国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

營林措施對森林土壤N2O排放影響的研究進(jìn)展*

2018-02-28 07:16王會來姜培坤周國模李永夫吳家森
土壤學(xué)報(bào) 2018年1期
關(guān)鍵詞:火燒硝化氮素

王會來 劉 娟? 姜培坤 周國模 李永夫吳家森

(1 浙江農(nóng)林大學(xué)亞熱帶森林培育國家重點(diǎn)實(shí)驗(yàn)室,浙江臨安 311300)

(2 浙江農(nóng)林大學(xué)浙江省森林生態(tài)系統(tǒng)碳循環(huán)與固碳減排重點(diǎn)實(shí)驗(yàn)室,浙江臨安 311300)

(3 浙江農(nóng)林大學(xué)浙江省竹資源與高效利用協(xié)同中心,浙江臨安 311300)

N2O是引起全球氣候變暖的第三大溫室氣體,單位質(zhì)量N2O的增溫潛勢是CO2的298倍,對全球氣候變暖的貢獻(xiàn)約為6%[1-2]。近10年來,大氣N2O濃度已經(jīng)超過325 μg L-1,相較于工業(yè)革命前提高了20%,目前仍以每年0.25%的速度不斷遞增[1-3]。土壤是N2O的主要排放源,全球N2O年釋放量為16.2~20.1 Tg a-1[4-5],其中土壤N2O釋放量占57%~70%[6-7]。森林是陸地生態(tài)系統(tǒng)的重要組成部分,森林面積占全球陸地總面積的27.7%[8]。森林土壤N2O年排放量約為2.4~5.7 Tg a-1,其中熱帶和溫帶森林土壤N2O年排放量為4 Tg a-1[9]。中國N2O年排放量為0.42 Tg a-1,占全球N2O排放總量的7%[4]。

土壤N2O主要通過硝化和反硝化過程產(chǎn)生。土壤N2O產(chǎn)生的微生物過程存在很大差異性,熱帶森林和亞熱帶森林地區(qū)由于水分飽和易形成厭氧環(huán)境,加之NO3-相對富集,反硝化是土壤N2O的主要產(chǎn)生過程[10],而北方森林地區(qū)水分適中、氣候寒冷的環(huán)境特點(diǎn)有利于硝化作用的發(fā)生[11]。研究表明,北方森林因低溫導(dǎo)致土壤氮素周轉(zhuǎn)較慢,土壤中氮素相對匱乏;而熱帶和亞熱帶森林土壤中土壤氮素相對富集,從而使熱帶和亞熱帶森林土壤N2O排放量高于溫帶森林和北方森林[12]。參與土壤N2O排放的主要微生物群落包括:硝化細(xì)菌(氨氧化細(xì)菌、古菌及亞硝酸鹽氧化菌)和反硝化細(xì)菌以及部分菌根真菌。參與硝化過程的酶包括:氨單加氧酶(amo),羥胺氧化酶(hao),亞硝酸氧化還原酶(nxr);參與反硝化過程的酶主要包括:硝酸鹽還原酶(narG/napA),亞硝酸鹽還原酶(nirK/nirS),一氧化氮還原酶(nor)和氧化亞氮還原酶(nosZ)。

營林措施是人工林經(jīng)營管理的重要方式,通過改善土壤結(jié)構(gòu)、增加土壤肥力,提高森林生產(chǎn)力,顯著影響森林土壤N2O排放。近年來,營林措施對森林土壤N2O排放的影響開展了大量研究,但因土壤環(huán)境因子[10-12]、經(jīng)營措施[13-14]、土地利用方式[15]和生態(tài)系統(tǒng)類型的不同,營林措施對林地土壤N2O排放的影響的研究結(jié)果存在較大差異;同一種營林措施在不同森林類型、土壤狀況和氣候條件下,也會產(chǎn)生抑制、促進(jìn)和不變3種結(jié)果。本文綜述了營林措施(施肥、采伐、火燒、林下植被管理和灌溉)影響林地土壤N2O排放通量的研究進(jìn)展,探討了營林措施影響土壤N2O排放的主要機(jī)理,并提出未來研究的重點(diǎn),以期對全球氣候變暖背景下林地的合理經(jīng)營管理起到借鑒和啟示作用。

1 土地利用變化對森林土壤N2O排放的影響

土地利用變化通過改變地表植被覆蓋類型以及生物地球化學(xué)過程,顯著影響了土壤N2O的排放。Cheng等[16]對馬尾松林轉(zhuǎn)換為農(nóng)田和álvaro-Fuentes等[17]對地中海白松林轉(zhuǎn)換為大麥田的研究表明,土壤N2O排放分別增加了15.8%和99.3%(表1),其主要原因?yàn)椋海?)與森林生態(tài)系統(tǒng)相比,農(nóng)田和草地生態(tài)系統(tǒng)由于無機(jī)肥和有機(jī)肥的大量施用,造成土壤氮素的累積,硝化和反硝化作用增強(qiáng)[18];(2)土壤氮素過多造成土壤酸化,抑制了nosZ的活性,從而增加土壤N2O的排放[19];(3)土壤表層溫度的升高加快了土壤微生物的代謝速率,同時土壤含水量的變化促進(jìn)了土壤N2O的排放[20];(4)森林經(jīng)過開墾耕作后,土壤被壓實(shí),土壤反硝化作用的增強(qiáng)進(jìn)一步促進(jìn)了土壤N2O的排放[21]。

森林生態(tài)系統(tǒng)由于人為干擾較少,農(nóng)田或草地轉(zhuǎn)化為森林后氮肥施用的減少直接減少了土壤N2O的排放;同時土壤結(jié)構(gòu)得到改善,土壤通氣性的增強(qiáng)減少了厭氧微生物的數(shù)量,有利于減少土壤N2O的產(chǎn)生[22-23]。例如:Baah-Acheamfour等[24]對農(nóng)田轉(zhuǎn)換為森林和Kooch等[25]對水稻田轉(zhuǎn)化為羅雨松林的研究表明,土壤N2O的排放分別減少了44%和67%。但Li等[26]研究表明,草地轉(zhuǎn)化為松樹林后,土壤表層有機(jī)碳含量的增加使得土壤N2O排放速率增加了2倍。此外,草地或農(nóng)田轉(zhuǎn)化為林地后土壤N2O排放還與硝化細(xì)菌和反硝化細(xì)菌的群落組成和數(shù)量有關(guān)[22,27]。Xue等[27]報(bào)道草地轉(zhuǎn)化為柳樹林和楊樹林后,硝化螺旋菌數(shù)量的增加促進(jìn)土壤硝酸鹽的累積,從而增加了土壤N2O排放。Lammel等[22]研究表明,農(nóng)田退耕還林后土壤pH等理化性質(zhì)的改善顯著增加了土壤反硝化細(xì)菌的數(shù)量(如nirK),從而促進(jìn)土壤N2O排放。

林型轉(zhuǎn)化是土地利用變化的重要方式,天然林轉(zhuǎn)換為人工林或次生林造成森林類型結(jié)構(gòu)單一,森林生產(chǎn)力下降,土壤碳、氮流失,顯著影響了土壤N2O的產(chǎn)生與排放。目前林型轉(zhuǎn)化對土壤N2O排放的影響還沒有明確定論(表2)。Liu等[28]研究表明,亞熱帶常綠闊葉林轉(zhuǎn)換為毛竹林后土壤N2O排放沒有顯著變化,但集約經(jīng)營后顯著提高了土壤N2O的排放。孫海龍等[15]研究表明,溫帶次生林轉(zhuǎn)變?yōu)槁淙~松后土壤N2O排放增加了360%。而張睿[29]對亞熱帶天然林轉(zhuǎn)換為人工林的研究表明,土壤有機(jī)碳含量的降低和土壤含水量的增加使得土壤N2O排放速率減少了25.4%~63.1%。Kim和Kirschbaum[18]基于模型計(jì)算表明,天然林轉(zhuǎn)換為人工林初期減少了土壤N2O的排放,但隨著森林生態(tài)的恢復(fù),土壤N2O排放逐步趨于穩(wěn)定。為了更深入探討土地利用變化對土壤N2O的影響機(jī)理,未來研究需增加觀測時間和觀測頻率,同時需將氣體觀測與土壤微生物群落組成測定相結(jié)合,以期從本質(zhì)上解釋其作用機(jī)理。

2 營林措施對森林土壤N2O排放的影響

2.1 施肥對森林土壤N2O排放的影響

研究表明,森林生態(tài)系統(tǒng)“氮飽和”程度使得森林土壤N2O排放對施肥呈非線性響應(yīng),即初期無明顯響應(yīng)、中期緩慢增加和后期急劇增加[14,35-36]。森林土壤有效氮貧乏時,外源氮很容易被植被和土壤微生物吸收利用[14],硝化細(xì)菌和反硝化細(xì)菌的活性受土壤有效氮的限制,導(dǎo)致施N肥后土壤

N2O的排放沒有顯著變化[37-38]。與此相反,Kim等[39]對溫帶落葉松人工林和Krause等[40]對溫帶云杉林的研究表明,有效氮富集的土壤N2O排放速率在施肥后分別增加了69%和260%(表3),其增加的原因?yàn)椋海?)施肥促進(jìn)土壤氮素的累積,硝化和反硝化作用的增強(qiáng)促進(jìn)土壤N2O的排放[41-42];(2)土壤NH4+的累積降低土壤pH,土壤酸化抑制了土壤硝化作用,造成NO2-大量累積,亞硝酸鹽的毒性作用使得氨氧化細(xì)菌將部分亞硝酸鹽轉(zhuǎn)化為N2O,從而增加土壤N2O的排放[14];(3)施肥降低了森林土壤C/N比,反硝化細(xì)菌利用自身碳源進(jìn)行反硝化作用,反硝化不徹底造成NO2-的積累,從而使土壤N2O排放呈上升趨勢[42-43]。研究表明,在有效氮富集的土壤中施加S肥和P肥促進(jìn)了植物對土壤氮素的吸收,改變土壤微生物的群落結(jié)構(gòu),顯著減弱土壤N2O的排放[44-45]。例如,F(xiàn)an等[46]在馬尾松林混施N肥和S肥和Zhang等[47]在大葉相思林混施N肥和P肥的研究均表明,土壤N2O排放分別減少了97%~330%和21%。

表1 土壤N2O排放對森林與草地或農(nóng)田之間轉(zhuǎn)換的響應(yīng)Table 1 Responses of soil N2O emission to reclamation of forest into farmland or grassland

表2 土壤N2O排放對天然林轉(zhuǎn)換為次生林、人工林的響應(yīng)Table 2 Responses of soil N2O emission to replacement of natural forest with secondary and artificial forest

施肥對林地土壤N2O的影響還與施肥量、施肥時間、肥料類型、森林類型等因素有關(guān)。Zhang等[48]對亞熱帶松樹林的研究表明,高氮(150 kg hm-2a-1)促進(jìn)土壤N2O排放,低氮(50 kg hm-2a-1)對土壤N2O排放沒有明顯影響。Peng等[49]研究表明,施肥1年后土壤N2O的增加只維持了2~3周,而2年后土壤N2O持續(xù)增加。但Jassal 等[38]對杉木林的研究表明,施肥后第1年促進(jìn)土壤N2O排放,而第2年土壤N2O排放沒有顯著變化。肥料種類是影響林地土壤N2O排放的另一重要因素,Liu和Greaver[43]研究表明,施加硝態(tài)氮肥后土壤N2O增加程度高于銨態(tài)氮肥。而Peng 等[49]卻得出相反的結(jié)果,這可能與土壤N2O產(chǎn)生微生物過程的不同有關(guān)[35]。由于土壤有效氮含量的差異,使得不同森林類型土壤N2O排放對施肥的響應(yīng)存在明顯差異。Liu和Greaver[43]研究表明,熱帶和亞熱帶森林土壤N2O對施肥的敏感性高于溫帶森林和北方森林,這主要因?yàn)闊釒Ш蛠啛釒滞寥赖馗患┓屎笸寥乐卸嘤嗟臒o機(jī)氮被土壤硝化細(xì)菌和反硝化細(xì)菌利用,增加了土壤N2O排放,而溫帶森林和北方森林施氮后,土壤氮素很容易被植被和土壤微生物吸收利用,導(dǎo)致施N肥后土壤N2O的排放沒有顯著變化[14,35-36]。

表3 土壤N2O排放對施肥的響應(yīng)Table 3 Responses of soil N2O emission to N fertilization

森林土壤N2O排放涉及的主要微生物群落對施氮存在不同的響應(yīng)。例如,Schmidt等[50]對蘇格蘭南部有效氮富集和貧乏兩種酸性云杉林的研究表明:施肥改變有效氮富集的森林土壤反硝化細(xì)菌群落組成;而施肥沒有改變有效氮貧乏的森林土壤氨氧化菌群落組成。Levicnik-Hofferle等[51]研究表明,酸性森林添加銨態(tài)氮肥刺激了奇古菌對有機(jī)氮的礦化,從而影響了低NH4+森林土壤銨氧化過程。目前,森林土壤氮素變化過程中土壤硝化-反硝化細(xì)菌功能群的演變特征尚不清楚,對土壤N2O排放與土壤硝化細(xì)菌和反硝化細(xì)菌數(shù)量、組成之間的耦合關(guān)系缺乏明確認(rèn)識。

2.2 火燒對森林土壤N2O排放的影響

森林火災(zāi)對土壤N2O排放的影響主要表現(xiàn)在兩個方面:一是火燒通過高溫直接影響土壤微生物,改變土壤微生物的數(shù)量及群落組成;二是火燒改變了森林生態(tài)系統(tǒng)林分組成、土壤理化性質(zhì)等環(huán)境因素,間接影響了土壤N2O排放[53]。馬秀枝等[54]對興安落葉松林和Morishita等[55]對西伯利亞黑云杉林的研究表明,火燒后土壤N2O排放分別增加了69.2%和354%(表4),其主要原因?yàn)椋海?)火燒后地表凋落物和低矮植被轉(zhuǎn)化為無機(jī)物,增加了土壤氮素含量,為硝化和反硝化細(xì)菌提供豐富底物,促進(jìn)土壤N2O的排放[56-57];(2)火燒發(fā)生時土壤溫度升高增強(qiáng)了土壤硝化和反硝化細(xì)菌的活性,增強(qiáng)了土壤硝化和反硝化作用[58];(3)火燒后土壤有機(jī)碳含量的減少和土壤氮素的增加降低了森林土壤C/N,有利于土壤N2O的產(chǎn)生[59]。

火燒后土壤N2O排放的變化與火燒強(qiáng)度、火燒殘留物的處理情況、森林類型以及森林火燒時間序列有關(guān)。Morishita等[55]對西伯利亞黑云杉林的研究表明,重度火燒減弱了土壤N2O的排放,但局部火燒增強(qiáng)了土壤N2O的排放。Kim等[60]研究表明,火燒產(chǎn)生的生物質(zhì)炭干擾了硝化和反硝化作用,土壤N2O排放量減少了6.6%;而去除地上殘留物后,土壤N2O排放增加了30.1%。Inclán等[61]研究表明,火燒后比利牛斯橡樹林土壤含水量的增加減弱了土壤N2O的排放,而冬青櫟林、歐洲赤松林土壤N2O的排放沒有明顯變化。研究表明,土壤N2O排放對不同火燒時間序列的響應(yīng)完全不同。例如,馬秀枝等[54]對興安落葉松林的研究表明,火燒1年后土壤N2O排放相較于對照下降了37.9%,而火燒19年后土壤N2O排放與未火燒地?zé)o顯著差異,28年后較對照增加了69.2%。這可能是火燒初期凋落物及土壤養(yǎng)分含量下降,但隨時間的增加,凋落物數(shù)量和質(zhì)量以及土壤養(yǎng)分含量不斷提高,土壤N2O排放逐漸增加[62]。但K?ster等[63]對桉樹林的研究表明,火燒75年后土壤表現(xiàn)為N2O的排放源,而155年后則表現(xiàn)為N2O的弱吸收匯。目前,關(guān)于不同火燒時間序列對土壤N2O排放影響的研究尚不清楚,對引起不同火燒時間森林土壤N2O排放轉(zhuǎn)變的原因尚未確定。

2.3 采伐對森林土壤N2O排放的影響

采伐減少了森林植被,改變了森林生態(tài)系統(tǒng)碳、氮循環(huán),顯著影響森林土壤N2O的排放。目前有關(guān)采伐對森林土壤N2O排放的研究大多關(guān)注皆伐,而對于擇伐報(bào)道較少(表5)。M?kiranta等[65]對歐洲赤松林和Yashiro等[66]對馬來西亞熱帶雨林的研究表明,皆伐后土壤N2O排放分別增加了368%和685%(表5),主要原因?yàn)椋海?)皆伐后土壤溫度的提高加快了土壤氮素礦化速率,增加了土壤N2O的排放[67];(2)大量死根的分解和皆伐后的剩余物為硝化細(xì)菌和反硝化細(xì)菌提供豐富底物,從而促進(jìn)土壤N2O的排放[66];(3)皆伐后土壤容重的增加和地下水位的上升增加了土壤厭氧微生物的數(shù)量,有利于土壤N2O的產(chǎn)生[67-68]。因擇伐對森林土壤環(huán)境的影響較小,從而使擇伐后土壤N2O排放表現(xiàn)為不變或者減少[69-70]。

皆伐后土壤N2O的變化與采伐殘留物的處理、森林土壤恢復(fù)情況和采伐后營林措施有關(guān)。M?kiranta等[65]對芬蘭泥炭地森林研究表明,皆伐后保留殘留物的土壤N2O排放量是未保留的3倍。McVicar和Kellman[74]對紅皮云杉林的研究表明,皆伐2年后土壤N2O排放增加,20年后逐漸衰減,至皆伐125年后與對照沒有明顯差異。Pearson等[71]研究表明,皆伐地翻耕后土壤N2O的排放明

顯高于未翻耕地。

表4 土壤N2O排放對火燒的響應(yīng)Table 4 Responses of soil N2O emission to burning

表5 土壤N2O排放對采伐的響應(yīng)Table 5 Responses of soil N2O emission to felling

2.4 林下植被管理和灌溉對森林土壤N2O排放的影響

林下植被管理通過改變林下表層土壤水熱狀況和土壤氮素含量影響土壤微生物群落結(jié)構(gòu)和數(shù)量,進(jìn)而影響土壤N2O排放。去除林下植被降低了林下冠層郁閉度,光照的增強(qiáng)導(dǎo)致土壤溫度升高和土壤水分蒸發(fā)加快,降低了土壤濕度;同時,去除林下植被顯著減少了土壤根系分泌物數(shù)量,降低了細(xì)根周轉(zhuǎn)速率,使土壤活性碳含量和微生物量降低,從而改變了土壤微生物群落組成、活性[75-77]。研究表明,去除林下植被后亞硝化細(xì)菌及硝化細(xì)菌對NH4+的可利用性增加,而土壤MBC和相關(guān)酶活性顯著降低[76]。林下種植固氮植物后顯著增加土壤無機(jī)氮含量,土壤亞硝化細(xì)菌及硝化細(xì)菌的活性增強(qiáng)[77]。剔除林下植被改變了表層土壤的水熱條件,加快了表層土壤有機(jī)碳的分解礦化,增加了土壤N2O的排放;由于林下灌木的減少,土壤可以保存更多的有效氮,從而增強(qiáng)了硝化和反硝化作用[78]。此外,種植綠肥和固氮植物增加了土壤有機(jī)碳和土壤氮含量,為土壤N2O的產(chǎn)生提供良好的條件[79-80]。

表6 土壤N2O對林下植被管理的響應(yīng)Table 6 Responses of soil N2O emission to understory management

土壤水分是影響森林生長的重要因素,尤其對于干旱地區(qū),水資源的管理尤為重要。有關(guān)灌溉對森林土壤N2O排放的研究較少,研究表明,灌溉顯著增加土壤水分,從而促進(jìn)土壤N2O排放,在農(nóng)田和草地生態(tài)系統(tǒng)也得出相同的結(jié)果[83]。而Maris等[84]對油橄欖研究表明,采用滴灌制約了土壤微生物對水分的需求,從而減少了土壤N2O排放。

3 結(jié)論與展望

目前,國內(nèi)外學(xué)者已經(jīng)開展了大量關(guān)于森林土壤N2O排放的研究,但仍存在很多研究不足和不確定性,許多問題亟待解決。主要包括:1)土壤N2O的產(chǎn)生過程涉及到氨氧化菌、硝化細(xì)菌和反硝化細(xì)菌等,加之北方和南方森林土壤氮素存在明顯差異,使得土壤N2O產(chǎn)生過程復(fù)雜化,土壤N2O對施肥的響應(yīng)存在明顯差異。2)過去關(guān)于森林土壤N2O 排放對營林措施響應(yīng)的研究多關(guān)注與環(huán)境因子(土壤溫度、含水量、NH4+、NO3-等),雖然近年來,部分學(xué)者利用微生物學(xué)和分子生物學(xué)研究土壤N2O排放對人為干擾過程中微生物的數(shù)量、群落、活性變化的響應(yīng),但尚未得出統(tǒng)一結(jié)論,對森林土壤N2O產(chǎn)生的微生物學(xué)機(jī)理仍然缺乏系統(tǒng)性研究。3)目前,關(guān)于不同火燒時間序列對土壤N2O排放影響的研究尚不清楚,對引起不同火燒時間森林土壤N2O排放轉(zhuǎn)變的具體原因尚未確定,且當(dāng)前觀測周期較短、頻率較低,缺乏大時空尺度上的研究數(shù)據(jù)。4)擇伐可以優(yōu)化森林林齡結(jié)構(gòu),改善土壤水熱條件,維持植物根系和微生物群落的穩(wěn)定,是維持森林健康的重要措施。但目前有關(guān)采伐對森林土壤N2O排放的研究大多關(guān)注皆伐,而對于擇伐報(bào)道較少。

因此,建議今后應(yīng)加強(qiáng):1)利用15N-18O標(biāo)記法明確土壤N2O來源,以不同氣候帶的代表性森林為研究對象,構(gòu)建不同施肥時間、不同肥料類型(銨態(tài)氮肥、硝態(tài)氮肥以及酰胺態(tài)氮肥)的定位試驗(yàn),明確北方森林和南方森林土壤N2O來源的差異,構(gòu)建土壤N2O排放對施肥的非線性響應(yīng)函數(shù);2)探討氨氧化菌、硝化細(xì)菌和反硝化細(xì)菌等微生物對各種營林措施響應(yīng)模式,進(jìn)而揭示土壤功能微生物群落與土壤N2O排放的耦合機(jī)制;3)延長火燒觀測周期和增加觀測頻率,開展不同緯度、不同氣候條件下森林土壤N2O排放對不同火燒時間序列響應(yīng)的研究;4)增加擇伐對森林土壤N2O排放的研究,尤其是在我國森林資源豐富的東北針葉林和南方熱帶雨林地區(qū)。

[1] Forster P,Ramaswamy V,Artaxo P,et al. Changes in atmospheric constituents and in radiative forcing///IPCC.Climate change 2007:The physical science basis.Cambridge:Cambridge University Press,2007:129—234

[2] World Meteorological Organization(WMO). The state of greenhouse gases in the atmosphere based on global observations through 2012. Switzerland:WMO Greenhouse Gas Bulletin,2013,9:1—4

[3] Saikawa E,Prinn R G,Dlugokencky E,et al. Global and regional emissions estimates for N2O. Atmospheric Chemistry & Physics,2014,14(9):4617—4641

[4] Cai Z C. Greenhouse gas budget for terrestrial ecosystems in China. Science China Earth Sciences,2012,55(2):173—182

[5] Stocker T F,Qin D,Plattner G K,et al. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change//IPCC.Climate change 2013:The physical science basis.Cambridge:Cambridge University Press,2013:1—30

[6] Butterbach-Bahl K,Baggs E M,Dannenmann M,et al. Nitrous oxide emissions from soils:How well do we understand the processes and their controls?Philosophical Transactions of the Royal Society B:Biological Sciences,2013,368(1621):91—97

[7] Syakila A,Kroeze C. The global nitrous oxide budget revisited. Greenhouse Gas Measurement &Management,2011,1(1):17—26

[8] Food and Agriculture Organization of the United Nations(FAO). Global forest resources assessment 2015:how are the world’s forests changing? Rome:Food and Agriculture Organization of the United Nations,2015

[9] Davidson E A,Kanter D. Inventories and scenarios of nitrous oxide emissions. Environmental Research Letters,2014,9(10):1—12

[10] Zhang J B,Cai Z C,Zhu T B. N2O production pathways in the subtropical acid forest soils in China.Environmental Research,2011,111(5):643—649

[11] Morishita T,Aizawa S,Yoshinaga S,et al. Seasonal change in N2O flux from forest soils in a forest catchment in Japan. Journal of Forest Research,2011,16(5):386—393

[12] Fang H J,Yu G R,Cheng S L,et al. Effects of multiple environmental factors on CO2emission and CH4uptake from old-growth forest soils. Biogeosciences,2010,7(1):395—407

[13] 方華軍,程淑蘭,于貴瑞,等. 大氣氮沉降對森林土壤甲烷吸收和氧化亞氮排放的影響及其微生物學(xué)機(jī)制. 生態(tài)學(xué)報(bào),2014,34(17):4799—4806 Fang H J,Cheng S L,Yu G R,et al. Microbial mechanisms responsible for the effects of atmospheric nitrogen deposition on methane uptake and nitrous oxide emission in forest soils:A review(In Chinese). Acta Ecologica Sinica,2014,34(17):4799—4806

[14] 方華軍,程淑蘭,于貴瑞,等. 森林土壤氧化亞氮排放對大氣氮沉降增加的響應(yīng)研究進(jìn)展. 土壤學(xué)報(bào),2015,52(2):262—271 Fang H J,Cheng S L,Yu G R,et al. Study on the responses of nitrous oxide emission to increased nitrogen deposition in forest soils:A review(In Chinese).Acta Pedologica Sinica,2015,52(2):262—271

[15] 孫海龍,張彥東,吳世義. 東北溫帶次生林和落葉松人工林土壤CH4吸收和N2O排放通量. 生態(tài)學(xué)報(bào),2013,33(17):5320—5328 Sun H L,Zhang Y D,Wu S Y. Methane and nitrous oxide fluxes in temperate secondary forest and larch plantation in Northeastern China(In Chinese). Acta Ecologica Sinica,2013,33(17):5320—5328

[16] Cheng J Z,Lee X Q,Zhou Z B,et al. Nitrous oxide emissions from different land use patterns in a typical karst region,Southwest China. Acta Geochimica,2013,32(2):137—145

[17] álvaro-Fuentes J,Arrúe J L,Bielsa A,et al.Simulating climate change and land use effects on soil nitrous oxide emissions in Mediterranean conditions using the Daycent model. Agriculture Ecosystems &Environment,2016,238:78—88

[18] Kim D G,Kirschbaum M U F. The effect of land-use change on the net exchange rates of greenhouse gases:A compilation of estimates. Agriculture Ecosystems &Environment,2015,208(1):114—126

[19] Kirschbaum M U F,Saggar S,Tate K R,et al.Quantifying the climate-change consequences of shifting land use between forest and agriculture. Science of the Total Environment,2013,465(6):314—324

[20] Van Lent J,Hergoualc’H K,Verchot L V. Soil N2O and NO emissions from land use and land-use change in the tropics and subtropics:A meta-analysis. Biogeosciences Discussions,2015,12(15):7299—7313

[21] Hergoualc’H K,Verchot L V. Greenhouse gas emission factors for land use and land-use change in Southeast Asian peatlands. Mitigation and Adaptation Strategies for Global Change,2014,19(6):789-807

[22] Lammel D R,F(xiàn)eigl B J,Cerri C C,et al. Specific microbial gene abundances and soil parameters contribute to C,N,and greenhouse gas process rates after land use change in Southern Amazonian Soils.Frontiers in Microbiology,2015,DOI:10. 3389/FMICB. 2015. 01057

[23] Pierre S,Groffman P M,Killilea M E,et al.Soil microbial nitrogen cycling and nitrous oxide emissions from urban afforestation in the New York City Afforestation Project. Urban Forestry & Urban Greening,2015,15(11/12):149—154

[24] Baah-Acheamfour M,Carlyle C N,Lim S S,et al.Forest and grassland cover types reduce net greenhouse gas emissions from agricultural soils. Science of the Total Environment,2016,571:1115—1127

[25] Kooch Y,Moghimian N,Bayranvand M,et al.Changes of soil carbon dioxide,methane,and nitrous oxide fluxes in relation to land use/cover management.Environmental Monitoring & Assessment,2016,188(6):1—12

[26] Li C Y,Di H J,Cameron K C,et al. Effect of different land use and land use change on ammonia oxidizer abundance and N2O emissions. Soil Biology &Biochemistry,2016,96:169—175

[27] Xue C,Penton C R,Zhang B,et al. Soil fungal and bacterial responses to conversion of open land to shortrotation woody biomass crops. Global Change Biology Bioenergy,2016,8(4):723—736

[28] Liu J,Jiang P K,Li Y F,et al. Responses of N2O flux from forest soils to land use change in subtropical China.The Botanical Review,2011,77(3):320—325

[29] 張睿. 天然林轉(zhuǎn)換為人工林后土壤溫室氣體排放的動態(tài)變化. 浙江臨安:浙江農(nóng)林大學(xué),2016 Zhang R. Dynamic changes of soil greenhouse gas emissions after conversion from natural forest to plantations(In Chinese). Lin’an,Zhejiang:Zhejiang A&F University,2016

[30] Petitjean C,Hénault C,Perrin A S,et al. Soil N2O emissions in French Guiana after the conversion of tropical forest to agriculture with the chop-and-mulch method. Agriculture Ecosystems & Environment,2015,208:64—74

[31] Sabbatini S,Arriga N,Bertolini T,et al. Greenhouse gas balance of cropland conversion to bioenergy poplar short-rotation coppice. Biogeosciences Discussions,2015,12(10):8035—8084

[32] Delden L V,Rowlings D W,Scheer C,et al.Urbanization-related land use change from forest and pasture into turf grass modifies soil nitrogen cycling and increases N2O emissions. Biogeosciences Discussions,2016,13(21):6095—6106

[33] Wang H,Liu S,Wang J,et al. Effects of tree species mixture on soil organic carbon stocks and greenhouse gas fluxes in subtropical plantations in China. Forest Ecology & Management,2013,300(4):4—13

[34] 菊花,申國珍,馬明哲,等. 北亞熱帶地帶性森林土壤溫室氣體通量對土地利用方式改變和降水減少的響應(yīng).植物生態(tài)學(xué)報(bào),2016,40(10):1049—1063 Ju H,Shen G Z,Ma M Z,et al. Greenhouse gas fluxes of typical northern subtropical forest soils:Impacts of land use change and reduced precipitation(In Chinese). Chinese Journal of Plant Ecology,2016,40(10):1049—1063

[35] Shcherbak I,Millar N,Robertson G P. Global metaanalysis of the nonlinear response of soil nitrous oxide(N2O)emissions to fertilizer nitrogen. Proceedings of the National Academy of Sciences,2014,111(25):199—204

[36] Cheng S L,Wang L,F(xiàn)ang H J,et al. Nonlinear responses of soil nitrous oxide emission to multi-level nitrogen enrichment in a temperate needle-broadleaved mixed forest in Northeast China. Catena,2016,147:556—563

[37] Chen Z J,Set?l? H,Geng S C,et al. Nitrogen addition impacts on the emissions of greenhouse gases depending on the forest type:A case study in Changbai Mountain,Northeast China. Journal of Soils and Sediments,2017,17(1):23—34

[38] Jassal R S,Andrew Black T,Trofymow J A,et al.Soil CO2and N2O flux dynamics in a nitrogen-fertilized Pacific Northwest Douglas-fir stand. Geoderma,2010,157:118—125

[39] Kim Y S,Imori M,Watanabe M,et al. Simulated nitrogen inputs influence methane and nitrous oxide fluxes from a young larch plantation in northern Japan.Atmospheric Environment,2012,46(1):36—44

[40] Krause K,Niklaus P A,Schleppi P. Soil-atmosphere fluxes of the greenhouse gases CO2,CH4,and N2O in a mountain spruce forest subjected to long-term N addition and to tree girdling. Agricultural & Forest Meteorology,2013,181(4):61—68

[41] Wang C,Houlton B Z,Dai W,et al. Growth in the global N2sink attributed to N fertilizer inputs over 1860 to 2000. Science of the Total Environment,2016,574:1044—1053

[42] Shrestha R K,Strahm B D,Sucre E B. Greenhouse gas emissions in response to nitrogen fertilization in managed forest ecosystems. New Forests,2015,46(2):167—193

[43] Liu L,Greaver T L. A review of nitrogen enrichment effects on three biogenic GHGs:The CO2sink may be largely offset by stimulated N2O and CH4emission.Ecology Letters,2009,12(10):1103—1117

[44] Liu L,Bengtsson C,Lapidus L,et al. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China. Soil Biology & Biochemistry,2012,44(1):31—38

[45] Zheng M H,Zhang T,Liu L,et al. Effects of nitrogen and phosphorus additions on nitrous oxide emission in a nitrogen-rich and two nitrogen-limited tropical forests.Biogeosciences,2016,13(11):3503—3517

[46] Fan J L,Xu Y H,Chen Z M,et al. Sulfur deposition suppressed nitrogen-induced soil N2O emission from a subtropical forestland in southeastern China.Agricultural and Forest Meteorology,2017,233:163—170

[47] Zhang W,Zhu X,Luo Y,et al. Responses of nitrous oxide emissions to nitrogen and phosphorus additions in two tropical plantations with N-fixing vs. non-N-fixing tree species. Biogeosciences,2014,11(18):4941—4951

[48] Zhang W,Mo J M,Yu G R. Emissions of nitrous oxide from three tropical forests in Southern China in response to simulated nitrogen deposition. Plant and Soil,2008,306(1):221—236

[49] Peng Q,Qi Y,Dong Y,et al. Soil nitrous oxide emissions from a typical semiarid temperate steppe in Inner Mongolia:Effects of mineral nitrogen fertilizer levels and forms. Plant and Soil,2011,342(1/2):345—357

[50] Schmidt C S,Hultman K A,Robinson D,et al. PCR profiling of ammonia-oxidizer communities in acidic soils subjected to nitrogen and sulphur deposition.FEMS Microbiology Ecology,2007,61(2):305—316

[51] Levicnik-Hofferle S,Nicol G W,Ausec L,et al.Stimulation of thaumarchaeal ammonia oxidation by ammonia derived from organic nitrogen but not added inorganic nitrogen. FEMS Microbiology Ecology,2012,80(1):114—123

[52] Zhou W J,Ji H,Zhu J,et al. The effects of nitrogen fertilization on N2O emissions from a rubber plantation.Scientific Reports,2016,DOI:10. 1038/screp28230

[53] Stephens S L,Agee J K,F(xiàn)ulé P Z,et al. Managing forests and fire in changing climates. Science,2013,342(6154):41—42

[54] 馬秀枝,范雪松,舒常祿,等. 不同時間序列林火干擾對興安落葉松林區(qū)土壤性質(zhì)及溫室氣體通量的影響. 生態(tài)環(huán)境學(xué)報(bào),2016,25(6):939—946 Ma X Z,F(xiàn)an X S,Shu C L,et al. Effects of forest fire disturbance in different time series on soil properties and greenhouse gas flux in Larix gmelinii forest of cold-temperate zone(In Chinese). Ecology and Environmental Sciences,2016,25(6):939—946

[55] Morishita T,Noguchi K,Kim Y,et al. CO2,CH4and N2O fluxes of upland black spruce(Picea mariana)forest soils after forest fires of different intensity in interior Alaska. Soil Science and Plant Nutrition,2015,61(1):98—105

[56] Gómez-Rey M X,González-Prieto S J. Soil gross N transformation rates after a wildfire and straw mulch application for burned soil emergency stabilization.Biology and Fertility of Soils,2015,51(4):493—505

[57] Wang Y Z,Xu Z H,Zhou Q X. Impact of fire on soil gross nitrogen transformations in forest ecosystems.Journal of Soils and Sediments,2014,14(6):1030—1040

[58] Ta? N,Prestat E,Mcfarland J W,et al. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest.ISME Journal,2014,8(9):1904—1919

[59] Wang Y Z,Xu Z H,Zheng J Q,et al. δ15N of soil nitrogen pools and their dynamics under decomposing leaf litters in a suburban native forest subject to repeated prescribed burning in southeast Queensland,Australia. Journal of Soils and Sediments,2015,15:1063—1074

[60] Kim Y S,Makoto K,Takakai F,et al. Greenhouse gas emissions after a prescribed fire in white birch-dwarf bamboo stands in northern Japan,focusing on the role of charcoal. European Journal of Forest Research,2011,130(6):1031—1044

[61] Inclán R,Uribe C,Sánchez L,et al. N2O and CH4fluxes in undisturbed and burned holm oak,scots pine and pyrenean oak forests in central Spain.Biogeochemistry,2012,107(1):19—41

[62] 楊新芳,鮑雪蓮,胡國慶,等. 大興安嶺不同火燒年限森林凋落物和土壤C、N、P 化學(xué)計(jì)量特征. 應(yīng)用生態(tài)學(xué)報(bào),2016,27(5):1359—1367 Yang X F,Bao X L,Hu G Q,et al. C:N:P stoichiometry characteristics of litter and soil of forests in Great Xing’an Mountainswith different fire years(In Chinese). Chinese Journal of Applied Ecology,2016,27(5):1359—1367

[63] K?ster E,K?ster K,Berninger F,et al. Carbon dioxide,methane and nitrous oxide fluxes from podzols of a fire chronosequence in the boreal forests in V?rri?,F(xiàn)innish Lapland. Geoderma Regional,2015,5:181—187

[64] Kim Y,Tanaka N. Effect of forest fire on the fluxes of CO2,CH4and N2O in boreal forest soils,interior Alaska. Journal of Geophysical Research,2003,108,DOI:10. 1029/2001JD000663

[65] M?kiranta P,Laiho R,Penttil? T,et al. The impact of logging residue on soil GHG fluxes in a drained peatland forest. Soil Biology & Biochemistry,2012,48(4):1—9

[66] Yashiro Y,Kadir W R,Okuda T,et al. The effects of logging on soil greenhouse gas(CO2,CH4,N2O)flux in a tropical rain forest,Peninsular Malaysia.Agricultural & Forest Meteorology,2008,148(5):799—806

[67] Becker H,Uri V,Aosaar J,et al. The effects of clearcut on net nitrogen mineralization and nitrogen losses in a grey alder stand. Ecological Engineering,2015,85:237—246

[68] Trentini C P,Campanello P I,Villagra M,et al.Thinning of loblolly pine plantations in subtropical Argentina:Impact on microclimate and understory vegetation. Forest Ecology & Management,2017,384:236—247

[69] 任樂,馬秀枝,范雪松. 不同經(jīng)營方式及生境對大興安嶺高緯度林區(qū)生長盛季森林土壤CO2、CH4、N2O通量的影響. 生態(tài)環(huán)境學(xué)報(bào),2015,24(3):378—386 Ren L,Ma X Z,F(xiàn)an X S. Effect of N2O,CH4and CO2fluxes in the thriving season of Larix gmelinii forest in cold-temperate zone under different forest management and topographic condition(In Chinese). Ecology and Environmental Sciences,2015,24(3):378—386

[70] Fang S Z,Lin D,Tian Y,et al. Thinning Intensity affects soil-atmosphere fluxes of greenhouse gases and soil nitrogen mineralization in a lowland poplar plantation. Forest,2016,DOI:10. 3390/f7070141

[71] Pearson M,Saarinen M,Minkkinen K,et al. Shortterm impacts of soil preparation on greenhouse gas fluxes:A case study in nutrient-poor,clear-cut peatland forest. Forest Ecology & Management,2012,283:10—26

[72] Saari P,Saarnio S,Kukkonen J V K,et al. DOC and N2O dynamics in upland and peatland forest soils after clear-cutting and soil preparation. Biogeochemistry,2009,94(3):217—231

[73] Lavoie M,Kellman L,Risk D. The effects of clearcutting on soil CO2,CH4,N2O flux,storage and concentration in two Atlantic temperate forests in Nova Scotia,Canada. Forest Ecology & Management,2013,304:355—369

[74] McVicar K,Kellman L. Growing season nitrous oxide fluxes across a 125+ year harvested red spruce forest chronosequence. Biogeochemistry,2014,120(1):225—238

[75] Matsushita K,Tomotsune M,Sakamaki Y,et al.Effects of management treatments on the carbon cycle of a cool-temperate broad-leaved deciduous forest and its potential as a bioenergy source. Ecological Research,2015,30(2):293—302

[76] 林貴剛,趙瓊,趙蕾,等. 林下植被去除與氮添加對樟子松人工林土壤化學(xué)和生物學(xué)性質(zhì)的影響. 應(yīng)用生態(tài)學(xué)報(bào),2012,23(5):1188—1194 Lin G G,Zhao Q,Zhao L,et al. Effects of understory removal and nitrogen addition on the soil chemical and biological properties of Pinus sylνestris var. mongolica plantation in Keerqin Sandy Land(In Chinese).Chinese Journal of Applied Ecology,2012,23(5):1188—1194

[77] Wu J P,Liu Z F,Wang X L,et al. Effects of understory removal and tree girdling on soil microbial community composition and litter decomposition in two Eucalyptus plantations in South China. Functional Ecology,2011,25(4):921—931

[78] 李海防,夏漢平,傅聲雷,等. 剔除林下灌草和添加翅莢決明對尾葉桉林土壤溫室氣體排放的影響. 植物生態(tài)學(xué)報(bào),2009,33(6):1015—1022 Li H F,Xia H P,F(xiàn)u S L,et al. Emissions of soil greenhouse gases in response to under-story removal and Cassia alata addition in an Eucalyptus urophylla plantation in Guangdong Province,China(In Chinese). Chinese Journal of Plant Ecology,2009,33(6):1015—1022

[79] 李海防,張杏鋒. 剔除灌草和添加翅莢決明對厚莢相思林土壤溫室氣體排放的影響. 應(yīng)用生態(tài)學(xué)報(bào),2010,21(3):563—568 Li H F,Zhang X F. Soil greenhouse gases emission from an Acacia crassicarpa plantation under effects of understory removal and Cassia alata addition(In Chinese).Chinese Journal of Applied Ecology,2010,21(3):563—568

[80] Li H F,F(xiàn)u S L,Zhao H T,et al. Effects of understory removal and N-fixing species seeding on soil N2O fluxes in four forest plantations in southern China. Soil Science and Plant Nutrition,2010,56(4):541—551

[81] 劉娟,陳雪雙,吳家森,等. 剔除雜草對山核桃林地土壤溫室氣體排放的影響. 應(yīng)用生態(tài)學(xué)報(bào),2015,26(3):666—674 Liu J,Chen X S,Wu J S,et al. Effects of understory removal on soil greenhouse gas emissions in Carya cathayensis stands(In Chinese). Chinese Journal of Applied Ecology,2015,26(3):666—674

[82] Zhang J J,Li Y F,Chang S X,et al. Understory management and fertilization affected soil greenhouse gas emissions and labile organic carbon pools in a Chinese chestnut plantation. Forest Ecology and Management,2015,337:126—134

[83] Jamali H,Quayle W C,Baldock J. Reducing nitrous oxide emissions and nitrogen leaching losses from irrigated arable cropping in Australia through optimized irrigation scheduling. Agricultural & Forest Meteorology,2015,208:32—39

[84] Maris S C,Teira-Esmatges M R,Arbonés A,et al. Effect of irrigation,nitrogen application,and a nitrification inhibitor on nitrous oxide,carbon dioxide and methane emissions from an olive(Olea europaea L.)orchard. Science of the Total Environment,2015,538:966—978

猜你喜歡
火燒硝化氮素
緩釋碳源促進(jìn)生物反硝化脫氮技術(shù)研究進(jìn)展
不同產(chǎn)量潛力小麥品種氮素積累與轉(zhuǎn)運(yùn)的差異
硅基膜材緩控釋肥在紅壤中的氮素釋放特征研究
不同生育期大豆品種氮素積累特性研究
氮素運(yùn)籌對滴灌春小麥氮素吸收、利用及產(chǎn)量的影響
火燒毒品
驢肉火燒
起源
不怕火燒的手帕
淺談污水中脫氮的途徑
怀化市| 孟津县| 精河县| 东海县| 奉新县| 齐齐哈尔市| 古交市| 宁陕县| 烟台市| 稷山县| 大新县| 长治市| 潼南县| 宁晋县| 奉化市| 德化县| 闵行区| 临泉县| 浦东新区| 象山县| 盘山县| 丹阳市| 承德市| 临夏县| 林芝县| 乐山市| 河源市| 亳州市| 兴义市| 长葛市| 克山县| 平昌县| 牡丹江市| 隆化县| 广河县| 安泽县| 焦作市| 临清市| 合肥市| 集贤县| 稷山县|