鐘松雄 何宏飛 陳志良 尹光彩 林親鐵 黃 玲王 欣 劉德玲
(1 中國科學(xué)院廣州地球化學(xué)研究所,廣州 510640)
(2 環(huán)境保護(hù)部華南環(huán)境科學(xué)研究所,廣州 510655)
(3 廣東工業(yè)大學(xué)環(huán)境科學(xué)與工程學(xué)院,廣州 510006)
(4 中國科學(xué)院大學(xué),北京 100049)
砷是土壤中的重金屬污染物之一,被國際癌癥研究機(jī)構(gòu)歸類為第一類致癌物[1]。砷的化合物毒性大小依次為:砷(III)>一甲基化亞砷酸(MMAs(III))>二甲基化亞砷酸(DMAs(III))>二甲基化砷(DMAs(V))>一甲基化砷(MMAs(V))>砷(V)[2]。水稻土中自然本底的砷濃度一般較低,而人類工業(yè)和農(nóng)業(yè)活動使得大量的外源性砷進(jìn)入到土壤當(dāng)中[3]。水稻是世界上最主要的糧食作物之一,易吸收富集砷,因而稻田土壤砷污染會對以水稻為主食的人群身體健康構(gòu)成嚴(yán)重威脅[4]。
水稻土中砷的遷移轉(zhuǎn)化與砷的生物化學(xué)過程緊密相關(guān),砷的氧化還原與甲基化決定水稻土砷的賦存形態(tài)與歸趨。其中水稻土砷的生物化學(xué)行為與界面微環(huán)境密切有關(guān),有研究表明間歇式水淹處理比長期水淹處理土壤溶液砷濃度和水稻籽粒砷含量均更低,且有進(jìn)一步研究指出37種基因型水稻經(jīng)點(diǎn)噴式管理方式對砷的吸收累積量相比于長期水淹管理方式均顯著降低,這證實(shí)厭氧水淹過程是導(dǎo)致水稻土砷釋放的關(guān)鍵環(huán)節(jié)。據(jù)研究報(bào)道,水淹缺氧環(huán)境有利于鐵/砷還原菌的活動,導(dǎo)致鐵礦物的還原溶解和砷釋放還原以及砷的甲基化[5-7]。Bennett等[8]研究表明土壤溶液中鐵(II)濃度和砷(III)濃度呈極顯著正相關(guān),說明鐵礦物還原溶解引起了砷的釋放還原。即使在水淹缺氧環(huán)境下,砷的氧化也是存在的,有研究證實(shí)根表鐵膜可作為水稻吸收砷的屏障[9],Hu等[10]進(jìn)一步研究表明水稻根表鐵膜砷氧化微生物豐度與水稻根部、秸稈和籽粒均呈顯著負(fù)相關(guān)性。水淹環(huán)境下水稻土中砷的甲基化與砷的氧化還原過程同樣重要,Zhang等[11]研究表明,水稻土在水淹厭氧條件下砷還原基因豐度顯著高于有氧條件下的豐度,且砷還原基因與砷甲基化基因呈顯著正相關(guān)性。且有進(jìn)一步研究表明,一些特定種類的微生物與水稻土中砷的氧化還原和甲基化過程緊密相關(guān)[7,11-15]。水稻土的水淹厭氧環(huán)境引起的與鐵砷遷移轉(zhuǎn)化有關(guān)的微生物在群落水平和代謝、基因表達(dá)方面的變化進(jìn)一步影響著砷的生物化學(xué)過程[11,13-14],并由此改變著水稻土中砷的動力學(xué)特性[7,14,16-17]。
目前,許多研究從不同的角度深入探討了水稻土中砷的氧化還原和甲基化過程以及涉及的微生物介導(dǎo)機(jī)制,但對這方面研究卻鮮有系統(tǒng)性的綜合分析。因此,本文綜述了水稻土中砷的氧化還原和甲基化的生物化學(xué)過程及其影響因素,分析了水淹厭氧條件下水稻土砷的遷移轉(zhuǎn)化特點(diǎn),并展望了未來的研究方向,以期為水稻土砷污染防治提供科學(xué)依據(jù)。
水稻土砷的遷移轉(zhuǎn)化與微生物介導(dǎo)砷的氧化還原等生物化學(xué)過程有關(guān),其中鐵/砷的還原將有利于砷有效性地提高和進(jìn)一步的砷甲基化,具體如圖1所示。
圖1 水稻土砷的釋放、氧化還原與甲基化過程Fig. 1 Release,oxidation and reduction as well as methylation of arsenic in paddy soil
砷的還原主要分為異化砷還原與細(xì)胞質(zhì)砷還原。
異化砷還原是指微生物在厭氧條件下利用乳酸鹽、乙酸鹽、芳香類化合物等有機(jī)物作為電子供體將砷(V)還原為砷(III),同時(shí)合成ATP,為微生物生長提供能量;這種厭氧砷呼吸還原機(jī)制在原核生物中普遍存在[18-21]。異化砷還原發(fā)生在細(xì)胞周質(zhì)上,需要異化砷還原酶異質(zhì)二聚體蛋白 arrAB以及cymA基因編碼的細(xì)胞色素C的參與。其中,異化砷還原酶由大亞基arrA(大小約為100 kDa)和小亞基arrB(大小約為30 kDa)組成;arrA是砷(V)發(fā)生還原的場所,arrB負(fù)責(zé)將經(jīng)呼吸鏈傳來的基質(zhì)脫下的電子傳遞給arrA;細(xì)胞色素C則是充當(dāng)電子穿梭體的角色[18,21]。
細(xì)胞質(zhì)砷還原是指將進(jìn)入細(xì)胞的砷(V)還原為砷(III)并通過膜蛋白將砷(III)泵出細(xì)胞,降低細(xì)胞中砷的濃度以達(dá)到解毒的目的[22-23]。細(xì)胞質(zhì)砷還原是由細(xì)胞質(zhì)中ars操縱子編碼的砷(V)還原酶控制的,它與砷(III)排出泵共同形成支撐細(xì)胞質(zhì)砷還原的耦合體系。ars操縱子的核心由三個(gè)基因組成:arsR,arsB,arsC。其中,arsR為阻遏蛋白基因,與ars啟動子結(jié)合時(shí)會抑制其他ars基因的轉(zhuǎn)錄與表達(dá);arsB是載體蛋白基因,與利用膜勢能將砷(III)排出有關(guān);arsC基因則編碼砷(III)還原酶,對砷(III)還原起著重要作用[18,23-24]。研究表明,砷(III)排出細(xì)胞的過程與ATP酶arsA有關(guān);arsA與arsB共同組成排出砷(III)的陰離子泵,砷(III)與arsA酶結(jié)合刺激arsA酶水解ATP產(chǎn)生能量促使陰離子泵將砷(III)排出;arsA可通過與arsD金屬分子伴侶結(jié)合而增強(qiáng)自身與砷(III)結(jié)合的能力[16]。
異化砷還原與細(xì)胞質(zhì)砷還原分別與砷呼吸還原基因arrA和砷解毒還原基因arsC有關(guān)。arsC作為砷解毒基因廣泛存在于好氧、厭氧微生物中,而arrA主要存在于厭氧微生物中[7]。Saltikov等[25]研究Shewanellasp. strain ANA-3 的砷還原行為發(fā)現(xiàn)arrA基因的表達(dá)會被氧氣與硝態(tài)氮抑制,arrA基因的表達(dá)在處于對數(shù)期和停滯期初期的微生物中受砷(V)的刺激作用最顯著,且arrA基因?qū)ι椋↖II)的敏感度也遠(yuǎn)超于arsC基因,但arsC基因在有氧和厭氧環(huán)境下都能表達(dá)。Jia等[7]的研究則表明,水淹水稻根際土中arsC基因的豐度與多樣性高于arrA基因,說明了arsC作為砷解毒基因的重要性。
能進(jìn)行砷還原的微生物種類繁多,如常見的如Geobacter、Shewanella、Anaeromyxobacter和Ohtaekwangia、Desulfuromonas、Desulfocapsa、Desulfobulbus、Lacibacter等[12,14],以及一些典型的水稻根際微生物,如Rhizobiales和Burkholderials[7],其中部分微生物與在沉積物、咸水湖以及熱泉中分離出的砷還原微生物相似[7]。
鐵礦物還原溶解使其吸持的砷進(jìn)入液相被普遍認(rèn)為是促進(jìn)淹水水稻土中砷還原的關(guān)鍵因子,而鐵礦物對砷的固定則被認(rèn)為有利于抑制砷還原;大量研究表明鐵礦物吸持態(tài)砷(V)較溶液相砷(V)更難被微生物還原,擁有更長的還原半衰期[6,12,26-27],而Bennett 等[8]研究表明土壤溶液中鐵(II)濃度和砷(III)濃度呈極顯著正相關(guān)(r=0.896,p<0.001),說明鐵(III)還原溶解有利于砷(V)釋放還原,也進(jìn)一步證明了鐵礦物固定砷有利于抑制砷還原。
水鐵礦、針鐵礦、赤鐵礦對固定水稻土砷有重要作用,其中比表面積和反應(yīng)活性最大的無定型水鐵礦的砷吸持量最大,結(jié)晶度較高的針鐵礦與赤鐵礦的砷吸持量低于水鐵礦[28-31]。Zobrist等[32]研究發(fā)現(xiàn)Sulfurospirillumbarnesii還原液相砷(V)遠(yuǎn)高效于還原水鐵礦吸持態(tài)砷(V),而砷(V)與水鐵礦共沉淀時(shí)還原速率更低。Jones等[33]研究發(fā)現(xiàn)Clostridiumsp. strain CN-0還原液相砷(V)的速率是還原針鐵礦懸液(砷/鐵=5.3×10-4mol mol-1)中砷(V)的速率的1200倍以上,其中液相砷(V)還原速率超過12 mmol d-1,并指出砷(V)解吸控制著液相砷(III)的生成速率。近來,Huang等[12]進(jìn)一步研究發(fā)現(xiàn),液相砷(V)、0.2 g L-1針鐵礦和水鐵礦懸液中的砷(V)在Shewanellaputrefaciensstrain CN-32介導(dǎo)下的還原半衰期分別為3 h、32 h以及227 h,同樣表明鐵礦物固定砷能抑制砷還原,且水鐵礦的抑制效果最顯著。盡管鐵還原菌偏愛集聚在結(jié)晶度低、反應(yīng)活性高的鐵礦物上[34],但Zhang等[35]指出一般的水稻田耕作環(huán)境中被還原的草酸銨提取鐵(即無定型鐵礦物)不超過其總量的1%,因此水鐵礦固定砷對抑制砷還原起關(guān)鍵作用。與水鐵礦、針鐵礦不同,赤鐵礦主要通過結(jié)構(gòu)嵌入固定砷,Bolanz等[36]研究發(fā)現(xiàn)比表面積低至1 m2g-1的赤鐵礦可固定化1.8 wt%的砷(V),遠(yuǎn)超過其表面所能承載的量,表明赤鐵礦通過結(jié)構(gòu)內(nèi)嵌吸持了大量砷;由于赤鐵礦結(jié)晶度高,不易被微生物還原,因此其對砷的吸持有利于避免砷(V)釋放到溶液中[36-37],但現(xiàn)有研究鮮有涉及赤鐵礦抑制砷還原的具體效果。進(jìn)一步研究表明,水稻土無定型鐵與可交換態(tài)和專屬吸附態(tài)砷總和呈負(fù)相關(guān)(r=-0.694,p<0.001)[38],且在外源添加時(shí)水鐵礦相比于針鐵礦與赤鐵礦對有效態(tài)砷截留效果最好,其中無定型鐵與無定型鐵結(jié)合態(tài)砷呈顯著正相關(guān)關(guān)系(r=0.879,p=0.009)[29]。以往的研究表明,水淹缺氧條件下水稻土溶液中的有效態(tài)砷主要以與鐵礦物親和力較低、移動性較強(qiáng)的砷(III)形式存在[4],這與水淹缺氧條件鐵/砷還原微生物驅(qū)動土壤微界面鐵砷還原釋放有關(guān)。相應(yīng)地,水淹缺氧條件下水稻土有較高的pH,Honma等[39]進(jìn)一步發(fā)現(xiàn)水稻土pH與總砷呈函數(shù)關(guān)系[As]=3.56×10-12exp(4.72pH),溶解亞鐵與總砷呈函數(shù)關(guān)系[As]=0.0024[Fe(II)]2+0.3125[Fe(II)]+3.5886,而厭氧條件下砷主要以砷(III)存在,因此較高的pH或有利于水稻土砷還原。
水稻土中鐵礦物發(fā)生相態(tài)轉(zhuǎn)變或者還原生成次生礦物的過程以及氮鐵循環(huán)、碳鐵循環(huán)均可能影響砷固定并進(jìn)一步影響砷還原,具體見于表1和表2。
除鐵礦物之外,土壤有機(jī)質(zhì)也是影響砷還原的關(guān)鍵因素。這與土壤有機(jī)質(zhì)是鐵代謝微生物和礦物質(zhì)相互作用過程的重要參與者有關(guān),一方面低分子有機(jī)質(zhì)可以提供電子耦合鐵的還原過程從而影響砷的界面環(huán)境化學(xué)行為,另一方面,有機(jī)質(zhì)的氧化能夠直接耦合沉積物、土壤礦物和溶液中砷的微生物還原[55]。穩(wěn)定性低的有機(jī)質(zhì)促進(jìn)微生物砷還原的作用最為顯著,如碳含量低、含氧基團(tuán)和活性基團(tuán)多的有機(jī)質(zhì)、生物質(zhì)有機(jī)質(zhì)、溶解有機(jī)質(zhì)等[56-58]。Sahoo和Kim[59]研究表明有機(jī)質(zhì)刺激微生物活動使土壤氧化還原電位下降,有利于鐵礦物還原溶解促進(jìn)砷釋放還原[12]。Chen等[60]研究發(fā)現(xiàn)生物炭促進(jìn)了砷污染沉積物中的鐵還原和砷還原,且總鐵還原量與總砷還原量中的87%~90%與83%~88% 與微生物降解生物炭相關(guān),同時(shí)Geobacter、Anaeromyxobacter、Desulfosporosinus和Pedobacter等鐵/砷還原菌的豐度顯著上升。Wang等[54]同樣發(fā)現(xiàn)加入生物炭的砷污染水稻土中鐵還原菌Geobacter、Anaeromyxobacter、Desulfosporosinus和Pedobacter的豐度顯著上升,且總砷釋放量、砷(III)釋放量的提高與亞鐵生成量呈顯著相關(guān)性,砷還原基因arrA、arsC的豐度比與未加入生物炭時(shí)分別提高了20倍與1.4倍。
同樣,有機(jī)質(zhì)還可以通過其他方式和機(jī)制影響砷還原,具體見表3。
砷的氧化由化能自養(yǎng)型砷氧化微生物與異養(yǎng)型砷氧化微生物介導(dǎo)[16]?;茏责B(yǎng)型砷氧化微生物以氧氣、硝酸鹽、氯酸鹽等為電子受體氧化砷氧化,或在厭氧條件下以鐵礦物,硝酸根等為電子受體氧化砷[21,23,52,70],進(jìn)行產(chǎn)能并同化CO2以合成細(xì)胞物質(zhì),支持細(xì)胞生長。異養(yǎng)型砷氧化微生物介導(dǎo)的砷氧化過程常被視為一種解毒反應(yīng),即將砷(III)轉(zhuǎn)化為砷(V)從而降低砷對細(xì)胞的毒性[16]。
表1 鐵礦物相態(tài)轉(zhuǎn)變生成次生礦物對砷還原的影響Table 1 Effects of secondary minerals formed during changes of iron minerals in phase on arsenic reduction
表2 對砷固定化、砷還原可能產(chǎn)生影響的氮鐵、碳鐵循環(huán)過程Table 2 Nitrogen-iron and carbon-iron recycling processes that may have potential influence on arsenic immobilization and reduction
表3 有機(jī)質(zhì)促進(jìn)砷還原的方式與機(jī)理或?qū)嵗齌able 3 Modes and mechanisms or examples of organic matter stimulating arsenic reduction
砷(III)的氧化是由aio基因介導(dǎo)的,一般采用aroA基因表示;aio砷(III)氧化酶由兩個(gè)一大一小的、分別由aioA與aioB基因編碼的亞單位組成,這兩個(gè)亞基均與砷(V)還原酶的兩個(gè)亞基有親緣關(guān)系[16,21,71-72],廣泛存在于細(xì)菌與古菌的砷(Ⅲ)氧化酶中,其功能是將從砷(III)脫下來的電子傳遞到可溶于細(xì)胞質(zhì)中的電子載體中[71-72]。Kumari和Jagadevan[16]指出砷氧化時(shí),含有鉬蝶呤的砷氧化酶中心與砷(III)相連,鉬(VI)被砷(III)脫下的兩個(gè)電子還原為鉬(IV),隨后兩個(gè)電子先后經(jīng)過大、小兩個(gè)亞單位被傳遞至內(nèi)膜的呼吸鏈上并由天青蛋白或細(xì)胞色素C傳遞至電子受體(氧氣)。砷(III)濃度較高的環(huán)境下微生物砷氧化基因豐度明顯變高,砷氧化活動明顯更活躍,表明砷氧化是一種微生物砷解毒機(jī)制。近來arxA基因(編碼arxA砷氧化酶)對砷氧化的作用也得以確認(rèn),帶有arxA基因的砷氧化微生物以硝態(tài)氮為電子受體,通過砷氧化固定二氧化碳[7,16,19]。另有研究表明,較高的磷濃度或有利于砷氧化微生物(如Synechocystis)更高效地氧化砷(III),同時(shí)抑制其微生物細(xì)胞內(nèi)砷(V)還原[71-72]。
水稻土中與aroA基因有關(guān)的砷氧化菌主要隸屬于以下的門:α-Proteobacteria與β-Proteobacteria。Zhang等[11]也在水稻土中檢測到了α-Proteobacteria與β-Proteobacteria兩個(gè)門的微生物,并且發(fā)現(xiàn)水稻根際菌Rhizobiales與Burkholderiales在砷氧化中起重要作用。進(jìn)一步的研究報(bào)道水稻土同樣存在Sinorhizobiumsp. DAO10(aio)[73]、Alkalilimnicola ehrlichiistrain MLHE-1(arxA)和Paracoccusstrain SY(aio)[74]等砷氧化菌。水稻根膜方面,Hu等[10]研究發(fā)現(xiàn)水稻根際鐵膜上的砷氧化微生物主要隸屬于Acidoνoraxsp.與Hydrogenophagasp.。
大量研究表明水稻土氧化還原電位是影響砷氧化的重要因素。Rhine等[75]研究有氧/厭氧交替環(huán)境下砷(V)呼吸還原菌strain Y5和自養(yǎng)型砷(III)氧化菌strain OL1共同介導(dǎo)的砷(V)/砷(III)動力學(xué),發(fā)現(xiàn)從有氧切換到厭氧環(huán)境時(shí)砷的主要存在價(jià)態(tài)從砷(V)變?yōu)樯椋↖II)。Jia等[7]和Williams等[76]發(fā)現(xiàn)水淹水稻土中氧氣量更高的水淹根際土與非根際土相比具有更高的砷氧化菌豐度和砷(V)濃度。通常,水稻的通氣組織越發(fā)達(dá)(泌氧量越大),根際周邊區(qū)域氧化還原電位越高,砷(III)的氧化現(xiàn)象就越顯著[77]。Hu等[10]發(fā)現(xiàn)根表鐵膜砷氧化微生物對抑制水稻富集砷起重要作用,而這與砷氧化微生物將砷(III)轉(zhuǎn)化為能被水稻根表鐵膜強(qiáng)烈吸附的砷(V)有關(guān)。
厭氧沉積物或水淹土壤等厭氧還原性環(huán)境中硝態(tài)氮可以作為電子受體促進(jìn)微生物砷氧化[78-79]。Zhang等[19]發(fā)現(xiàn)水淹厭氧砷污染水稻土中砷(III)的氧化耦合了硝態(tài)氮的還原,且該過程是由Paracoccus屬的自養(yǎng)菌strain SY介導(dǎo)的。同樣,一些活性很高的有機(jī)質(zhì)可以直接氧化砷(III)。Jiang等[69]研究發(fā)現(xiàn)氧化態(tài)AQDS能將砷(III)直接氧化為砷(V),而Chen等[60]也發(fā)現(xiàn)滅菌水淹厭氧環(huán)境中存在砷氧化現(xiàn)象,并推測可能與有機(jī)質(zhì)直接氧化砷有關(guān)。
砷甲基化是水稻土中存在的普遍現(xiàn)象,水稻土、水稻籽粒以及水稻土上方的大氣均曾被檢測到甲基化砷的存在[80-82],研究表明每年約有419~1 252 t的砷從水稻土中釋放到大氣中[83]。砷甲基化是水稻土中微生物自帶的一種減毒脫毒機(jī)制,由砷甲基化基因(arsM)控制[84]。砷還原酶(arsC)與砷甲基化酶(arsM)是這些微生物細(xì)胞內(nèi)砷甲基化的主控因子,砷還原酶將細(xì)胞質(zhì)中的砷(V)還原為毒性更大的砷(III),而砷(III)在arsM的催化甲基化作用下,依次生成一甲基化砷(MMA)、二甲基化砷(DMA)、三甲基化砷(TMA),并通過擴(kuò)散作用被排出細(xì)胞體外[85]。目前,最合理并為接受的砷甲基化反應(yīng)模式可以用圖2表示。
該過程實(shí)際上是一個(gè)還原-氧化-甲基化交替的過程,砷(III)化合物H3AsO3中的羥基不斷被甲基取代,最終形成揮發(fā)性的MMA、DMA、TMA,這個(gè)循環(huán)過程可以用圖3更清晰地表達(dá)出來。
圖2 砷甲基化的反應(yīng)模式[80,86]Fig. 2 Reaction model of arsenic methylation[80,86]
圖3 砷還原-氧化-甲基化交替反應(yīng)式[80,87]Fig. 3 Chemical equation of alternation of reduction-oxidation-methylation of arsenic[80,87]
甲基供體是使無機(jī)砷轉(zhuǎn)化為甲基化砷的重要物料,而不同微生物對應(yīng)的甲基供體有所差異。大多數(shù)真菌細(xì)胞內(nèi)發(fā)生的砷甲基化反應(yīng)以S-腺苷甲硫氨酸(SAM)為甲基供體,而在細(xì)菌的細(xì)胞中,甲鈷胺是主要的甲基供體[88]。迄今為止,研究中涉及較多的甲基供體為SAM。甲基供體SAM在砷甲基化過程中經(jīng)歷的過程為:SAM以及砷結(jié)合在微生物體內(nèi)arsM酶上相應(yīng)的位點(diǎn)上,隨后SAM將甲基傳遞給砷(III)[86],使原本同時(shí)與三個(gè)含硫半胱氨酰的氨基酸殘基相連的砷(III)轉(zhuǎn)化為甲基化砷-酶的二元中間體。隨后,該中間體水解,甲基化砷解離出來,還原性的谷胱甘肽(GSH)作為電子供體通過還原作用使arsM酶的活性恢復(fù)[84]。
水稻土中的砷甲基化微生物多種多樣并隸屬于不同的門,包括Proteobacteria、Firmicutes、Bacteroidetes、Gemmatimonadales等,其中也包括一些硫酸鹽還原菌和產(chǎn)甲烷菌[11,13]。Jia等[15]發(fā)現(xiàn)水稻土與根際土中Actinobacteria、Gemmatimonadales、α-Proteobacterales、δ-Proteobacterales、β-Proteobacterales、Sphaerobacterales、Firmicates、CFB group bacteria、Halobacteriales、Archaea等門的菌種都與砷甲基化有關(guān),且根際土或根表上出現(xiàn)的主要為Proteobacteria、Gemmatimonadales、Sphaerobacterales、Firmicutes。
水稻土中的砷甲基化過程受多種因素影響,且有機(jī)質(zhì)是關(guān)鍵因素。加入有機(jī)質(zhì)使微生物獲得充分養(yǎng)料,提高砷甲基化菌豐度,從而促進(jìn)水稻土中還原性環(huán)境的形成以及砷甲基化過程,研究表明,有機(jī)質(zhì)形成時(shí)間越短、性質(zhì)越不穩(wěn)定時(shí),越易被利用,對砷甲基化的促進(jìn)效果越顯著[89-90]。不同種類的微生物能產(chǎn)生不同的砷甲基化產(chǎn)物,而施加不同的有機(jī)質(zhì)促進(jìn)砷甲基化的效果也有所差異;Huang等[91]往砷污染水稻土中加入干酒糟與三葉草,發(fā)現(xiàn)加入干酒糟后砷揮發(fā)量較未加入時(shí)高出100倍以上;加入干酒糟的處理組砷揮發(fā)量較加入三葉草的處理組高出兩倍以上,兩個(gè)處理組的砷甲基化產(chǎn)物也有所差異。Jia等[15]研究表明,往水稻土中加入稻草后arsM基因的豐度平均上升了139.4%,證實(shí)了添加有機(jī)質(zhì)對微生物砷甲基化的促進(jìn)作用,并指出不同微生物對砷甲基化的具體影響有所差異。水分也是影響砷甲基化的重要因素,適當(dāng)濕度有利于創(chuàng)造厭氧或兼性厭氧的還原性環(huán)境,進(jìn)而促進(jìn)微生物進(jìn)行砷甲基化,且研究表明土壤含水量為H2O 250~350 g kg-1土?xí)r砷甲基化的強(qiáng)化效果最顯著[92-94]。此外,偏酸性的環(huán)境也有利于增強(qiáng)砷甲基化微生物的活動,研究表明pH從8.5降至8.0便可顯著提高TMA的生成量[91,95-96];Huang等[91]的研究中往水稻土添加三葉草粉末及干酒糟后砷揮發(fā)量均顯著增加,而其pH則由8.7分別降至8.3與8.1。
圖4 水淹還原性條件下水稻土砷的環(huán)境化學(xué)行為Fig. 4 Environmental chemical behavior of arsenic in flooded reducing paddy soil
水稻種植需要經(jīng)歷的淹水階段是影響水稻土砷遷移轉(zhuǎn)化的關(guān)鍵因素,大量研究證實(shí)水淹厭氧條件能顯著影響水稻土中砷的氧化、還原與甲基化,而這與水稻土中鐵砷代謝相關(guān)微生物的群落結(jié)構(gòu)的變化是密切相關(guān)的。水淹厭氧條件有利于水稻土砷的釋放還原與甲基化,而不利于砷氧化[97]。砷在水淹缺氧條件下的具體環(huán)境化學(xué)行為可參考圖4。
水稻土中鐵礦物是砷的主要吸附載體,水淹厭氧條件的形成以及低氧化還原電位環(huán)境有利于促進(jìn)鐵還原菌和砷還原菌的活動,不利于砷氧化菌的活動,導(dǎo)致鐵礦物還原溶解使砷釋放至溶液中并被微生物還原,從而提高了水淹水稻土溶液中總砷和砷(III)的濃度。Yamaguchi等[5]發(fā)現(xiàn),水淹條件下當(dāng)水稻土的氧化還原電位由+100 mV下降至-68 mV與-75 mV時(shí),溶液中砷的釋放量每千克土分別提高了6.9 μmol和19 μmol。 Syu等[98]研究發(fā)現(xiàn)砷含量為343.3 mg kg-1的砷污染水稻土經(jīng)歷淹水后土壤溶液砷含量大幅度上升至3 000 μg L-1以上,且伴隨著氧化還原電位的急劇下降與鐵(II)含量的快速上升,而Wu等[99]研究四種不同基因型的水稻在有氧和無氧條件下對砷的累積發(fā)現(xiàn)無氧條件下根部的總砷量(147~243 mg kg-1)顯著高于有氧條件下根部總砷量(88.8~218 mg kg-1)。Somenahally等[100]研究表明相比厭氧水淹處理,間歇式水淹處理中水稻根際土孔隙水總砷約降低86%,而這與地桿菌、希瓦氏菌和厭氧黏細(xì)菌等異化鐵還原菌在厭氧水淹條件下豐度更高有關(guān)。Zecchin等[101]研究指出水稻根際土在長期持續(xù)水淹后Geobacteraceae族的鐵還原菌的豐度顯著上升并伴隨著砷(V)從鐵礦物中溶出。而Das等[14]進(jìn)一步研究表明,與不淹水和干濕交替處理相比,水淹厭氧處理下水稻土的鐵還原菌豐度可分別高出56.4和6.5個(gè)數(shù)量級,砷還原菌豐度可分別高出31.8和15.9個(gè)數(shù)量級,溶解亞鐵、砷含量顯著更高,且水稻土孔隙水中砷(III)占總砷的87.3%~93.6%。這說明水淹厭氧條件不僅驅(qū)動鐵還原促進(jìn)砷釋放,還可以促進(jìn)砷的直接還原。其中,攜帶砷(V)還原基因的微生物多為厭氧微生物[7]。大量研究證實(shí)水淹缺氧條件下土壤溶液砷以砷(III)為主,且砷(III)濃度可能隨著土壤氧化還原電位的降低與砷濃度的提高而提高[14]。Ohtsuka等[102]研究了水稻土中與異化砷呼吸還原酶(arrA)有關(guān)的砷還原菌的活動,結(jié)合X射線吸收近邊結(jié)構(gòu)(X-ray absorption near edge structure,XANES)分析表征礦物相,發(fā)現(xiàn)地桿菌GeobacterOR-1能還原土壤溶液中的砷與鐵礦物表面的砷使土壤固相砷(III)濃度顯著增大,且往滅菌實(shí)驗(yàn)土中接種該菌種時(shí)土漿上清液中的砷(III)濃度(904 nmol L-1)遠(yuǎn)大于未接種該菌種時(shí)的濃度(78 nmol L-1)。Tian等[103]研究指出了厭氧環(huán)境對促進(jìn)微生物砷還原基因arrC與arrA的表達(dá)的重要性。Huang等[12]研究了Shewanella putrefaciensstrain CN-32在一系列鐵礦物表面的砷還原活動并指出,水淹厭氧條件下礦物表面的砷直接還原與溶液相中的砷還原均是砷還原的重要途徑,而礦物吸附相砷的還原對其解吸和溶液相砷濃度的提高有重要意義。相反,水稻土落干-復(fù)氧有利于氧化鐵礦物的形成與抑制砷釋放還原。Zecchin 等[101]的研究同樣表明有氧種植或在水稻開花兩周前排水與淹水種植相比土壤溶液中溶解亞鐵和砷(III)的濃度顯著更低。Das等[14]研究發(fā)現(xiàn)落干管理相比于干濕交替管理與水淹管理能使水稻土中具有更高比例的無定型鐵礦物結(jié)合態(tài)砷。進(jìn)一步研究表明,水淹厭氧水稻土受根尖泌氧的影響,水稻根部鐵圈內(nèi)部復(fù)氧更快,主要形成一些無定型鐵礦物以及水鐵礦、針鐵礦,吸附砷(V)為主,而鐵圈外部復(fù)氧速率較慢,主要形成纖鐵礦,且主要吸附砷(III);一般而言,復(fù)氧較快時(shí)鐵(II)氧化易生成水鐵礦、針鐵礦,較慢時(shí)則易生成纖鐵礦[104]。盡管次生礦物的生成對固定砷、抑制砷還原的具體影響尚需進(jìn)一步評估,這些研究也說明了水淹厭氧條件對驅(qū)動砷釋放還原起關(guān)鍵作用。
能同時(shí)參與鐵(III)還原與砷(V)還原的主要微生物及其特點(diǎn)見表4。
水淹厭氧條件也有利于水稻土中砷的甲基化,這與較低的Eh有利于砷甲基化微生物進(jìn)行砷甲基化有關(guān)[92,95-97],且砷(III)可能作為砷甲基化的“基質(zhì)”,Huang等[91]往水淹水稻土中添加三葉草與酒糟等有機(jī)質(zhì),發(fā)現(xiàn)厭氧環(huán)境的形成伴隨著水稻土中arsC基因豐度、砷(III)濃度的上升,甲基化砷的量的增大,其中投入酒糟時(shí)甲基化砷揮發(fā)量可高達(dá)每月9.8 μg kg-1土,較不投加時(shí)高出100倍以上。Zhang等[11]進(jìn)一步研究表明水淹厭氧條件下砷還原基因arsC和砷甲基化基因arsM的豐度均不斷提高,且兩者呈顯著正相關(guān)(R2=0.90,p<0.05);這與微生物中砷(V)的還原產(chǎn)物砷(III)可能作為砷甲基化反應(yīng)所需的“基質(zhì)”,arsM基因常與抗砷基因arsC基因相鄰,arsM基因控制的砷甲基化活動有助于微生物減輕砷對自身毒性是相對應(yīng)的[105]。Huang等[105]研究一株從砷污染水稻土中分離出來的SM-1菌株,發(fā)現(xiàn)其在水淹厭氧條件下能進(jìn)行高效甲基化作用的原因在于其細(xì)胞排出砷(III)的能力較弱,并且它的砷甲基化基因ArarsM與砷(III)具有高度響應(yīng)性,這進(jìn)一步證明了水淹厭氧條件有利于砷的甲基化。水稻種植經(jīng)歷的水淹階段強(qiáng)化了砷的甲基化,因而水稻能吸收更多甲基化砷且大米中常能檢測到甲基化砷,尤其是DMA與MMA[106-107]。Jia等[108]研究則進(jìn)一步指出,水稻土中的甲基化砷的揮發(fā)量遠(yuǎn)大于水稻吸收并揮發(fā)出來的量。
表4 水淹厭氧條件下與水稻土鐵砷還原有關(guān)的主要微生物[17,58,68,105]Table 4 Main microbes involved in iron and arsenic reduction in flooded anaerobic paddy soil[17,58,68,105]
砷污染水稻土中砷的氧化、還原和甲基化過程十分常見,砷的歸趨與砷代謝微生物所介導(dǎo)的砷生物化學(xué)作用密切相關(guān)。水淹厭氧環(huán)境可以顯著改變水稻土中功能微生物群落而進(jìn)一步影響砷的生物化學(xué)行為和砷的歸趨。當(dāng)前大量的研究集中于探索水淹厭氧條件下水稻土中鐵的氧化還原對砷的環(huán)境化學(xué)行為影響,不同水分管理方式對水稻土砷代謝微生物的影響以及功能微生物對砷的生物化學(xué)行為的作用機(jī)制和砷的生物化學(xué)行為與水稻砷累積的響應(yīng)關(guān)系等方面,基于本文對水稻土砷生物化學(xué)行為的綜述,認(rèn)為未來的研究應(yīng)著眼于:
1)水淹厭氧條件下水稻土中鐵還原微生物、砷還原微生物和砷甲基化微生物共同影響著砷的生物化學(xué)過程,有機(jī)質(zhì)能活化砷代謝微生物。目前關(guān)于不同類型的有機(jī)質(zhì)對砷代謝微生物多樣性的調(diào)節(jié)作用尚不清楚。理清有機(jī)質(zhì)和砷生物化學(xué)作用需要回答以下問題:①不同類型有機(jī)質(zhì)對異化鐵還原、砷還原與甲基化的生物化學(xué)作用機(jī)制;②不同類型有機(jī)質(zhì)與砷的物理化學(xué)交互作用;③有機(jī)質(zhì)-鐵礦物-砷三者之間存在螯合、競爭和耦合作用,三者之間在不同鐵礦物、不同有機(jī)質(zhì)類型和不同環(huán)境條件下的相互作用關(guān)系。
2)目前已有大量研究探討了與砷的氧化、還原及甲基化有關(guān)的酶的作用,深入研究這些酶在砷污染土壤環(huán)境中的動力學(xué)行為,有助于更深入地理解不同砷代謝微生物及其氧化還原和甲基化等生物化學(xué)過程對不同環(huán)境條件的響應(yīng),一定程度上有利于降低水稻對砷的富集累積而取到減毒脫毒的目的。這方面研究需要進(jìn)一步明確以下問題:①水稻土砷代謝微生物相關(guān)酶在不同微環(huán)境下的響應(yīng);②水稻土砷代謝微生物相關(guān)酶與砷的遷移轉(zhuǎn)化和歸趨的關(guān)聯(lián)性;③有機(jī)質(zhì)與砷甲基化微生物相關(guān)酶兩者的關(guān)系。
3)施加氮肥和有機(jī)肥等對砷生物化學(xué)行為的進(jìn)一步影響和砷的歸趨問題有待研究:①水稻土碳循環(huán)對鐵循環(huán)與砷生物化學(xué)行為的影響;②水稻土氮循環(huán)對鐵循環(huán)和砷生物化學(xué)過程的影響,尤其是Feammox過程對砷的環(huán)境化學(xué)行為影響;③氮循環(huán)或者碳循環(huán)耦合鐵或者砷氧化還原以及競爭關(guān)系尚需探究,如異化鐵還原與鐵輪反應(yīng)之間的競爭關(guān)系。
4)水淹條件是放大砷的生物化學(xué)作用的關(guān)鍵環(huán)節(jié)。相比于長期水淹管理,點(diǎn)噴式和間歇式水淹處理的水管理模式是被證實(shí)能顯著地降低水稻對水稻土砷吸收累積的有效辦法。目前基于水淹-落干與長期水淹、水淹-落干與點(diǎn)噴式管理、水稻根際土微氧環(huán)境與非根際土等三個(gè)截然相反的條件下,界面微環(huán)境中砷功能微生物群落變化以及相應(yīng)地砷的生物化學(xué)行為的改變對土壤界面與土壤溶液砷的動態(tài)影響的研究尚不系統(tǒng)。
[1] Martinez V D,Vucic E A,Becker-Santos D D,et al.Arsenic exposure and the induction of human cancers.Journal of Toxicology,2011(5):1—13
[2] Vega L,Styblo M,Patterson R,et al. Differential effects of trivalent and pentavalent arsenicals on cell proliferation and cytokine secretion in normal human epidermal keratinocytes. Toxicology and Applied Pharmacology,2001,172:225—232
[3] Liu C P,Luo C L,Gao Y,et al. Arsenic contamination and potential health risk implications at an abandoned tungsten mine,southern China. Environmental Pollution,2010,158(3):820—826
[4] Stroud J L,Norton G J,Islam M R,et al. The dynamics of arsenic in four paddy fields in the Bengal Delta. Environmental Pollution,2011,159(4):947—953
[5] Yamaguchi N,Nakamura T,Dong D,et al. Arsenic release from flooded paddy soils is influenced by speciation,Eh,pH,and iron dissolution.Chemosphere,2011,83(7):925—932
[6] Weber F A,Hofacker A F,Voegelin A,et al.Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil. Environmental Science &Technology,2010,44(1):116—122
[7] Jia Y,Huang H,Chen Z,et al. Arsenic uptake by rice is influenced by microbe-mediated arsenic redox changes in the rhizosphere. Environmental Science &Technology,2014,48(2):1001—1007
[8] Bennett W W,Teasdale P R,Panther J G,et al.Investigating arsenic speciation and mobilization in sediments with DGT and DET:A mesocosm evaluation of oxic-anoxic transitions. Environmental Science &Technology,2012,46(7):3981—3989
[9] Amaral D C,Lopes G,Guilherme L R G,et al. A new approach to sampling intact Fe plaque reveals Siinduced changes in Fe mineral composition and shoot as in rice. Environmental Science & Technology,2017,51(1):38—45
[10] Hu M,Li F B,Liu C P,et al. The diversity and abundance of As(III)oxidizers on root iron plaque is critical for arsenic bioavailability to rice. Scientific Reports,2015,5:13611
[11] Zhang S Y,Zhao F J,Sun G X,et al. Diversity and abundance of arsenic biotransformation genes in paddy soils from southern China. Environmental Science &Technology,2015,49(7):4138—4146
[12] Huang J H,Voegelin A,Pombo S A,et al. Influence of arsenate adsorption to ferrihydrite,goethite,and boehmite on the kinetics of arsenate reduction by Shewanella putrefaciens strain CN-32. Environmental Science & Technology,2011,45(18):7701—7709
[13] Xiao K Q,Li L G,Ma L P,et al. Metagenomic analysis revealed highly diverse microbial arsenic metabolism genes in paddy soils with low-arsenic contents. Environmental Pollution,2015,211:1—8
[14] Das S,Chou M L,Jean J S,et al. Water management impacts on arsenic behavior and rhizosphere bacterial communities and activities in a rice agro-ecosystem.Science of the Total Environment,2015,542:642—652
[15] Jia Y,Huang H,Zhong M,et al. Microbial arsenic methylation in soil and rice rhizosphere. Environmental Science & Technology,2013,47(7):3141—3148
[16] Kumari N,Jagadevan S. Genetic identification of arsenate reductase and arsenite oxidase in redox transformations carried out by arsenic metabolising prokaryotes:A comprehensive review. Chemosphere,2016,163:400—412
[17] 朱超,Stefan Ratering,曲東,等. 短期淹水培養(yǎng)對水稻土中地桿菌和厭氧粘細(xì)菌豐度的影響. 生態(tài)學(xué)報(bào),2011,31(15):4251—4260 Zhu C,Ratering S,Qu D,et al. Effects of short-term flooding on Geobacteraceae spp. and Anaeromyxobacter spp. abundance in paddy soil(In Chinese). Acta Ecologica Sinica,2011,31(15):4251—4260
[18] 陳倩,蘇建強(qiáng),葉軍,等. 微生物砷還原機(jī)制的研究進(jìn)展. 生態(tài)毒理學(xué)報(bào),2011,6(3):225—233 Chen Q,Su J Q,Ye J,et al. Advances in mechanisms of microbial arsenate reduction(In Chinese). Asian Journal of Ecotoxicology,2011,6(3):225—233
[19] Zhang J,Zhou W X,Liu B B,et al. Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil.Environmental Science & Technology,2015,49(10):5956—5964
[20] Drewniak L,Sklodowska A. Arsenic-transforming microbes and their role in biomining processes.Environmental Science and Pollution Research,2013,20:7728—7739
[21] Slyemi D,Bonnefoy V. How prokaryotes deal with arsenic. Environmental Microbiology Reports,2012,4(6):571—586
[22] Silver S,Phung L T. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic.Applied and Environmental Microbiology,2005,71(2):599—608
[23] Chang J S,Ren X H,Kyoung-Woong K. Biogeochemical cyclic activity of bacterial arsB in arseniccontaminated mines. Journal of Environmental Sciences,2008,20(11):1348—1355
[24] 韓永和,王珊珊. 微生物耐砷機(jī)理及其在砷地球化學(xué)循環(huán)中的作用. 微生物學(xué)報(bào),2016,56(6):901—910 Han Y H,Wang S S. Arsenic resistance mechanisms in microbes and their roles in arsenic geochemical cycling-A review(In Chinese). Acta Microbiologica Sinica,2016,56(6):901—910
[25] Saltikov C W,Wildman R A Jr,Newman D K.Expression dynamics of arsenic respiration and detoxification in Shewanella sp. Strain ANA-3. Journal of Bacteriology,2005,187:7390—7396
[26] Matsumoto S,Kasuga J,Makino T,et al. Evaluation of the effects of application of iron materials on the accumulation and speciation of arsenic in rice grain grown on uncontaminated soil with relatively high levels of arsenic. Environmental and Experimental Botany,2016,125:42—51
[27] Zhang Z N,Yin N Y,Du H L,et al. The fate of arsenic adsorbed on iron oxides in the presence of arsenite oxidizing bacteria. Chemosphere,2016,151:108—115
[28] Hartley W,Lepp N W. Remediation of arsenic contaminated soils by iron-oxide application,evaluated in terms of plant productivity,arsenic and phytotoxic metal uptake. Science of the Total Environment,2008,390:35—44
[29] 鐘松雄,尹光彩,何宏飛,等. 不同鐵礦物對水稻土砷的穩(wěn)定化效果及機(jī)制. 環(huán)境科學(xué)學(xué)報(bào),2017,37(5):1931—1938 Zhong S X,Yin G C,He H F,et al. Stabilization effect of arsenic by different iron minerals in paddy soils and the related mechanism(In Chinese). Acta Scientiae Circumstantiae,2017,37(5):1931—1938
[30] Mamindy-Pajany Y,Hurel C,Marmier N,et al.Arsenic(V)adsorption from aqueous solution onto goethite,hematite,magnetite and zero-valent iron:Effects of pH,concentration and reversibility.Desalination,2011,281(20):93—99
[31] 王強(qiáng),卜錦春,魏世強(qiáng),等. 赤鐵礦對砷的吸附解吸及氧化特征. 環(huán)境科學(xué)學(xué)報(bào),2008,28(8):1612—1617 Wang Q,Bu J C,Wei S Q,et al. Characteristics of isothermal adsorption and desorption,and oxidation of As(III)ion on a hematite surface(In Chinese). Acta Scientise Circumstantise,2008,28(8):1612—1617
[32] Zobrist J,Dowdle P R,Davis J A,et al. Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environmental Science & Technology,2000,34(22):4747—4753
[33] Jones C A,Langner H W,Anderson K,et al.Rates of microbially mediated arsenate reduction and solubilization. Soil Science Society of America Journal,2000,64:600—608
[34] Daniel S,Stephan S,Ralf C. Identification of rice root associated nitrate,sulfate and ferric iron reducing bacteria during root decomposition. FEMS Microbiology Ecology,2004,50(2):101—110
[35] Zhang Z N,Yin N Y,Du H L,et al. The fate of arsenic adsorbed on iron oxides in the presence of arsenite-oxidizing bacteria. Chemosphere,2016,151:108—115
[36] Bolanz R M,Wierzbicka-Wieczorek M,?aplovi?ová M,et al. Structural incorporation of As5+into hematite.Environmental Science & Technology,2013,47:9140—9147
[37] Palumbo-Roe B,Wragg J,Cave M. Linking selective chemical extraction of iron oxyhydroxides to arsenic bioaccessibility in soil. Environmental Pollution,2015,207:256—265
[38] Liu C P,Yu H Y,Liu C S,et al. Arsenic availability in rice from a mining area:Is amorphous iron oxidebound arsenic a source or sink? Environmental Pollution,2015,199:95—101
[39] Honma T,Ohba H,Kaneko-Kadokura A,et al.Optimal soil Eh,pH,and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains. Environmental Science &Technology,2016,50(8):4178—4185
[40] Cutting R S,Coker V S,Telling N D,et al. Microbial reduction of arsenic-doped schwertmannite byGeobacter sulfurreducens. Environmental Science & Technology,2012,46(22):12591—12599
[41] Burton E D,Johnston S G,Kraal P,et al. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite. Environmental Science & Technology,2013,47(5):2221—2229
[42] Rawson J,Prommer H,Siade A,et al. Numerical modeling of arsenic mobility during reductive iron mineral transformations. Environmental Science &Technology,2016,50:2459—2467
[43] Jiang S H,Lee J H,Kim D,et al. Differential arsenic mobilization from As-bearing ferrihydrite by iron-respiringShewanellastrains with different arsenic-reducing activities. Environmental Science &Technology,2013,47(15):8616—8623
[44] Muehe E M,Morin G,Scheer L,et al. Arsenic(V)incorporation in vivianite during microbial reduction of arsenic(V)-bearing biogenic Fe(III)(oxyhydr)oxides. Environmental Science & Technology,2016,50(5):2281—2291
[45] Zhang J,Zhao S C,Xu Y,et al. Nitrate stimulates anaerobic microbial arsenite oxidation in paddy soils.Environmental Science & Technology,2017,51(8):4377—4386
[46] Zhu Y G,Xue X M,Kappler A,et al. Linking genes to microbial biogeochemical cycling:Lessons from arsenic. Environmental Science & Technology,2017,51(3):7326—7339
[47] Li X M,Zhang W,Liu T X,et al. Changes in the composition and diversity of microbial communities during anaerobic nitrate reduction and Fe(II)oxidation at circumneutral pH in paddy soil. Soil Biology& Biochemistry,2016,94:70—79
[48] Yu H Y,Li F B,Liu C S. Chapter Five-Iron redox cycling coupled to transformation and immobilization of heavy metals:Implications for paddy rice safety in the red soil of south China. Advances in Agronomy,2016,137:279—317
[49] Wang M L,Hu R G,Zhao J S,et al. Iron oxidation affects nitrous oxide emissions via donating electrons to denitrification in paddy soils. Geoderma,2016,271:173—180
[50] Clement J C,Shrestha J,Ehrenfeld J G,et a1.Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil Biology & Biochemistry,2005,37(12):2323—2328
[51] Ding L J,An X L,Li S,et al. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence. Environmental Science & Technology,2014,48(18):10641—10647
[52] Li X F,Hou L J,Liu M,et al. Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland.Environmental Science & Technology,2015,49(19):11560—11568
[53] Zhou G W,Yang X R,Li H,et al. Electron shuttles enhance anaerobic ammonium oxidation coupled to iron(III)reduction. Environmental Science &Technology,2016,50(17):9298—9307
[54] Wang N,Xue X M,Juhasz A L,et al. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic.Environmental Pollution,2017,220:514—522
[55] Vaxevanidou K,Giannikou S,Papassiopi N. Microbial arsenic reduction in polluted and unpolluted soils from Attica,Greece. Journal of Hazardous Materials,2012,241(1):307—315
[56] Ma J,Guo H M,Lei M,et al. Arsenic adsorption and its fractions on aquifer sediment:Effect of pH,arsenic species,and iron/manganese minerals. Water,Air,&Soil Pollution,2015,226(8):1—15
[57] Haynes R J. Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand. Soil Biology & Biochemistry,2000,32(2):211—219
[58] Katsumi N,Yonebayashi K,Okazaki M,et al.Characterization of soil organic matter with different degrees of humi fication using evolved gas analysis-mass spectrometry. Talanta,2016,155:28—37
[59] Sahoo P K,Kim K. A review of the arsenic concentration in paddy rice from the perspective of geoscience. Geosciences Journal,2013,17(1):107—122
[60] Chen Z,Wang Y P,Xia D,et al. Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition. Journal of Hazardous Materials,2016,311:20—29
[61] Mikutta C,Kretzschmar R. Spectroscopic evidence for ternary complex formation between arsenate and ferric iron complexes of humic substances. Environmental Science & Technology,2011,45(22):9550—9557
[62] Catrouillet C,Davranche M,Dia A,et al. Does As(III)interact with Fe(II),F(xiàn)e(III)and organic matter through ternary complexes? Journal of Colloid and Interface Science,2016,470:153—161
[63] Anawar H M,Tareq S M,Ahmed G. Is organic matter a source or redox driver or both for arsenic release in groundwater? Physics and Chemistry of the Earth,2013,58/60(6):49—56
[64] Chen L X. The research on adsorption and desorption of natural organic matter on hematite. Beijing:China University of Geosciences,2013
[65] Lü J T,Zhang S Z,Wang S S,et al. Molecular-scale investigation with ESI-FT-ICR-MS on fractionation of dissolved organic matter induced by adsorption on iron oxyhydroxides. Environmental Science & Technology,2016,50(5):2328—2336
[66] Neumann R B,Pracht L E,Polizzotto M L,et al.Biodegradable organic carbon in sediments of an arsenic contaminated aquifer in Bangladesh. Environmental Science & Technology Letter,2014,1(4):221—225
[67] Redman A,Macalady D L,Ahmann D. Natural organic matter affects arsenic speciation and sorption onto hematite. Environmental Science & Technology,2002,36(13):2889—2896
[68] 黎慧娟,彭靜靜. 異化Fe(III)還原微生物研究進(jìn)展.生態(tài)學(xué)報(bào),2012,32(5):1633—1642 Li H J,Peng J J. Recent advances in studies on dissimilatory Fe(III)-reducing microorganisms(In Chinese). Acta Ecologica Sinica,2012,32(5):1633—1642
[69] Jiang J,Bauer I,Paul A,et al. Arsenic redox changes by microbially and chemically formed semiquinone radicals and hydroquinones in a humic substance model quinone. Environmental Science & Technology,2009,43(10):3639—3645
[70] 陳倩,蘇建強(qiáng),葉軍. 土壤中耐砷細(xì)菌的篩選和砷還原基因多樣性分析. 生態(tài)環(huán)境學(xué)報(bào),2011,20(12):1919—1926 Chen Q,Su J Q,Ye J. Isolation of arsenic-resistant bacterias from soil and the diversity of arsenate reducing genes. Ecology and Environmental Sciences,2011,20(12):1919—1926
[71] Zhao F J,Harris E,Yan J,et al. Arsenic methylation in soils and its relationship with microbial arsM abundance and diversity,and As speciation in rice.Environmental Science & Technology,2013,47(13):7147—7154
[72] Zhang S Y,Rensing C,Zhu Y G. Cyanobacteriamediated arsenic redox dynamics is regulated by phosphate in aquatic environments. Environmental Science & Technology,2014,48(2):994—1000
[73] Rhine E D,Ní Chadhain S M,Zylstra G J,et al. The arsenite oxidase genes(aroAB)in novel chemoautotrophic arsenite oxidizers. Biochemical and Biophysical Research Communications,2007,354(3):662—667
[74] Zargar K,Hoeft S,Oremland R,et al. Identification of a novel arsenite oxidase gene,arxA,in the haloalkaliphilic,arsenite-oxidizing bacterium Alkalilimnicola ehrlichii strain MLHE-1. Journal of Bacteriology,2010,192(14):3755—3762
[75] Rhine E D,Garcia-Dominguez E,Phelps C D,et al.Environmental microbes can speciate and cycle arsenic.Environmental Science & Technology,2005,39(24):9569—9573
[76] Williams P N,Santner J,Larsen M,et al. Localized flux maxima of arsenic,lead,and iron around root apices in flooded lowland rice. Environmental Science &Technology,2014,48(15):8498—8506
[77] Colmer T D. Long-distance transport of gases in plants:A perspective on internal aeration and radial oxygen loss from roots. Plant,Cell and Environment,2003,26(1):17—36
[78] Sun W,Sierraalvarez R,Milner L,et al. Arsenite and ferrous iron oxidation linked to chemolithotrophic denitrification for the immobilization of arsenic in anoxic environments. Environmental Science & Technology,2009,43(17):6585—6591
[79] Rhine E D,Phelps C D,Young L Y. Anaerobic arsenite oxidation by novel denitrifying isolates. Environmental Microbiology,2006,8(5):899—908
[80] Wang P P,Sun G X,Jia Y,et al. A review on completing arsenic biogeochemical cycle:Microbial volatilization of arsines in environment. Journal of Environmental Sciences,2014,26:371—381
[81] Bae M J,Li F Q,Kwon Y S,et al. Concordance of diatom,macroinvertebrate and fish assemblages in streams at nested spatial scales:Implications for ecological integrity. Ecological Indicators,2014,47:89—101
[82] Schwarz M V J,F(xiàn)renzel P. Population dynamics and ecology of ciliates(Protozoa,Ciliophora)in an anoxic rice field soil. Biology and Fertility of Soils,2003,38(4):245—252
[83] Zheng R L,Sun G X,Zhu Y G. Effects of microbial processes on the fate of arsenic in paddy soil. Science Bulletin,2013,58(2):186—193
[84] Cullen W R. Chemical mechanism of arsenic biomethylation. Chemical Research in Toxicology,2014,27(4):457—461
[85] Kruger M C,Bertin P N,Heipieper H J,et al. Bacterial metabolism of environmental arsenic-mechanisms and biotechnological applications. Applied Microbiology and Biotechnology,2013,97:3827-3841
[86] Meng X Y,Qin J,Wang L H,et al. Arsenic biotransformation and volatilization in transgenic rice.New Phytologist,2011,191(1):49—56
[87] Song X L,Geng Z R,Zhu J S,et al. Structure-function roles of four cysteine residues in the human arsenic(+3 oxidation state)methyltransferase(hAs3MT)by sitedirected mutagenesis. Chemico-Biological Interactions,2009,179(2/3):321—328
[88] Stolz J F,Basu P,Santini J M,et al. Arsenic and selenium in microbial metabolism. Annual Review of Microbiology,2006,60(1):107—130
[89] Zhao F J,Zhu Y G,Meharg A A. Methylated arsenic species in rice:Geographical variation,origin,and uptake mechanisms. Environmental Science &Technology,2013,47(9):3957—3966
[90] Li H J,Peng J J,Weber K A,et al. Phylogenetic diversity of Fe(III)-reducing microorganisms in rice paddy soil:Enrichment cultures with different shortchain fatty acids as electron donors. Soils Sediments,2011,11(7):1234—1242
[91] Huang H,Jia Y,Sun G X,et al. Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters. Environmental Science &Technology,2012,46(4):2163—2168
[92] Bentley R,Chasteen T G. Microbial methylation of metalloids:arsenic,antimony,and bismuth.Microbiology and Molecular Biology Reviews,2002,66(2):250—271
[93] 吳劍,楊柳燕,肖琳,等. 砷污染土壤生物揮發(fā)研究進(jìn)展. 土壤,2007,39(4):522—527 Wu J,Yang L Y,Xiao L,et al. Bio-volatilization of arsenic from polluted soil(In Chinese). Soils,2007,39(4):522—527
[94] Gao S,Burau R G. Environmental factors affecting rates of arsine evolution from and mineralization of arsenicals in soil. Journal of Environmental Quality,1997,26(3):753—763
[95] 高偉,鄭國砥,高定,等. 堆肥處理過程中豬糞有機(jī)物的動態(tài)變化特征. 環(huán)境科學(xué),2006,27(5):986—990 Gao W,Zheng G D,Gao D,et al. Transformation of organic matter during thermophilic composting of pig manure(In Chinese). Environmental Science,2006,27(5):986—990
[96] Wang J,Han T,Si Y B,et al. Biotransformation and methylation of different valence state arsenic byShewanella oneidensisMR-1. China Environmental Science,2015,35(11):3396—3402
[97] Huang J. Impact of microorganisms on arsenic biogeochemistry:A review. Water,Air & Soil Pollution,2014,225,DOI:10. 1007/s11270-0013-1848-y
[98] Syu C H,Huang C C,Jiang P Y,et al. Arsenic accumulation and speciation in rice grains influenced by arsenic phytotoxicity and rice genotypes grown in arsenic-elevated paddy soils. Journal of Hazardous Materials,2015,286:179—186
[99] Wu C,Huang L,Xue S G,et al. Oxic and anoxic conditions affect arsenic(As)accumulation and arsenite transporter expression in rice. Chemosphere,2017,168:969—975
[100] Somenahally A C,Hollister E B,Yan W G,et al.Water management impacts on arsenic speciation and iron-reducing bacteria in contrasting rice-rhizosphere compartments. Environmental Science & Technology,2011,45(19):8328—8335
[101] Zecchin S,Corsini A,Martin M,et al. Rhizospheric iron and arsenic bacteria affected by water regime:Implications for metalloid uptake by rice. Soil Biology& Biochemistry,2017,106:129—137
[102] Ohtsuka T,Yamaguchi N,Makino T. Arsenic dissolution from Japanese paddy soil by a dissimilatory arsenate-reducing bacteriumGeobactersp. OR-1.Environmental Science & Technology,2013,47(12):6263—6271
[103] T i a n H X,S h i Q T,J i n g C Y. A r s e n i c biotransformation in solid waste residue:Comparison of contributions from bacteria with arsenate and iron reducing pathways. Environmental Science &Technology,2015,49(4):2140—2146
[104] Yamaguchi N,Ohkura T,Takahashi Y,et al.Arsenic distribution and speciation near rice roots influenced by iron plaques and redox conditions of the soil matrix. Environmental Science & Technology,2014,48(3):1549—1556
[105] Huang K,Chen C,Zhang J,et al. Efficient arsenic methylation and volatilization mediated by a novel bacterium from an arsenic-contaminated paddy soil.Environmental Science & Technology,2016,50(12):6389—6396
[106] Zavala Y J,Gerads R,Gorleyok H,et al. Arsenic in rice:II. Arsenic speciation in USA grain and implications for human health. Environmental Science& Technology,2008,42(10):3861—3866
[107] Ma L,Wang L,Jia Y Y,et al. Arsenic speciation in locally grown rice grains from Hunan Province,China:Spatial distribution and potential health risk.Science of the Total Environment,2016,557/558:438—444
[108] Jia Y,Huang H,Sun G X,et al. Pathways and relative contributions to arsenic volatilization from rice plants and paddy soil. Environmental Science &Technology,2012,46(15):8090—8096