許東亮+方守文
【摘 要】考慮度量滿足規(guī)范ε-Ricci流的閉的n維黎曼流形,給出一類幾何算子-Δ+cR的特征值的發(fā)展方程,其中常數(shù)c≥1/4,R是流形上的數(shù)量曲率。作為應(yīng)用,在閉曲面上證明了這類幾何算子的特征值沿著規(guī)范ε-Ricci流保持單調(diào)性,從而推廣了前人的相關(guān)研究結(jié)果。
【關(guān)鍵詞】規(guī)范ε-Ricci流;特征值;單調(diào)性;幾何算子
中圖分類號(hào):O186.1 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào): 2095-2457(2017)32-0017-002
【Abstract】An n dimensional closed Riemannian manifold with the metric which satisfied the normalizedε-Ricci flow will be considered in the paper. The evolution of eigenvalues for geometric operator will be obtained. As an application, along the normalizedε-Ricci flow the monotonicity of eigenvalues can be proved on closed surfaces. These results generalizes our predecessors results on Ricci flow.
【Key words】The normalizedε-Ricci flow; Eigenvalue; Monotonicity; Geometric operator
1 預(yù)備知識(shí)
3 結(jié)語
本文利用幾何分析的方法,對(duì)規(guī)范ε-Ricci流下一類常見的幾何算子的特征值進(jìn)行研究,得到了閉曲面上該算子特征值的單調(diào)性。文中的結(jié)果推廣了文獻(xiàn)[4]中的相關(guān)結(jié)果,也對(duì)ε-Ricci流及流形上幾何算子特征值相關(guān)問題的進(jìn)一步研究有很好的啟發(fā)意義。
【參考文獻(xiàn)】
[1]PERELMAN G.The entropy formula for the Ricci flow and its geometric applications[DB/OL].(2002-11-11)[2012-11-25].http://arxiv.org/abs/math/0211159.
[2]MA Li.Eigenvalue monotonicity for the Ricci-Hamilton flow [J].Ann.Global Anal.Geom.,2006,29(3):287-292.
[3]CAO Xiaodong. Eigenvalues of -R on manifolds with nonnegative curvature operator[J].Math.Ann.,2007,337(2):435-441.
[4]CAO Xiaodong.First eigenvalues geometric operators under the Ricci flow[J].Proc.Amer.Math.Soc.,2008,136(11):4075-4078.
[5]儲(chǔ)亞偉,朱茱.ε-Ricci流上一類幾何算子特征值的單調(diào)性[J].阜陽師范學(xué)院學(xué)報(bào):自然科學(xué)版,2009,26(1):22-24.
[6]方守文,朱鵬.Ricci流下具有位能的共軛熱方程Harnack量的熵[J].揚(yáng)州大學(xué)學(xué)報(bào):自然科學(xué)版,2012,15(2):14-16.
[7]方守文.延拓的Ricci流下具有位能的熱方程Harnack估計(jì)[J].揚(yáng)州大學(xué)學(xué)報(bào):自然科學(xué)版,2013,16(2):13-15.
[8]FANG Shouwen,XU Haifeng,ZHU Peng.Evolution and monotonicity of eigenvalues under the Ricci flow[J].Sci.China Math.,2015,58(8):1737-1744.
[9]FANG Shouwen,ZHAO Liang,ZHU Peng.Estimates and monotonicity of the first eigenvalues under the Ricci flow on closed surfaces[J].Commun.Math.Stat.,2016,4(2):217-228.
[10]FANG Shouwen,YANG Fei.First eigenvalues of geometric operators under the Yamabe flow[J].Bull.Korean Math.Soc.,2016,53(4):1113-1122.
[11]FANG Shouwen,YANG Fei,ZHU Peng.Eigenvalues of geometric operators related to the Witten Laplacian under the Ricci flow[J].Glasg.Math.J.,2017,59(3):743-751.endprint