,
(中國(guó)科學(xué)院 東北地理與農(nóng)業(yè)生態(tài)研究所 黑土區(qū)農(nóng)業(yè)生態(tài)重點(diǎn)實(shí)驗(yàn)室,黑龍江 哈爾濱 150081)
大豆孢囊線蟲(chóng)(SCN,HeteroderaglycinesIchinohe)病害是一種世界性的毀滅性大豆病害,造成美國(guó)每年至少15億美元的損失[1],在我國(guó)所有的大豆產(chǎn)區(qū)幾乎都有該病的報(bào)道,嚴(yán)重地塊甚至絕產(chǎn),給我國(guó)大豆生產(chǎn)帶來(lái)嚴(yán)重的經(jīng)濟(jì)損失[2]。SCN是一種土傳的定居型內(nèi)寄生線蟲(chóng),以二齡幼蟲(chóng)在土壤中活動(dòng),當(dāng)寄主植物根存在時(shí),二齡幼蟲(chóng)識(shí)別寄主釋放的信號(hào)并被吸引到植物根尖的伸長(zhǎng)區(qū)域,然后利用口針刺透細(xì)胞壁,其分泌的細(xì)胞壁降解酶有助于侵入到維管束。SCN一旦到達(dá)維管束,就選擇一個(gè)取食位點(diǎn)并激活周圍其它細(xì)胞壁的降解而形成一個(gè)獨(dú)特的取食結(jié)構(gòu)-合胞體,合胞體包含著大約200個(gè)融合的根細(xì)胞并作為線蟲(chóng)的營(yíng)養(yǎng)源[3]。線蟲(chóng)經(jīng)過(guò)3次蛻皮發(fā)育成雌、雄成蟲(chóng),交配后的雌蟲(chóng)身體膨大突出于根外,每個(gè)雌蟲(chóng)能產(chǎn)幾百個(gè)卵,當(dāng)雌蟲(chóng)死后形成一個(gè)孢囊,卵仍在孢囊內(nèi)。土壤中沒(méi)有寄主存在時(shí),孢囊可以長(zhǎng)期保護(hù)卵(最長(zhǎng)可達(dá)30年)抵擋外界的不利環(huán)境直到遇到合適的寄主[3-5]。
SCN的遺傳特性非常復(fù)雜,根據(jù)大豆的4個(gè)鑒別寄主和一個(gè)對(duì)照感病寄主對(duì)孢囊線蟲(chóng)的反應(yīng)被劃分為16個(gè)生理小種[6],后來(lái)根據(jù)7個(gè)鑒別寄主區(qū)分為HG類型[3,7]。我國(guó)SCN報(bào)道的主要有11個(gè)生理小種(1-7,9,11,13,14),其中3號(hào)是我國(guó)的優(yōu)勢(shì)小種,主要分布在東北三省和內(nèi)蒙古自治區(qū);4號(hào)小種浸染能力更強(qiáng);主要分布在黃淮海等產(chǎn)區(qū);6號(hào)小種主要發(fā)現(xiàn)在黑龍江省[2,8-9]。近來(lái)研究表明黃淮地區(qū)2號(hào)小種已上升為優(yōu)勢(shì)小種[10],最新研究發(fā)現(xiàn)從山西省分離到一個(gè)毒性極高的小種,能夠同時(shí)侵染鑒別大豆孢囊線蟲(chóng)生理小種和HG Type的所有大豆寄主[11]。
目前SCN主要防治方法是利用高毒高殘留的化學(xué)農(nóng)藥,這種方法對(duì)環(huán)境和人畜都會(huì)造成危害,選用抗性品種和作物輪作結(jié)合是防治大豆孢囊線蟲(chóng)最經(jīng)濟(jì)有效的方法。然而,實(shí)際生產(chǎn)中輪作受有限土地資源的限制,大豆孢囊線蟲(chóng)的抗性資源非常有限并且抗性單一,同時(shí)線蟲(chóng)的表型篩選費(fèi)時(shí)費(fèi)力,使得抗性品種的應(yīng)用受限,因此開(kāi)發(fā)鑒定新的抗病育種品種極其迫切。目前,利用鑒定與抗病基因連接的DNA遺傳標(biāo)記是分子輔助抗性育種(Marker-assisted selection,MAS)常用的重要步驟,應(yīng)用的主要分子標(biāo)記包括隨機(jī)擴(kuò)增多態(tài)性DNA(Random amplified polymorphic DNA, RAPD)、限制性片段長(zhǎng)度多態(tài)性(Restriction fragment length polymorphism, RFLP)、擴(kuò)增片段長(zhǎng)度多態(tài)性(Amplified fragment length polymorphism,AFLP)、微衛(wèi)星(Microsatellites)或者簡(jiǎn)單序列重復(fù)(Simple sequence repeats,SSR)以及單核苷酸多態(tài)性(Single Nucleotide Polymorphism,SNP)。DNA標(biāo)記常被用來(lái)構(gòu)建遺傳圖譜,結(jié)合群體的表型和遺傳圖譜能夠確定控制植物抗病基因的染色體區(qū)域。植物的抗病性一般由簡(jiǎn)單性狀(單基因)或者數(shù)量性狀(多基因)控制,其中由多基因控制的數(shù)量性狀QTL(Quantitative Trait Loci)標(biāo)記法一直作為強(qiáng)有力的手段在分子輔助育種中起著重要的作用。分子輔助抗性育種能夠降低表型篩選并加速分子育種進(jìn)程,因此與僅依靠田間表型篩選的傳統(tǒng)植物育種相比具有更加有效、可靠及成本低等多項(xiàng)優(yōu)點(diǎn)。本文概述了大豆孢囊線蟲(chóng)的遺傳抗性、抗性基因的分子標(biāo)記及其在全基因組范圍內(nèi)的關(guān)聯(lián)研究進(jìn)展,并對(duì)其存在的問(wèn)題進(jìn)行了探討和展望。
早期的遺傳抗性研究表明,大豆對(duì)大豆孢囊線蟲(chóng)的抗性是由不同的隱性和顯性基因組成的,包括rhg1、rhg2、rhg3[12]、Rhg4[13]和Rhg5[14]。進(jìn)一步對(duì)新的抗性資源的遺傳分析表明,SCN抗性是多基因控制的數(shù)量性狀[15-18]。Concibido等[16]總結(jié)了抗不同種SCN-HG類型相關(guān)的31個(gè)QTLs,這些QTLs被標(biāo)記到大豆20條染色體中的17條染色體上(2、9和10號(hào)染色體除外)。隨后來(lái)自新的抗性資源的抗性QTL被標(biāo)記到相同或者不同的染色體上,目前大豆20條染色體都有大豆孢囊線蟲(chóng)的抗性標(biāo)記[19-25]。
近年來(lái)對(duì)大豆抗病基因的研究有了突破性進(jìn)展:一個(gè)是圖位克隆(Map-based cloning)了抗大豆孢囊線蟲(chóng)病位于8號(hào)染色體的抗性基因Rhg4(Peking類型),Rhg4位點(diǎn)的基因編碼的絲氨酸羥甲基轉(zhuǎn)移酶(SHMT)與抗性相關(guān)[26];另外還發(fā)現(xiàn)位于18號(hào)染色體的抗SCN 1號(hào)小種的rgh1-b(PI88788型大豆)位點(diǎn)包含3個(gè)基因,Glyma18g02580(Glyma.18g022400,amino acid transporter)、Glyma18g02590(Glyma.18g022500,soluble NSF attachment protein,α-SNAP)和Glyma18g02610(Glyma.18g022700,wound-induced protein WI12),大小約31 kb,其編碼的3種蛋白共同作用防御SCN的侵染[27]。感病機(jī)制是由基因的拷貝數(shù)決定的,單拷貝存在于感病品種(如感病的Williams82),而多拷貝存在于抗病品種(如Peking含有3個(gè)拷貝,PI88788來(lái)源的抗性品種含有7~10個(gè)拷貝)[27-28]。最新的研究發(fā)現(xiàn)rgh1-aPeking類型中的GmSNAP18結(jié)合rgh4能夠產(chǎn)生抗性,說(shuō)明Peking類型的GmSNAP18和PI88788類型中的GmSNAP18對(duì)SCN的抗性功能不一樣[29]。
Kadam等[30]利用美國(guó)農(nóng)業(yè)部收集的超過(guò)19 000個(gè)大豆種質(zhì)資源的數(shù)據(jù)庫(kù),圍繞rhg1和Rhg4位點(diǎn)0.5 Mbp范圍內(nèi)的高通量的單核苷酸多態(tài)性SNP標(biāo)記,對(duì)95個(gè)大豆種質(zhì)資源和3個(gè)重組自交群體進(jìn)行評(píng)估,分析這些SNP標(biāo)記是否與SCN抗性相關(guān),結(jié)果表明,與rhg1連接的SNP標(biāo)記能夠檢測(cè)其和SCN抗感相關(guān)的拷貝數(shù),連接于Rhg4的SNP標(biāo)記能夠檢測(cè)Peking基因型的抗性。Jiao等[31]從抗性資源PI437655中鑒定了兩個(gè)QTL,一個(gè)和rhg1位點(diǎn)相連,其抗性基因的拷貝數(shù)和PI88788相同,說(shuō)明PI437655和PI88788可能具有共同的抗性位點(diǎn);另外一個(gè)QTL位于20號(hào)染色體,PI88788中不存在,當(dāng)這兩個(gè)基因綜合起來(lái)其抗性比PI88788高。Shi等[32]鑒定了3個(gè)SNP標(biāo)記,其中兩個(gè)連鎖于rhg1位點(diǎn),一個(gè)連鎖于Rhg4位點(diǎn),這3個(gè)位點(diǎn)能夠區(qū)分Peking和PI88788抗性背景。史學(xué)暉等[33]針對(duì)大豆胞囊線蟲(chóng)主效基因Rhg4(GmSHMT)上的2個(gè)SNP位點(diǎn),開(kāi)發(fā)了簡(jiǎn)便、經(jīng)濟(jì)的CAPS標(biāo)記(Rhg4-389)和dCAPS標(biāo)記(Rhg4-1165),并驗(yàn)證了對(duì)抗病種質(zhì)的鑒定效率達(dá)到93%~94%。已有研究認(rèn)為,連接與這些抗病基因的分子標(biāo)記可用于大豆孢囊線蟲(chóng)的抗病篩選或育種,包括限制片段多態(tài)性標(biāo)記RFLP[16,34]、簡(jiǎn)單重復(fù)序列標(biāo)記SSR[35-39]和單核苷酸多態(tài)性/插入缺失標(biāo)記(SNP/Insertion and Deletion,SNP/InDel)[30-32,40-46]。
全基因組關(guān)聯(lián)研究(GWAS)是目前分析人類和動(dòng)植物復(fù)雜性狀的有效策略,是在全基因組層面上,通過(guò)對(duì)大規(guī)模群體DNA樣本進(jìn)行全基因組高密度遺傳標(biāo)記 (如SNP)分型,進(jìn)行全基因組水平的對(duì)照分析或相關(guān)性分析,進(jìn)而比較發(fā)現(xiàn)影響復(fù)雜性狀的基因變異的一種方法。這種技術(shù)已經(jīng)成功的應(yīng)用到模式植物擬南芥[47]、水稻[48]、玉米[49]、大麥[50]和番茄[51]等作物。在大豆上也成功地分析了許多性狀,如大豆種子蛋白和油份含量[52-53]、菌核引起的莖腐病[54-55]、根結(jié)線蟲(chóng)病[56]和大豆孢囊線蟲(chóng)病[20,24,31,57-60]。
國(guó)內(nèi)外很多學(xué)者已通過(guò)全基因組關(guān)聯(lián)研究標(biāo)記了與SCN抗性相關(guān)的基因。Li等[57]通過(guò)分析比較159份大豆種質(zhì)資源鑒定了和SCN抗性相關(guān)的6個(gè)SSR標(biāo)記;Bao等[61]利用SNP標(biāo)記篩選了代表明尼蘇達(dá)大學(xué)的大豆育種項(xiàng)目的282份種質(zhì)資源,鑒定了與rhg1和FGAM1基因相關(guān)的第三個(gè)位點(diǎn)位于18號(hào)染色體的另外一端。Vuong等[24]利用大豆SNP數(shù)據(jù)庫(kù)SoySNP50K iSelect BeadChip(http//www.soybase.org)[62]對(duì)553份大豆種質(zhì)進(jìn)行篩選,鑒定出了位于不同的染色體上的14個(gè)位點(diǎn),包含60個(gè)SNP與SCN抗性有關(guān),其中6個(gè)位點(diǎn)證實(shí)了以前報(bào)道的位點(diǎn),包括rhg1和Rhg4,而這6個(gè)位點(diǎn)是建立在雙親雜交分離的群體基礎(chǔ)上被標(biāo)記出來(lái)的。利用這些SNP標(biāo)記,同時(shí)也驗(yàn)證了其它性狀,例如種皮顏色、花色、茸毛色和莖生長(zhǎng)習(xí)性。Han等[20]利用SLAF-seq(Specific-Locus Amplified Fragment Sequencing)測(cè)序技術(shù),對(duì)包括國(guó)內(nèi)的地方品種和外來(lái)品種440份大豆種質(zhì)進(jìn)行了測(cè)序并構(gòu)建了36 976個(gè)SNP標(biāo)記,同時(shí)對(duì)這440份大豆種質(zhì)進(jìn)行了SCN的抗性篩選和全基因組的關(guān)聯(lián)分析,結(jié)果表明19個(gè)信號(hào)與HG type 0 (race 3)和HG Type 1.2.3.5.7(race 4)的抗性相關(guān),其中8個(gè)與rhg1和Rhg4相關(guān),另外8個(gè)和已報(bào)道的一致,3個(gè)是第一次報(bào)道。Zhang等[58]鑒定了235份野生大豆對(duì)SCN 5號(hào)生理小種的抗感性,然后利用大豆SNP數(shù)據(jù)庫(kù)SoySNP50K iSelect BeadChip進(jìn)行了全基因組范圍內(nèi)的篩選,鑒定了10個(gè)SNP與抗性相關(guān),其中4個(gè)新的QTLs位于18號(hào)染色體,2個(gè)新的QTLs位于19號(hào)染色體。Zhao等[60]利用SLAF-seq對(duì)200份不同的大豆資源進(jìn)行了測(cè)序,并得到33 194個(gè)SNP標(biāo)記,通過(guò)對(duì)大豆孢囊線蟲(chóng)HG Type 2.5.7遺傳抗性篩選,發(fā)現(xiàn)13個(gè)SNP標(biāo)記分布在5條染色體(7,8,14,15和18)上,其中4個(gè)是新報(bào)道的SNP標(biāo)記,同時(shí)鑒定了30個(gè)與SCN抗性有關(guān)的抗性基因。Zhang等[59]對(duì)120個(gè)大豆品種在全基因組范圍內(nèi)篩選并得到與HG Type 2.5.7抗性有關(guān)的13個(gè)SNP標(biāo)記,并定位到7個(gè)染色體上,其中10個(gè)SNP定位到5個(gè)不同的基因組區(qū)域。如此多的QTLs與SCN抗性有關(guān),說(shuō)明了這個(gè)數(shù)量性狀的復(fù)雜性,同時(shí)也證明了高通量的WGAS-SNP方法是切實(shí)可行的。Wan等[63]通過(guò)全基因組序列分析大豆孢囊線蟲(chóng)侵染抗感大豆后基因表達(dá)的變化,揭示了可能參與調(diào)控SCN抗性的基因和防御途徑。這些鑒定的QTLs對(duì)于大豆孢囊線蟲(chóng)的分子輔助抗病育種都具有重要的利用價(jià)值。
目前大多數(shù)抗性品種的抗性僅來(lái)源于PI88788、Peking和PI437654基因型背景,這些基因型皆來(lái)自國(guó)內(nèi),它們是3號(hào)SCN生理小種的主要抗性資源(www.soybean.org)[16-17,41]。美國(guó)中北部在上世紀(jì)90年代培育的80%的抗病品種的抗性主要來(lái)自PI88788基因型[64]。但是,長(zhǎng)期單一抗性品種的種植導(dǎo)致田間大豆孢囊線蟲(chóng)毒性小種發(fā)生變化,使得這些抗性品種的抗性減弱甚至喪失[23,65]。例如,我國(guó)東北培育的大豆抗線蟲(chóng)品種(抗線1-13號(hào))的抗性來(lái)自北京小黑豆Peking的基因型,主要是抗大豆孢囊線蟲(chóng)3號(hào)生理小種。隨著抗線大豆品種應(yīng)用年限的增加,一些地區(qū)的SCN生理小種發(fā)生了變異。研究發(fā)現(xiàn),連續(xù)種植抗3號(hào)生理小種13年后,抗3號(hào)生理小種的品種抗性明顯減弱甚至喪失,3號(hào)小種轉(zhuǎn)變成毒性更強(qiáng)的4號(hào)或者14號(hào)小種[66]。從沒(méi)有進(jìn)行長(zhǎng)期連作的大豆田間采集土樣進(jìn)行室內(nèi)檢測(cè),發(fā)現(xiàn)3號(hào)優(yōu)勢(shì)小種也轉(zhuǎn)變成毒性強(qiáng)的4號(hào)或者14號(hào)生理小種[67-68],多位科學(xué)家對(duì)東北種質(zhì)資源抗性進(jìn)行篩選,結(jié)果發(fā)現(xiàn)東北商業(yè)大豆品種對(duì)發(fā)生變化的SCN優(yōu)勢(shì)小種的抗性資源非常有限[9,69-71],抗SCN多個(gè)生理小種的大豆品種更是缺乏。因此培育多抗品種是長(zhǎng)期有效防治大豆孢囊線蟲(chóng)的重要手段,是生產(chǎn)中的急需。但因SCN遺傳的復(fù)雜性,首先明確對(duì)大豆孢囊線蟲(chóng)每個(gè)生理小種的抗性遺傳規(guī)律是進(jìn)一步培育多抗品種的關(guān)鍵步驟。
因傳統(tǒng)育種培育多抗品種需要周期長(zhǎng),品種的更新在時(shí)間上跟不上線蟲(chóng)生理小種的變化,而利用分子標(biāo)記的分子輔助育種不僅降低表型篩選所需的人力、物力和時(shí)間,還能加快育種代數(shù)并提高優(yōu)良性狀的導(dǎo)入(Introgression breeding);進(jìn)一步對(duì)鑒定的這些與抗性相關(guān)的QTLs之間的互作機(jī)制進(jìn)行研究,不僅能夠有效地利用這些抗性資源,而且能夠加快大豆孢囊線蟲(chóng)多抗品種的培育,同時(shí)為生物的遺傳進(jìn)化提供理論依據(jù)。
參考文獻(xiàn)(References):
[1] WRATHER J A,KOENNING S R.Estimates of disease effects on soybean yields in the United States 2003 to 2005[J].Journal of Nematology,2006,38(2): 173-180.
[2] 段玉璽.植物線蟲(chóng)學(xué)[M].北京: 科學(xué)出版社,2011.
DUAN Y X.Plant nematodes[M].Beijing:Science Press,2011.
[3] NIBLACK T L,LAMBERT K N,TYLKA G L.A model plant pathogen from the kingdom Animalia:Heteroderaglycines,the soybean cyst nematode[J].Annual Review of Phytopathology,2006,44:283-303.
[4] HUSSEY R S,GRUNDLER F M.Nematode parasitism of plants[M]//In:PERRY R N,WRIGHT J,eds.Physiology and biochemistry of free-living and plant parasitic nematodes.England: CAB International Press,1998: 213-243.
[5] MICHUM M G,BAUM T J.Genomics of the soybean cyst nematode-soybean interaction[M]//In:STACEY G,eds.Genetics and genomics of soybean.New York: Springer,NY,2008: 321-341.
[6] RIGGS R D,SCHMITT D P.Complete characterization of the race scheme forHeteroderaglycines[J].Journal of Nematology,1988,20(3): 392-395.
[7] NIBLACK T L,ARELLI P R,NOEL G R,et al.A revised classification scheme for genetically diverse populations ofHeteroderaglycines[J].Journal of Nematology,2002,34(4): 279-288.
[8] 董麗民,許艷麗,李春杰,等.黑龍江省大豆胞囊線蟲(chóng)胞囊密度和生理小種鑒定[J].中國(guó)油料作物學(xué)報(bào),2008,30(1): 108-111.
DONG L M,XU Y L,LI C J,et al.Cyst density and subspeicies identification of soybean cyst nematode in Heilongjiang province[J].Chinese Journal of Oil Crop Sciences,2008,30(1):108-111.
[9] 孔祥超,李紅梅,耿 甜,等.大豆種質(zhì)資源對(duì)大豆孢囊線蟲(chóng)3號(hào)和4號(hào)生理小種的抗性鑒定[J].植物保護(hù),2012,38(1): 146-150.
KONG X C,LI H M,GENG T,et al.Resistance evaluation of soybean varieties and germplasms to the races No.3 and No.4 of soybean cyst nematodeHeteroderaglycines[J].Plant Protection,2012,38(1): 146-150.
[10] 練 云,王金社,李海朝,等.黃淮大豆主產(chǎn)區(qū)大豆孢囊線蟲(chóng)生理小種分布調(diào)查[J].作物學(xué)報(bào),2016,42(10):1479-1486.
LIAN Y,WANG J S,LI H C,et al.Race distribution of soybean cyst nematode in the main soybean producing area of Huang-Huai Rivers Valley[J].Acta Agronomica Sinica,2016,42(10):1479-1486.
[11] LIAN Y,GUO J,LI H,et al.A new race(X12) of soybean cyst nematode in China[J].Journal of Nematology,2017,49(3):321-326.
[12] CALDWELL B E,BRIM C A,ROSS J P.Inheritance of resistance of soybeans to the cyst nematode,Heteroderaglycines[J].Agronomy Journal,1960,52(11): 635-636.
[13] MATSON A L,WILLIAMS L F.Evidence of a fourth gene for resistance to the soybean cyst nematode[J].Crop Science,1965,5(5): 477.
[14] RAO-ARELLI A P.Inheritance of resistance toHeteroderaglycinesrace 3 in soybean accessions[J].Plant Disease,1994,78(9): 898-900.
[15] ANAND S C,RAO-ARELLI A P.Genetic analyses of soybean genotypes resistant to soybean cyst nematode race 5[J].Crop Science,1989,29(5): 1181-1184.
[16] CONCIBIDO V C,DIERS B W,ARELLI P R.A decade of QTL mapping for cyst nematode resistance in soybean[J].Crop Science,2004,44(4): 1121-1131.
[17] CONCIBIDO V C,LANGE D A,DENNY R L,et al.Genome mapping of soybean cyst nematode resistance genes in ‘Peking’,PI 90763,and PI88788 using DNA markers[J].Crop Science,1997,37(1): 258-264.
[18] HARTWIG E E.Breeding productive soybean cultivars resistant to the soybean cyst nematode for the southern United States[J].Plant Disease,1981,65(4): 303-307.
[19] ARELLI P R,CONCIBIDO V C,YOUNG L D.QTLs associated with resistance in soybean PI567516C to synthetic nematode population infecting cv.Hartwig[J].Journal of Crop Science and Biotechnology,2010,13(3): 163-167.
[20] HAN Y P,ZHAO X,CAO G L,et al.Genetic characteristics of soybean resistance to HG type 0 and HG type 1.2.3.5.7 of the cyst nematode analyzed by genome-wide association mapping[J].BMC Genomics,2015,16: 598.
[21] KIM K S,VUONG T D,QIU D,et al.Advancements in breeding,genetics,and genomics for resistance to three nematode species in soybean[J].Theoretical and Applied Genetics,2016,129(12): 2295-2311.
[22] VUONG T D,SLEPER D A,SHANNON J G,et al.Confirmation of quantitative trait loci for resistance to multiple-HG types of soybean cyst nematode(HeteroderaglycinesIchinohe)[J].Euphytica,2011,181(1): 101-113.
[23] VUONG T D,SLEPER D A,SHANNON J G,et al.Novel quantitative trait loci for broad-based resistance to soybean cyst nematode(HeteroderaglycinesIchinohe) in soybean PI 567516C[J].Theoretical and Applied Genetics,2010,121(7): 1253-1266.
[24] VUONG T D,SONAH H,MEINHARDT C G,et al.Genetic architecture of cyst nematode resistance revealed by genome-wide association study in soybean[J].BMC Genomics,2015,16: 593.
[25] WINTER S M,SHELP B J,ANDERSON T R,et al.QTL associated with horizontal resistance to soybean cyst nematode inGlycinesojaPI464925B[J].Theoretical and Applied Genetics,2007,114(3):461-472.
[26] LIU S M,KANDOTH P K,WARREN S D,et al.A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens[J].Nature,2012,492(7428): 256-260.
[27] COOK D E,LEE T G,GUO X L,et al.Copy number variation of multiple genes atrhg1 mediates nematode resistance in soybean[J].Science,2012,338(6111): 1206-1209.
[28] COOK D E,BAYLESS A M,WANG K,et al.Distinct copy number,coding sequence,and locus methylation patters underlieRhg1-mediated soybean resistance to soybean cyst nematode[J].Plant Physiology,2014,165(2): 630-647.
[29] LIU S M,KANDOTH P K,LAKHSSASSI N,et al.The soybeanGmSNAP18 gene underlies two types of resistance to soybean cyst nematode[J].Nature Communication,2017,8: 14822.
[30] KADAM S,VUONG T D,QIU D,et al.Genomic-assisted phylogenetic analysis and marker development for next generation soybean cyst nematode resistance breeding[J].Plant Science,2016,242: 342-350.
[31] JIAO Y Q,VUONG T D,LIU Y,et al.Identification and evaluation of quantitative trait loci underlying resistance to multiple HG types of soybean cyst nematode in soybean PI 437655[J].Theoretical and Applied Genetics,2015,128(1):15-23.
[32] SHI Z,LIU S M,NOE J,et al.SNP identification and marker assay development for high-throughput selection of soybean cyst nematode resistance[J].BMC Genomics,2015,16: 314.
[33] 史學(xué)暉,李英慧,于佰雙,等.大豆胞囊線蟲(chóng)主效抗病基因Rhg4(GmSHMT)的CAPS/dCAPS標(biāo)記開(kāi)發(fā)和利用[J].作物學(xué)報(bào),2015,41(10): 1463-1471.
SHI X H,LI Y H,YU B S,et al.Development and utilization of CAPS/dCAPS markers based on the SNPs lying in soybean cyst nematode resistant genesRhg4[J].Acta Agronomica Sinica,2015,41(10): 1463-1471.
[34] QIU B X,ARELLI P R,SLEPER D A.RFLP markers associated with soybean cyst nematode resistance and seed composition in a ‘Peking’ x ‘Essex’ population[J].Theoretical and Applied Genetics,1999,98(3-4): 356-364.
[35] 張姍姍,李英慧,李金英,等.優(yōu)良品系中品03-5373系譜的遺傳解析及抗大豆胞囊線蟲(chóng)病相關(guān)標(biāo)記鑒定[J].作物學(xué)報(bào),2013,39(10):1746-1753.
ZHANG S S,LI Y H,LI J Y,et al.Genetic dissection of elite line Zhongpin 03-5373 pedigree and identification of candidate markers related to resistance to soybean cyst nematode[J].Acta Agronomica Sinica,2013,39(10): 1746-1753.
[36] CARTERJR T E,KOENNING S R,BURTON J W,et al.Registration of ‘N7003CN’ maturity-Group-VII soybean with high yield and resistance to race 2(HG type 1.2.5.7-) soybean cyst nematode[J].Journal of Plant Registrations,2011,5(3): 309-317.
[37] CHEN Y W,WANG D C,ARELLI P,et al.Molecular marker diversity of SCN-resistant sources in soybean[J].Genome,2006,49(8): 938-949.
[38] MEKSEM K,RUBEN E,HYTEN D L,et al.High-throughput genotyping for a polymorphism linked to soybean cyst nematode resistance geneRhg4 by using Taqman(TM) probes[J].Molecular Breeding,2001,7(1): 63-71.
[39] SUZUKI C,TANAKA Y,TAKEUCHI T,et al.Genetic relationships of soybean cyst nematode resistance originated inGedenshirazuand PI84751 onRhg1 andRhg4 loci[J].Breeding Science,2012,61(5): 602-607.
[40] ABDELMAJID K M,RAMOS L,HYTEN D L,et al.Quantitative trait loci(QTL) that underlie SCN resistance in soybean[Glycinemax(L.) Merr.] PI438489B by ‘Hamilton’ recombinant inbred line(RIL) population[J].Atlas Journal of Plant Biology,2014,1(3): 29-38.
[41] LI Y H,ZHANG C,GAO Z S,et al.Development of SNP markers and haplotype analysis of the candidate gene forrhg1,which confers resistance to soybean cyst nematode in soybean[J].Molecular Breeding,2009,24(1): 63-76.
[42] LI Y H,REIF J C,JACKSON S A,et al.Detecting SNPs underlying domestication-related traits in soybean[J].BMC Plant Biology,2014,14: 251.
[43] LI Y H,GUO N,ZHAO J M,et al.Different responses of soybean cyst nematode resistance between two RIL populations derived from Peking×7605 under two ecological sites[J].Journal of Genetics,2016,95(4):975-982.
[44] 南海洋,李英慧,常汝鎮(zhèn),等.基于大豆胞囊線蟲(chóng)病抗性候選基因rhg1的InDel標(biāo)記開(kāi)發(fā)與鑒定[J].作物學(xué)報(bào),2009,35(7): 1236-1243.
NAN H Y,LI Y H,CHANG R Z,et al.Development and identification of InDel markers based onrhg1 Gene for resistance to soybean cyst nematode(HeteroderaglycinesIchinohe)[J].Acta Agronomica Sinica,2009,35(7):1236-1243.
[45] 馬巖松,劉鑫磊,欒曉燕,等.大豆胞囊線蟲(chóng)病抗性基因相關(guān)分子標(biāo)記對(duì)雜交后代抗性的鑒定效率[J].大豆科學(xué),2014,33(2):173-178.
MA Y S,LIU X L,LUAN X Y,et al.Identification efficiency about resistance to soybean cyst nematode with relative molecular markers in hybrid progeny[J].Soybean Science,2014,33(2): 173-178.
[46] 劉 波,李英慧,于佰雙,等.中品03-5373對(duì)大豆胞囊線蟲(chóng)3號(hào)生理小種免疫抗性的遺傳解析[J].作物學(xué)報(bào),2015,41(1):15-21.
LIU B,LI Y H,YU B S,et al.Genetic analysis of immunity to soybean cyst nematode race 3 in elite line Zhongpin 03-5373[J].Acta Agronomica Sinica,2015,41(1):15-21.
[47] ATWELL S,HUANG Y S,VILHJLMSSON B J,et al.Genome-wide association study of 107 phenotypes inArabidopsisthalianainbred lines[J].Nature,2010,465(7298): 627-631.
[48] HUANG X H,WEI X H,SANG T,et al.Genome-wide association studies of 14 agronomic traits in rice landraces[J].Natural Genetics,2010,42(11): 961-967.
[49] LI H,PENG Z Y,YANG X H,et al.Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels[J].Natural Genetics,2012,45(1): 43-50.
[50] STRACKE S,HASENEYER G,VEYRIERAS J-B,et al.Association mapping reveals gene action and interactions in the determination of flowering time in barley[J].Theoretical and Applied Genetics,2009,118(2): 259-273.
[51] SAUVAGE C,SEGURA V,BAUCHET G,et al.Genome wide association in tomato reveals 44 candidate loci for fruit metabolic traits[J].Plant Physiology,2014,165(3): 1120-1132.
[52] HWANG E Y,SONG Q J,JIA G F,et al.A genome-wide association study of seed protein and oil content in soybean[J].BMC Genomics,2014,15:1.
[53] SONAH H,O′DONOUGHUE L,COBER E,et al.Identification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soybean[J].Plant Biotechnology Journal,2015,13(2):211-221.
[54] SONAH H,BASTIEN M,IQUIRA E,et al.An improved genotyping by sequencing(GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping[J].PLoS One,2013,8(1):e54603.
[55] BASTIEN M,SONAH H,BELZILE F.Genome wide association mapping ofSclerotiniasclerotiorumresistance in soybean with a genotyping by sequencing approach[J].The Plant Genome,2014,7: 1.
[56] XU X Y,ZENG L,TAO Y,et al.Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(33): 13469-13474.
[57] LI Y H,SMULDERS M J M,CHANG R Z,et al.Genetic diversity and association mapping in a collection of selected Chinese soybean accessions based on SSR marker analysis[J].Conservation Genetics,2011,12(5):1145-1157.
[58] ZHANG H Y,LI C Y,DAVIS E L,et al.Genome-wide association study of resistance to soybean cyst nematode(Heteroderaglycines)HG Type 2.5.7 in wild soybean(Glycinesoja)[J].Frontiers in Plant Science,2016,7: 1214.
[59] ZHANG J,WEN Z X,LI W,et al.Genome-wide association study for soybean cyst nematode resistance in Chinese elite soybean cultivars[J].Molecular Breeding,2017,37: 60.
[60] ZHAO X,TENG W L,LI Y H,et al.Loci and candidate genes conferring resistance to soybean cyst nematode HG Type 2.5.7[J].BMC Genomics,2017,18(1): 462.
[61] BAO Y,VUONG T,MEINHARDT C,et al.Potential of association mapping and genomic selection to explore PI 88788 derived soybean cyst nematode resistance[J].The Plant Genome,2014,7: 3.
[62] SONG Q J,HYTEN D L,JIA G F,et al.Development and evaluation of SoySNP50K,a high-density genotyping array for soybean[J].PLoS ONE,2013,8(1):e54985.
[63] WAN J R,VUONG T,JIAO Y Q,et al.Whole-genome gene expression profiling revealed genes and pathways potentially involved in regulating interactions of soybean with cyst nematode(HeteroderaglycinesIchinohe)[J].BMC Genomics,2015,16: 148.
[64] DIERS B W,ARELLI P.Management of parasitic nematodes of soybean through genetic resistance[C]//In:KAUFFMAN H E,eds.Proceedings of World Soybean Research Conference,6th.4-7 August,1999.Chicago,IL,USA:Superior Printing,Champaign,IL,1999:300-306.
[65] MITCHUM M G,WRATHER J A,HEINZ R D,et al.Variability in distribution and virulence phenotypes ofHeteroderaglycinesin Missouri during 2005[J].Plant Disease,2007,91(11):1473-1476.
[66] 田中艷,高國(guó)金,周長(zhǎng)軍,等.大豆胞囊線蟲(chóng)生理小種變異的研究[J].大豆科學(xué),2007,26(2):291-293.
TIAN Z Y,GAO G J,ZHOU C J,et al.Study on the variation of soybean cyst nematode[J].Soybean Science,2007,26(2):290-292.
[67] 陳 雙,潘鳳娟,周長(zhǎng)軍,等.黑龍江省安達(dá)地區(qū)大豆孢囊線蟲(chóng)生理小種遺傳分化現(xiàn)象[J].土壤與作物,2015,4(1): 42-47.
CHEN S,PAN F J,ZHOU C J,et al.Genetic variation of soybean cyst nematode races in Anda area of Heilongjiang province[J].Soils and Crops,2015,4(1):42-47.
[68] HUA C,LI C,HU Y,et al.Identification of HG Types of soybean cyst nematodeHeteroderaglycinesand resistance screening on soybean genotypes in northeast China[J].Journal of Nematology,2018,in press.
[69] 曹廣祿,趙 雪,王 強(qiáng),等.大豆種質(zhì)資源對(duì)胞囊線蟲(chóng)病1號(hào)、3號(hào)和4號(hào)生理小種的抗性鑒定[J].大豆科學(xué),2014,33(4): 563-565.
CAO G L,ZHAO X,WANG Q,et al.Resistance evaluation of soybean germplasm to races 1,3 and 4 of soybean cyst nematode(Heteroderagiycines)[J].Soybean Science,2014,33(4): 563-565.
[70] 李明姝,孫星邈.大豆種質(zhì)資源對(duì)大豆胞囊線蟲(chóng)3號(hào)生理小種的抗性鑒定[J].農(nóng)業(yè)與技術(shù),2013,33(12): 17-18.
LI M Z,SUN X M.Resistance identification of soybean germplasm resources to race 3 of soybean cyst nemtode[J].Agriculture and Technology,2013,33(12):17-18.
[71] 于佰雙.黑龍江省主要大豆抗源對(duì)胞囊線蟲(chóng)的抗病特性及線蟲(chóng)防治體系研究[D].沈陽(yáng):沈陽(yáng)農(nóng)業(yè)大學(xué),2009.
YU B S.Resistance of main soybean germplasm to SNC and management to SNC in Heilongjiang Province[D].Shenyang: Shenyang Agricultural University,2009.