechanism of magnetized water[J]. Acta Physica Sinica, 2011, 60(6): 0647011-0647017. (in Chinese with English abstract)
Effect of salinity of de-electronic brackish water on characteristics of water and salt movement in soil
Wang Quanjiu, Xu Ziyue, Shan Yuyang, Zhang Jihong
(710048,)
The fresh water resource shortage severely increased in some regions, and the reasonable application of brackish water could alleviate the contradiction between water supply and demand. Hence, effective measures should be taken to regulate the condition of soil water and salt under brackish water irrigation. De-electronic water treatment technology is a new physical water treatment technology, which has received increasing attention in recent years. In order to improve the efficiency of brackish water utilization and alleviate the shortage of agricultural water supply, the de-electronic processor device was used to treat the brackish water with different salinity (0.14, 2, 3, 4 and 5 g/L), and the effect of de-electronic brackish salinity on water and salt movement in soil was revealed by a vertical infiltration experiment. The results showed that the soil infiltration rate and wetting front migration rate were significantly improved by the infiltration of de-electronic brackish water, and it would be varied under different salinity of brackish water. When the salinity of de-electronic brackish water was 3 g/L, the cumulative infiltration amount and wetting front depth reached the maximum at the end of infiltration. Compared with untreated brackish water, the de-electronic brackish water had a maximum relative cumulative infiltration amount and wetting front depth under brackish water condition of 4 g/L salinity. When the infiltration time was 200 min, the cumulative infiltration amount and wetting front depth were relatively increased by 20.5% and 23.1%, respectively, and the infiltration time was reduced by 34.4% after infiltration. The parameters of Philip and Green-Ampt formulas were significantly influenced by de-electronic brackish water. The soil treated by de-electronic brackish water had a greater value of soil sorptivity, saturated hydraulic conductivity and wetting front suction than untreated brackish water. The relationship between sorptivity and salinity of de-electronic brackish water can be described by a quadratic polynomial equation. And the effect of brackish water salinity on saturated hydraulic conductivity can be described by a quadratic polynomial equation as well. When the salinity was 3 g/L, sorptivityand saturated hydraulic conductivity reached the maximum under both conditions of de-electronic brackish water and untreated brackish water. Moreover, de-electronic brackish water could enhance soil water retention capacity and salt leaching effect. For the same soil depth, the soil moisture content increased significantly, especially in the depth range of 20-25 cm. The soil water content within the depth of 20-25 cm relatively increased by 29.5% at the salinity of 4 g/L. Saline content and Na+content at the depth of 27 cm were obviously higher than that of untreated brackish water after infiltration. The salt and Na+relative leaching rates were 16.5% and 19.9% respectively at 4 g/L brackish water. And it had a great desalination effect owing to the highest salt and Na+relative leaching rates. The results of this study prove that de-electronic brackish water can improve soil water movement and enhance salt leaching effect. Meanwhile, the utilization rate of brackish water can be significantly increased. This study can provide a theoretical support for the application of de-electronic brackish water in agriculture irrigation.
soil moisture; salinity; infiltration; de-electronic brackish water; water and salt distribution
2017-09-15
2018-02-01
國家自然科學基金面上項目(5167090151)
王全九,博士,博士生導師,主要從事農(nóng)業(yè)水土資源與生態(tài)環(huán)境研究。Email:wquanjiu@163.com
10.11975/j.issn.1002-6819.2018.04.015
S121; S156.4
A
1002-6819(2018)-04-0125-08
王全九,許紫月,單魚洋,張繼紅. 去電子處理微咸水礦化度對土壤水鹽運移特征的影響[J]. 農(nóng)業(yè)工程學報,2018,34(4):125-132.doi:10.11975/j.issn.1002-6819.2018.04.015 http://www.tcsae.org
Wang Quanjiu, Xu Ziyue, Shan Yuyang, Zhang Jihong. Effect of salinity of de-electronic brackish water on characteristics of water and salt movement in soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 125-132. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.04.015 http://www.tcsae.org