王昕凝 祖強 祝強 張磊 周啟瑋 范陽 董雋 張旭
1中國人民解放軍總醫(yī)院泌尿外科 100853 北京
腎臟移植是終末期腎病最佳治療手段。盡管現(xiàn)代外科領(lǐng)域微創(chuàng)技術(shù)發(fā)展迅速,腎移植手術(shù)卻仍以傳統(tǒng)開放手術(shù)(open kidney transplantation, OKT)為主[1, 2]。2010年,Giulianotti等[3]首次報道了機(jī)器人輔助腹腔鏡腎移植術(shù)(robot assisted kidney transplantation, RKT),但目前國外僅有少數(shù)移植中心成功開展此項手術(shù)。我院泌尿外科于2018年3月5日成功完成了1例RKT,現(xiàn)報告如下。
患者,男,33歲。BMI為25.9 kg/m2。術(shù)前診斷為慢性腎功能不全(尿毒癥期),行規(guī)律血液透析7年。既往高血壓病史8年,闌尾切除術(shù)后14年,術(shù)前檢查無腎移植術(shù)禁忌證。供腎者為患者父親,系自愿無償捐獻(xiàn)。供腎者既往體健,術(shù)前檢查無腎臟捐獻(xiàn)禁忌證或手術(shù)禁忌證。
采用后腹腔鏡活體供腎切取術(shù)切取供者左腎,常規(guī)冷保存液灌注。修整移植腎后,將移植腎置入自制塑料腎袋內(nèi)并填塞冰屑。
患者取截石位,頭低腳高。全身麻醉,常規(guī)消毒鋪巾,作5 cm繞臍腹正中縱行切口,作為供腎進(jìn)入腹腔的通道,使用多通道腹腔鏡手術(shù)入路系統(tǒng)(寧波勝杰康生物科技有限公司,中國)封閉切口并作為鏡頭孔。臍下約2 cm、距鏡頭孔右左側(cè)各8 cm及左側(cè)16 cm處分別作8 mm切口為達(dá)芬奇手術(shù)系統(tǒng)第1、2、3臂機(jī)械臂孔,于第1臂孔外下8 cm做12 mm切口為輔助孔。注入CO2,保持氣腹壓1.862 kPa(14 mm Hg)。將機(jī)器人手術(shù)系統(tǒng)入位,并分別置入鏡頭、單極剪(1臂)、雙極鉗(2臂)、無創(chuàng)鉗(3臂)、吸引器等輔助器械。充分游離右側(cè)髂外動靜脈。移走多通道腹腔鏡手術(shù)入路系統(tǒng),經(jīng)切口向盆腔內(nèi)放置紗墊,將裝有移植腎及冰屑的腎袋置于紗墊上,腎血管朝向髂外血管,輸尿管朝向膀胱。重新建立氣腹,阻斷右髂外靜脈,縱行剪開靜脈壁,采用GoreTex CV-6縫線一點固定端側(cè)連續(xù)吻合供腎靜脈與右骼外靜脈;相同方式及縫線吻合供腎動脈與右髂外動脈[4]。試驗吻合口無漏血后開放動靜脈。經(jīng)尿管注水充盈膀胱,游離膀胱右前壁,輸尿管內(nèi)留置雙J管,采用膀胱外黏膜下隧道法吻合膀胱輸尿管。取出包裹供腎的塑料袋及紗墊,檢查術(shù)野無活動性出血,清點器械敷料無誤,留置乳膠引流管1根,拔除Trocar,逐層縫合切口。
患者接受巴利昔單抗及甲潑尼龍誘導(dǎo)治療:巴利昔單抗劑量為20 mg,術(shù)前及術(shù)后第4天給藥;甲潑尼龍術(shù)中劑量為1 g,術(shù)后連續(xù)3 d給藥,劑量為500 mg。術(shù)后采用他克莫司、嗎替麥考酚酯及潑尼松三聯(lián)免疫抑制方案:他克莫司劑量為4 mg/次,2次/d,術(shù)后第1天開始口服,并根據(jù)血藥濃度調(diào)整用量;嗎替麥考酚酯劑量為750 mg/次,2次/d,術(shù)后第1天開始口服;潑尼松劑量為35 mg/d,術(shù)后第4天開始口服。
手術(shù)時間130 min,動脈吻合時間21 min,靜脈吻合時間13 min,輸尿管吻合時間9 min,供腎熱缺血時間2 min,冷缺血時間253 min。術(shù)后第7、30天血肌酐分別為144.5、104.9 μmol/L。術(shù)后第2天進(jìn)食,第3天拔除引流管,第7天拔除尿管,第11天出院。無圍手術(shù)期并發(fā)癥發(fā)生。
OKT切口常達(dá)16~20 cm,手術(shù)創(chuàng)傷大,切口并發(fā)癥發(fā)生率高,這不僅增加了患者痛苦及醫(yī)療費用,又影響了圍術(shù)期的人、腎存活率[5]。微創(chuàng)手術(shù)代表了現(xiàn)代泌尿外科發(fā)展的主流方向,其中,機(jī)器人微創(chuàng)手術(shù)適用于高難度復(fù)雜重建手術(shù),它不僅擴(kuò)大了泌尿外科微創(chuàng)手術(shù)適應(yīng)證,同時可以減少患者創(chuàng)傷,加速康復(fù)[6]。機(jī)器人手術(shù)系統(tǒng)具備高清放大3D視野、可彎曲機(jī)械臂及減震濾顫的效果,可提高重建手術(shù)管腔吻合的精度及速度,為微創(chuàng)腎移植術(shù)的開展提供了極佳的技術(shù)平臺[7, 8]。RKT的優(yōu)勢不僅包括手術(shù)切口短、切口并發(fā)癥風(fēng)險低、患者術(shù)后疼痛輕、康復(fù)快,更可降低高BMI患者手術(shù)難度及風(fēng)險[9~21]。在減少患者創(chuàng)傷同時,術(shù)后移植腎功能也得到保證[17, 21, 22]。研究發(fā)現(xiàn),RKT切口可顯著縮短切口長度(6.1 cmvs. 15.6 cm、5.11 cmvs. 12.90 cm)[9, 22],且切口并發(fā)癥發(fā)生率低(3.6%vs. 28.6%)[1, 19],而術(shù)后血肌酐、移植腎存活率及eGFR與OKT相比無明顯差異[9, 13]。盡管RKT術(shù)中氣腹可能會壓迫移植腎,減少腎血流[14],但對遠(yuǎn)期移植腎功能并無影響[19],術(shù)中完成血管吻合后降低氣腹壓至1.064~1.330 kPa(8~10 mm Hg)可減輕氣腹對移植腎的壓迫[1, 2, 23]。
RKT屬于高難度、高風(fēng)險泌尿外科手術(shù),手術(shù)細(xì)節(jié)仍需進(jìn)一步探索及完善,初期開展RKT應(yīng)注意控制風(fēng)險,確保移植腎存活,盡可能避免任何形式的移植腎損傷及圍術(shù)期并發(fā)癥。我們認(rèn)為要點有以下幾方面:持續(xù)保持移植腎低溫、高質(zhì)量的血管吻合、移植腎的最佳放置部位及嚴(yán)格選擇合適的供受者。
術(shù)中保持移植腎低溫可減少移植腎熱缺血時間,降低缺血再灌注損傷,保護(hù)移植腎功能[24],是確保手術(shù)成功的關(guān)鍵。RKT術(shù)中移植腎低溫保護(hù)方案最早由Menon等[2, 25~27]提出,我們參照相關(guān)研究[9, 11]做了改良:將移植腎置于填滿大量冰屑的自制透明塑料腎袋內(nèi),可以保證在低溫狀態(tài)下吻合血管;如血管吻合時間過長,冰屑完全融化,還可經(jīng)切口向局部灌注冰屑降低腎周溫度。本例手術(shù)動靜脈吻合時間共34 min,術(shù)中腎周冰屑未完全融化,說明只要血管吻合技術(shù)熟練,術(shù)中無需再次加冰屑即可完成手術(shù)。初期開展RKT通常血管吻合時間及復(fù)溫時間較長[9],但只要保持移植腎低溫,術(shù)中復(fù)溫時間長短并不影響術(shù)后移植腎功能[10],術(shù)中低溫保護(hù)不僅能保障移植腎功能,還可增加血管吻合的時限,減輕術(shù)者壓力,保障血管吻合質(zhì)量。為減輕低溫對機(jī)體的影響,避免并發(fā)麻痹性腸梗阻,我們采取的措施包括:封閉腎袋外口,防止冰屑滲漏;盆腔填塞隔離物;頭低腳高位使腸道遠(yuǎn)離盆腔等[4]。
機(jī)器人腎移植血管縫合需要高超手術(shù)技巧,術(shù)者應(yīng)兼?zhèn)湄S富的機(jī)器人及腎移植手術(shù)經(jīng)驗,術(shù)中還應(yīng)選擇合適的血管縫線。OKT術(shù)中通常使用Prolene線(聚丙烯)吻合腎血管,Prolene線組織相容性好、不易形成血栓、抗張強度持久,缺點是易斷裂[28~30]。若使用機(jī)器人器械鉗夾Prolene線,無法控制的鉗夾力度及堅硬的針持會損傷縫線[31],導(dǎo)致血管嚴(yán)重并發(fā)癥。RKT常采用GoreTex縫線(聚四氟乙烯)吻合腎動靜脈,該縫線組織相容性好,韌性好,強度高,不易斷裂,且線體遇血膨脹,針眼出血少[25, 27, 28, 31],更適用于機(jī)器人手術(shù)。
RKT多經(jīng)腹操作,并將移植腎置于腹腔內(nèi),腹腔空間大、視野開闊、解剖結(jié)構(gòu)清晰。但經(jīng)腹RKT的缺陷有:腸道損傷風(fēng)險、只能經(jīng)腹腔鏡穿刺移植腎活檢、移植腎有扭轉(zhuǎn)風(fēng)險、轉(zhuǎn)開放手術(shù)需重作切口等。據(jù)此學(xué)者們提出了不同的改進(jìn)方法:Boggi等[32]提出了切開盲腸旁側(cè)腹膜,將移植腎腹膜外化的方法;Adiyat等[33, 34]選用Pfannenstiel切口將移植腎置于腹膜外,經(jīng)腹切口腹膜作血管吻合,經(jīng)開放的小切口吻合尿路,減少氣腹壓迫,此入路轉(zhuǎn)開放手術(shù)更便利;Bruyère等[31]采用Alexis切口腹膜外化移植腎;經(jīng)Gibson切口的全腹膜外RKT也有報道[35]。移植腎腹膜外化可彌補經(jīng)腹腎移植的缺陷,但各類術(shù)式的遠(yuǎn)期療效尚待驗證,目前仍無最佳的解決方案,理想的移植腎腹膜外化方法仍需進(jìn)一步探索。
此外,開展RKT應(yīng)嚴(yán)格選擇合適的供受者。機(jī)器人手術(shù)系統(tǒng)缺乏觸覺反饋,無法評估動脈硬化程度,術(shù)中修整供腎血管困難,因此對于供腎血管有損傷或變異、受者外周血管硬化狹窄、既往廣泛腹腔手術(shù)史等情況均不建議應(yīng)用RKT[2, 14, 17, 36]。目前RKT多使用活體供腎,一方面術(shù)者可有充分的時間完善術(shù)前準(zhǔn)備及手術(shù)方案設(shè)計,保障手術(shù)成功;另一方面供腎質(zhì)量高,血管條件好,可排除影響患者預(yù)后的非手術(shù)因素。
結(jié)論:RKT可減輕手術(shù)創(chuàng)傷,縮短切口長度并降低切口并發(fā)癥,該術(shù)式安全、可靠、可行,經(jīng)進(jìn)一步優(yōu)化,腎移植術(shù)可逐步進(jìn)入微創(chuàng)時代,從而惠及更多尿毒癥患者。
[參考文獻(xiàn)]
[1] Tzvetanov I, D'amico G, Benedetti E. Robotic-assisted Kidney Transplantation: Our Experience and Literature Review. Curr Transplant Rep, 2015,2(2):122-126.
[2] Menon M, Sood A, Bhandari M, et al. Robotic kidney transplantation with regional hypothermia: a step-by-step description of the Vattikuti Urology Institute-Medanta technique (IDEAL phase 2a). Eur Urol, 2014,65(5):991-1000.
[3] Giulianotti P, Gorodner V, Sbrana F, et al. Robotic transabdominal kidney transplantation in a morbidly obese patient. Am J Transplant, 2010,10(6):1478-1482.
[4] 王昕凝,祖強.機(jī)器人腎臟切取,離體腎腫瘤切除及機(jī)器人自體腎移植術(shù)治療復(fù)雜腎腫瘤1例報告并文獻(xiàn)復(fù)習(xí).微創(chuàng)泌尿外科雜志,2018,7(3):http://www.cjmiu.com/CN/volumn/home.shtml
[5] Lynch RJ, Ranney DN, Shijie C, et al.Obesity, surgical site infection, and outcome following renal transplantation. Ann Surg, 2009,250(6):1014-1020.
[6] 張旭,高江平,符偉軍,等.機(jī)器人輔助腹腔鏡在泌尿外科手術(shù)中的臨床應(yīng)用(附500例報告).微創(chuàng)泌尿外科雜志,2014,3(1):4-7.
[7] Boggi U, Signori S, Vistoli F, et al. Current perspectives on laparoscopic robot-assisted pancreas and pancreas-kidney transplantation. Rev Diabet Stud, 2011,8(1):28-34.
[8] Breda A, Gausa L, Territo A, et al. Robotic-assisted kidney transplantation: our first case. World J Urol, 2016,34(3):443-447.
[10] Breda A, Territo A, Gausa L, et al. Robot-assisted Kidney Transplantation: The European Experience. Eur Urol, 2018,73(2):273-281.
[11] Michiels C, Rouffilange J, Comat V, et al. Total preperitoneal Robot-Assisted kidney transplantation. J Endourol Case Rep, 2017,3(1):169-172.
[12] Levi Sandri GB, De Werra E, Mascianà G, et al. The use of robotic surgery in abdominal organ transplantation: A literature review. Clin Transplant, 2017,31(1), [Epub ahead of print],https://onlinelibrary.wiley.com/doi/abs/10.1111/ctr.12856.
[13] Garcia-Roca R, Garcia-Aroz S, Tzvetanov I, et al. Single center experience with robotic kidney transplantation for recipients with BMI of 40 kg/m(2) or greater: a comparison with the UNOS registry. Transplantation, 2017,101(1):191-196.
[14] Breda A, Territo A, Gausa L, et al. Robotic kidney transplantation: one year after the beginning. World J Urol, 2017,35(10):1507-1515.
[15] Territo A, Mottrie A, Abaza R, et al. Robotic kidney transplantation: current status and future perspectives. Minerva Urol Nefrol, 2017,69(1):5-13.
[16] Doumerc N, Roumiguie M, Beauval JB, et al. Robotic kidney transplantation for morbidly obese patients excluded from traditional transplantation. Obes Surg, 2017,27(4):1056-1057.
[17] Wagenaar S, Nederhoed JH, Hoksbergen AW, et al. Minimally invasive, laparoscopic, and robotic-assisted techniques versus open techniques for kidney transplant recipients: a systematic review. Eur Urol, 2017,72(2):205-217.
[18] Hagen ME, Pugin F, Bucher P, et al. Robotic kidney implantation for kidney transplantation: initial experience. J Robot Surg, 2010,4(4):271-276.
[19] Oberholzer J, Giulianotti P, Danielson KK, et al. Minimally invasive robotic kidney transplantation for obese patients previously denied access to transplantation. Am J Transplant, 2013,13(3):721-728.
[20] Abaza R, Ghani KR, Sood A, et al. Robotic kidney transplantation with intraoperative regional hypothermia. BJU Int, 2014,113(4):679-681.
[21] 王昕凝,董雋.機(jī)器人輔助腹腔鏡技術(shù)在腎移植手術(shù)中的應(yīng)用進(jìn)展.微創(chuàng)泌尿外科雜志,2018,7(2):127-130.
[22] Sood A, Ghosh P, Menon M, et al. Robotic renal transplantation: Current status. J Minim Access Surg, 2015,11(1):35-39.
[23] Sood A, Ghosh P, Jeong W, et al. Minimally invasive kidney transplantation: perioperative considerations and key 6-Month outcomes. Transplantation, 2015,99(2):316-323.
[24] Meier RPH, Piller V, Hagen ME, et al. Intra-Abdominal cooling system limits Ischemia-Reperfusion injury during Robot-Assisted renal transplantation. Am J Transplant, 2018,18(1):53-62.
[25] Sood A, Mcculloch P, Dahm P, et al. Ontogeny of a surgical technique: Robotic kidney transplantation with regional hypothermia. Int J Surg, 2016,25:158-161.
[26] Sood A, Ghani KR, Ahlawat R, et al. Application of the statistical process control method for prospective patient safety monitoring during the learning phase: robotic kidney transplantation with regional hypothermia (IDEAL phase 2a-b). Eur Urol, 2014,66(2):371-378.
[27] Menon M, Abaza R, Sood A, et al. Robotic kidney transplantation with regional hypothermia: evolution of a novel procedure utilizing the IDEAL guidelines (IDEAL phase 0 and 1). Eur Urol, 2014,65(5):1001-1009.
[28] 陳忠.血管縫合及吻合基本技術(shù)與縫線材料選擇專家共識(2008).中國實用外科雜志,2008,28(10):814-817.
[29] 于小紅.體外循環(huán)縫線的應(yīng)用及管理.醫(yī)學(xué)信息,2013,26(6):570-570.
[30] 藺晨,高俊義,吳文銘.外科縫線的發(fā)展應(yīng)用與常見縫合技術(shù).國際外科學(xué)雜志,2017,44(1):4-7.
[31] Bruyère F, Pradère B, Faivre d'Arcier B, et al. Robot-assisted renal transplantation using the retroperitoneal approach (RART) with more than one year follow up: Description of the technique and results. Prog Urol, 2018,28(1):48-54.
[32] Boggi U, Vistoli F, Signori S, et al. Robotic renal transplantation: first European case. Transpl Int, 2011,24(2):213-218.
[33] Adiyat KT, Vinod KK, Vishnu R, et al. Robotic-assisted renal transplantation with total extraperitonealization of the graft: experience of 34 cases. J Robot Surg, 2018, Feb 1. [Epub ahead of print],https://link.springer.com/article/10.1007%2Fs11701-018-0781-x.
[34] Raveendran V, Koduveli RM, John R, et al. Total extraperitoneal robot assisted laparoscopic renal transplant recipient surgery. J Robot Surg, 2018, Feb 7. doi: 10.1007/s11701-018-0785-6. [Epub ahead of print],https://link.springer.com/article/10.1007%2Fs11701-018-0785-6 .
[35] Tsai MK, Lee CY, Yang CY, et al. Robot-assisted renal transplantation in the retroperitoneum. Transpl Int, 2014,27(5):452-457.
[36] Tzvetanov I, Bejarano-Pineda L, Giulianotti PC, et al. State of the art of robotic surgery in organ transplantation. World J Surg, 2013,37(12):2791-2799.