鄧捷文 郭振紅
(第二軍醫(yī)大學(xué)免疫學(xué)教研室暨醫(yī)學(xué)免疫學(xué)國家重點(diǎn)實(shí)驗(yàn)室,上海 200433)
DC是目前所知抗原提呈功能最強(qiáng)的專職抗原提呈細(xì)胞(Antigen-presenting cells, APC),它具備一系列能夠識(shí)別、捕獲和吞噬處理外來抗原的受體。DC表達(dá)一系列的模式識(shí)別受體(Pattern recognition receptors,PRR),而PRR根據(jù)其識(shí)別抗原種類的不同又被分為病原相關(guān)分子模式(Pathogen-associated molecular patterns,PAMP,識(shí)別“非己”)、危險(xiǎn)相關(guān)分子模式(Danger-associated molecular patterns,DAMP,識(shí)別危險(xiǎn)信號(hào))或腫瘤相關(guān)分子模式(Tumor associated molecular patterns,TAMP,識(shí)別腫瘤細(xì)胞和死細(xì)胞)[1]。其中,DC表達(dá)的CLR識(shí)別不同種類抗原后能觸發(fā)多種免疫反應(yīng),在感染、自身穩(wěn)態(tài)平衡、自身免疫、過敏和腫瘤的調(diào)控過程中起到重要作用,故研究CLR的活化對DC功能的調(diào)控效應(yīng)具有重要意義。
CLR是一類大量表達(dá)于APC,且能和糖類結(jié)合的蛋白超家族。CLR分子主要以跨膜形式存在,部分成員可以介導(dǎo)細(xì)胞內(nèi)吞作用。CLR根據(jù)蛋白與細(xì)胞膜的定位被分為跨膜型CLR和游離型CLR。而跨膜型CLR根據(jù)保守型糖類識(shí)別區(qū)域(Conserved carbohydrate-recognition domains,CRD)的個(gè)數(shù)分為Ⅰ型和Ⅱ型CLR。Ⅰ型CLR成員甘露糖受體家族成員包含多個(gè)CRDs,可結(jié)合包括甘露糖、巖藻糖、乙?;咸前泛土蛩猁}糖在內(nèi)的糖類,而且Ⅰ型CLR如DEC-205除了可識(shí)別結(jié)合糖類外,還可識(shí)別多種配體如CpG寡核苷酸和凋亡細(xì)胞或壞死細(xì)胞的表面標(biāo)志物角蛋白[2]。Ⅱ型CLR則僅有一個(gè)CRD,可識(shí)別結(jié)合包括葡聚糖、甘露糖在內(nèi)的糖類,主要包括dectin1和2、DC-SIGN、Mincle、DNGR-I等;特別的是Ⅱ型CLR成員dectin-1可能識(shí)別分枝桿菌細(xì)胞壁未知配體[3],Mincle則可識(shí)別分枝桿菌細(xì)胞壁成分索狀因子(Trehalose-6,6-dimycolate,TDM),而DC-SIGN除了識(shí)別甘露糖外,還可識(shí)別一些病毒的糖蛋白如HIV-gp120、人皰疹病毒8(HHV8)gpB;表達(dá)在鼠源CD8a+DC和人BDCA3+DC表面的DNGR-1可作為DAMPs識(shí)別暴露于壞死細(xì)胞表面的信號(hào)如肌動(dòng)蛋白,促進(jìn)DC對壞死細(xì)胞相關(guān)抗原的交叉提呈[4]。而游離型CLR成員MBL是由多個(gè)相同的多肽鏈組成的,可識(shí)別結(jié)合末端糖(如d-甘露糖、L-巖藻糖和N-乙酰-D-葡萄糖胺)和磷脂、核酸和非糖基化蛋白。
DC表達(dá)的一些CLR不僅可以介導(dǎo)DC吞噬,也能通過Syk-Card9信號(hào)通路或通過調(diào)節(jié)TLR信號(hào)通路調(diào)節(jié)DC活化狀態(tài)。例如,Ⅱ型CLR中的dectin-1和DNGR-1通過經(jīng)典免疫受體酪氨酸激活基序(Immunoreceptor tyrosine activation motif,ITAM)傳遞活化信號(hào),而DCIR和MICL則通過經(jīng)典免疫受體酪氨酸抑制基序(Immunoreceptor tyrosine-based inhibitory motif,ITIM)招募磷酸酶如SHP-1和SHP-2傳遞抑制信號(hào)。但I(xiàn)TAM/ITIM非依賴的CLR家族成員如DEC-205、MR和DC-SIGN并沒有類似基序故不能觸發(fā)Syk和SHP依賴的信號(hào)通路[5]。接下來我們將重點(diǎn)介紹幾種研究比較詳盡的CLR對DC功能調(diào)控的新進(jìn)展。
CLR Ⅱ型家族中的dectin-1是目前了解最多的參與抗真菌反應(yīng)的CLR,它主要識(shí)別不同種致病真菌(包括白色念珠菌、肺囊蟲菌屬等)細(xì)胞壁暴露的β-葡聚糖。最新研究表明跨膜適配器蛋白SCIMP(它能招募細(xì)胞質(zhì)蛋白至細(xì)胞膜附近,作為胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)的一部分)在dectin-1信號(hào)通路晚期持續(xù)期中發(fā)揮重要效應(yīng)——DC在酵母聚糖的刺激下,dectin-1信號(hào)通路活化,其胞內(nèi)的ITAM中的酪氨酸在Src家族激酶的作用下發(fā)生磷酸化進(jìn)一步招募Syk激酶并活化由CARD9、Bcl10和MATLT1構(gòu)成的復(fù)合物,同時(shí)促進(jìn)SCIMP的磷酸化,而跨膜適配器蛋白SCIMP通過持續(xù)的磷酸化作用促進(jìn)維持胞內(nèi)dectin-1下游信號(hào)和絲裂原活化蛋白激酶的活化[6],從而促進(jìn)細(xì)胞發(fā)生多功能反應(yīng),包括誘發(fā)吞噬,促進(jìn)趨化因子和細(xì)胞因子產(chǎn)生,誘發(fā)細(xì)胞呼吸爆發(fā)及炎性小體的活化,促進(jìn)活化CD4+T細(xì)胞[7];而ITAM適配器FcRγ能負(fù)向調(diào)控DC胞內(nèi)dectin-1信號(hào),可能涉及SHP-1 和 PTEN的磷酸化[8]。在表觀遺傳研究方面,最新研究表明轉(zhuǎn)錄因子NFATc2可以通過影響dectin-1信號(hào)通路來調(diào)控DC的活化狀態(tài):在dectin-1活化的DC細(xì)胞中NFATc2定位于基因啟動(dòng)子序列誘導(dǎo)并結(jié)合表觀遺傳標(biāo)志物(H3K4me3,組蛋白H3第四位賴氨酸-三甲基化),促進(jìn)相關(guān)靶基因如炎癥因子IL-2、IL-12b和IL-23a等基因的表達(dá),從而正向調(diào)控DC的活化狀態(tài)[9]。
dectin-1在體內(nèi)抗真菌免疫中扮演重要作用,dectin-1缺陷小鼠在系統(tǒng)性感染白色念珠菌、煙曲霉菌、卡式肺囊蟲或球孢子菌屬后病死率升高[10]。而且,表達(dá)人源dectin-1的同質(zhì)異構(gòu)體Y238X的患者(dectin-1功能缺失)臨床發(fā)現(xiàn)移植手術(shù)后對黏膜念珠菌和曲霉菌的易感性顯著提高[11,12]。以往研究發(fā)現(xiàn),dectin-1識(shí)別外源性抗原后,下游信號(hào)能引導(dǎo)自噬重要分子LC3Ⅱ聚集于細(xì)胞吞噬體,促進(jìn)細(xì)胞吞噬體招募MHCⅡ類分子從而有利于DC將真菌復(fù)合抗原提呈給CD4+T細(xì)胞[13],促進(jìn)抗真菌Th17免疫反應(yīng)[14]。
dectin-1還可識(shí)別有益真菌,發(fā)揮免疫調(diào)節(jié)作用。體外實(shí)驗(yàn)表明,馬克斯克魯維酵母和布拉酵母的β-葡聚糖被dectin-1識(shí)別后分別誘導(dǎo)DC分泌不同細(xì)胞因子:布拉酵母誘導(dǎo)產(chǎn)生IFN-γ分泌型的Th1型細(xì)胞,而馬克斯克魯維酵母則誘導(dǎo)活化Foxp3+Treg細(xì)胞,而這兩種不同的免疫調(diào)節(jié)方式也使得這兩種酵母成為新的酵母益生素的候選[15]。同樣地,dectin-1在腸道菌群的維持中也起著至關(guān)重要的作用。通過研究哺乳動(dòng)物胃腸道內(nèi)的真菌生物組,我們發(fā)現(xiàn)dectin-1缺失小鼠模型表現(xiàn)出嚴(yán)重的化學(xué)誘導(dǎo)的結(jié)腸炎癥狀。同樣,dectin-1基因中的多態(tài)性與人類炎癥性腸道疾病也密切相關(guān),表明共生真菌通過dectin-1影響宿主免疫系統(tǒng)[16];與之相反的是,另有研究發(fā)現(xiàn)在缺少腸道真菌的小鼠模型中,DC表面的dectin-1被阻斷后可以通過抑制抗菌肽的產(chǎn)生,促進(jìn)乳酸菌的生長并促進(jìn)缺乏腸道真菌的小鼠腸道內(nèi)調(diào)控T性細(xì)胞的增殖,從而預(yù)防實(shí)驗(yàn)性腸炎的發(fā)生[17]。還有報(bào)道稱蘑菇可能充當(dāng)包含佐劑的糖類這一角色被dectin-1所識(shí)別進(jìn)而活化DC,故將蘑菇作為抗真菌疫苗的佐劑也不失為一個(gè)新的策略[18]。
dectin-1除了能識(shí)別真菌細(xì)胞壁的β-葡聚糖還能識(shí)別家庭塵螨(Household dust mites,HDM)一些復(fù)合物成分。研究發(fā)現(xiàn),CD11b+DC的dectin-1 能識(shí)別HDM提取物從而上調(diào)DC表面趨化因子與趨化因子受體的表達(dá)來誘導(dǎo)氣道過敏反應(yīng)[19]?,F(xiàn)今以DC為基礎(chǔ)的腫瘤免疫治療方法受到廣泛關(guān)注,dectin-1活化的DC能誘導(dǎo)具有抗腫瘤效應(yīng)的Th9細(xì)胞活化(Th9細(xì)胞是CD4+T細(xì)胞中的一類能分泌IL-9的Th細(xì)胞亞型,參與腫瘤免疫、過敏反應(yīng)和自身免疫疾病的發(fā)生發(fā)展),這一研究也推動(dòng)了高效DC腫瘤疫苗的研制[20],如dectin-1激動(dòng)劑作為佐劑在皮下疫苗制備中應(yīng)用[21]。
Ⅱ型CLR家族中的dectin-2主要表達(dá)于DC、巨噬細(xì)胞和單核細(xì)胞[22],胞內(nèi)缺少尾端的信號(hào)基序(如dectin-1胞內(nèi)段的ITAM基序),它主要通過FcRγ招募并活化下游信號(hào)通路Syk-CARD9。dectin-2能結(jié)合不同真菌種類的抗原包括白色念珠菌、曲霉菌A和馬拉色霉菌等細(xì)胞胞壁成分α-甘露糖以及內(nèi)源性蛋白β-葡萄糖醛酸酶[22]。研究發(fā)現(xiàn),DC在莢膜組織胞漿菌(Histoplasma capsulatum)的刺激下,dectin-2被活化從而觸發(fā) Syk-JNK信號(hào)通路,促進(jìn)IL-1β前體的合成,同時(shí)活化caspase-1 促進(jìn)炎性小體NLRP3的生成,最終IL-1β前體在活化的NLRP3作用下成IL-1β分泌到胞外[23],從而促進(jìn)dectin-1依賴的Th1和Th17細(xì)胞免疫[24,25]。在疫苗的研究領(lǐng)域,人們發(fā)現(xiàn)了一種新型的dectin-2配體-芽生菌糖蛋白Eng2(the glycoprotein Blastomyces Eng2 ,Bl-Eng2),它能有效促進(jìn)人外周血單核細(xì)胞和鼠源 BMDC分泌IL-6;體內(nèi)實(shí)驗(yàn)表明含Bl-Eng2的抗真菌亞單位疫苗觸發(fā)大量抗原特異性的Th17和Th1細(xì)胞反應(yīng),增強(qiáng)了對真菌的殺滅[26]。
Mincle是Ⅱ型CLR家族的另一個(gè)成員,其信號(hào)通路與dectin-2相似,也是通過FcRγ招募并活化下游信號(hào)通路Syk-CARD9,因此有學(xué)者認(rèn)為Mincle從屬于dectin-2亞家族。Mincle可識(shí)別結(jié)合內(nèi)源性抗原,如膽固醇、葡糖苷酰鞘氨醇類[27]和剪接相關(guān)蛋白130;有研究表明壞死的肝細(xì)胞釋出的剪接相關(guān)蛋白130可以被肝枯否細(xì)胞表面的Mincle識(shí)別后促進(jìn)酒精性肝病發(fā)展[28],Mincle還可以識(shí)別外源性抗原, 如真菌的α-甘露糖、海藻糖,以及雙極性糖脂、甘油和甘油三酯等脂肪酸。Mincle在DC上的表達(dá)豐度受到相關(guān)細(xì)胞因子(如IL-6、TNF-α、IFN-γ促進(jìn)Mincle表達(dá)上調(diào))影響,近期有研究表明Th2型細(xì)胞因子IL-4通過轉(zhuǎn)錄因子Stat6發(fā)揮負(fù)調(diào)控作用下調(diào)DC表面的Mincle、MCL和dectin-2,但TLR4配體LPS則可抵消該作用[29]。Mincle活化后通過促進(jìn)DC分泌細(xì)胞因子在機(jī)體抗白色念珠菌或馬拉色霉菌感染過程中發(fā)揮效應(yīng)。而且,Mincle在抗分枝桿菌感染過程中也起著相應(yīng)效應(yīng),近期更有研究表明DC表面的Mincle能識(shí)別結(jié)核分枝桿菌細(xì)胞壁成分TDM,從而促進(jìn)干擾素分泌型T細(xì)胞增殖活化并促進(jìn)DC分泌Th1細(xì)胞因子[30]。在抗寄生蟲方面,研究發(fā)現(xiàn)dectin-2、Mincle通過FcRγ信號(hào)級聯(lián)反應(yīng),與CD209a (SIGNR5)介導(dǎo)的Raf-1信號(hào)的活化產(chǎn)生協(xié)同效應(yīng),進(jìn)一步促進(jìn)Th17反應(yīng)加劇炎癥反應(yīng),促進(jìn)蠕蟲病的發(fā)生發(fā)展[31];相反寄生蟲可以通過合成可能具有抑制性作用的Mincle配體與DC表面的Mincle結(jié)合后從而抑制DC功能,導(dǎo)致IFN-γ生成型T細(xì)胞活化的延遲而有利于寄生蟲生存繁殖[32],而Mincle識(shí)別利什曼蟲釋放的配體通過抑制性的ITAMi-SHP1-FcRγ信號(hào)軸,使利什曼蟲發(fā)生免疫逃逸得以繁殖擴(kuò)散[33];Mincle的免疫抑制作用也體現(xiàn)在裴氏著色真菌感染過程中,Mincle活化后可以抑制Th17細(xì)胞分化[34]。更有研究表明,人Mincle能識(shí)別結(jié)合內(nèi)源性配體膽固醇晶體誘導(dǎo)天然免疫,發(fā)生炎癥反應(yīng)[35]。
Ⅱ型CLR成員DC-SIGN是一類識(shí)別并結(jié)合巖藻糖或甘露糖聚等糖類并主要表達(dá)于單核來源的未成熟DC細(xì)胞的CLR,可介導(dǎo)DC與初始T細(xì)胞表面ICAM-3結(jié)合無需整合素,但必須有Ca2+的參與,故其被命名為DC-SIGN(Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin)。DC-SIGN的表達(dá)受多種因素調(diào)節(jié):過氧化物酶體增殖物激活受體(PPAR-γ)激動(dòng)劑批格列酮、IFN-α、IFN-γ、TGF-β、TNF-α 以及雷帕霉素等也可下調(diào)DC表面 DC-SIGN 的表達(dá)[36];而 IL-4、IL-13、PMA、 乳鐵蛋白,甚至某些成癮性藥物,如可卡因、 脫氧麻黃堿等則可使 DC-SIGN表達(dá)增加[37]。研究表明,DC-SIGN參與了不同種過敏原[如花生(Ara h 1)、花粉、狗(Canf1)、家庭塵螨HDM(Derp 1)]的識(shí)別過程。體內(nèi)實(shí)驗(yàn)表明DC-SIGN識(shí)別并攝取Derp1誘導(dǎo)Th1 細(xì)胞分化,而臨床上哮喘患者DC細(xì)胞上的DC-SIGN表達(dá)減少,這說明DC-SIGN在Th1與Th2比例失衡誘導(dǎo)的過敏反應(yīng)中起到一定作用[38]。DC-SIGN在抗真菌感染反應(yīng)中也起到一定作用,SIGNR1(鼠源DC-SIGN)識(shí)別白色念珠菌,在dectin-1受體的協(xié)同作用下,促進(jìn)DC分泌細(xì)胞因子[39];而在一小部分人群中DC-SIGN的多態(tài)性與日漸發(fā)展的侵襲性肺曲霉菌感染相關(guān),但其機(jī)制尚未明確[39]。
另外, DC-SIGN也是一些病原微生物入侵免疫細(xì)胞的途徑。例如,HIV病毒包膜糖蛋白gp120(HIV gp120) 與DC-SIGN結(jié)合后促使人類E3-泛素化連接酶上的三重基序5α(TRIM5α)從DC-SIGN上解離下來從而抑制了TRIM5α的HIV-1限制功能,促進(jìn)初始感染T細(xì)胞HIV的轉(zhuǎn)移感染[40];而在眼科方面也有類似報(bào)道,HIVgp120與視網(wǎng)膜上皮細(xì)胞(RPE)的DC-SIGN結(jié)合后促使RPE下調(diào)緊密接頭蛋白表達(dá)從而破壞了視網(wǎng)膜血屏障有利于HIV入侵[41]。近期有報(bào)道發(fā)現(xiàn),可卡因能促進(jìn)DC-SIGN的過表達(dá),活化的DC-SIGN結(jié)合下游信號(hào)LARG和LSP1形成活化的“信號(hào)小體”(Signalosome complex),從而促進(jìn)DC攝取內(nèi)化HIV病毒并轉(zhuǎn)移感染T細(xì)胞[37]。同樣DC表面的DC-SIGN通過識(shí)別結(jié)合里夫特列谷熱病毒包膜糖基化蛋白Gn和Gc介導(dǎo)細(xì)胞內(nèi)吞作用促進(jìn)該病毒感染宿主[42]。一些臨床研究結(jié)果表明,系統(tǒng)性紅斑狼瘡腎炎中的足細(xì)胞具DC樣細(xì)胞功能,其表面的DC-SIGN活化后,促進(jìn)DC樣細(xì)胞功能的足細(xì)胞上調(diào)表達(dá)MHC-Ⅱ和CD80分子,促進(jìn)細(xì)胞因子IL-4和IFN-γ的分泌和T細(xì)胞的增殖,介導(dǎo)炎癥反應(yīng)的發(fā)生發(fā)展[43];另有些研究也表明乳酸桿菌屬的糖基化S-layer蛋白與DC-SIGN結(jié)合后能有效阻斷該受體從而抑制細(xì)菌感染[44];與DC-SIGN相結(jié)合的樹突狀糖蛋白納米載體(Glycol-dendri-protein-nanocarriers)能競爭性有效抑制埃博拉病毒感染DC和T細(xì)胞[45];這些發(fā)現(xiàn)意味著競爭或非競爭性阻斷DC-SIGN的功能可抑制紅斑狼瘡腎炎病情進(jìn)展和抑制病毒侵襲。但同時(shí),有研究發(fā)現(xiàn),日本乙型腦炎病毒的E糖蛋白與DC-SIGN結(jié)合促進(jìn)感染,但DC-SIGN內(nèi)化基序變異體并不影響DC吞噬攝取內(nèi)化該病毒,這意味著DC-SIGN是DC與病毒間的重要連接媒介,但并不是病毒入侵細(xì)胞的直接通道,可能需要在其他信號(hào)的共同作用下才能調(diào)控DC吞噬攝取內(nèi)化病毒,具體機(jī)制未明[46]。研究表明多唾液酸化的CD56是DC-SIGN的新型配體,DC-SIGN識(shí)別結(jié)合CD56可抑制CD56+NK細(xì)胞對DC的細(xì)胞毒性作用[47],這一發(fā)現(xiàn)也為HIV感染、腫瘤和移植免疫耐受的治療提供新思路。另外,在抗腫瘤方面發(fā)現(xiàn)DC-SIGN敲除小鼠體內(nèi)結(jié)腸癌肝轉(zhuǎn)移的傾向性降低,生存期延長;臨床結(jié)果表明結(jié)腸癌肝轉(zhuǎn)移患者血清中DC-SIGN水平高于未發(fā)生癌轉(zhuǎn)移的患者,說明DC-SIGN可能參與結(jié)腸癌的肝轉(zhuǎn)移過程,具體機(jī)制仍有待于進(jìn)一步研究[48]。帶有OVA或腫瘤抗原的慢病毒載體,其被修飾后表達(dá)一種辛德畢斯病毒的病毒糖蛋白,被DC-SIGN識(shí)別后促使DC刺激T細(xì)胞增殖并誘使腫瘤消退[49];人類CD14+真皮DC在通過DC-SIGN識(shí)別結(jié)合抗原表位后表現(xiàn)出強(qiáng)大的交叉提呈能力[50],這些都為腫瘤疫苗的發(fā)展提供理論基礎(chǔ)。
MR是 Ⅰ 型CLR,一種多功能的內(nèi)吞體受體,多表達(dá)于巨噬細(xì)胞和DC表面,其主要由三部分組成:一個(gè)富含半胱氨酸的區(qū)域、一個(gè) Ⅱ 型纖維素樣區(qū)域和8個(gè)CRD,識(shí)別外源性病原體的甘露糖化分子和一些主要的過敏原[如家庭塵螨HDM(Derp1)、狗(Can f1)、貓(Fel d 1)、蟑螂(Bla g2)、花生(Ara h 1)][51]。研究表明人DC識(shí)別攝取糖基化的過敏原如家庭塵螨HDM(Derp1)抑制吲哚胺2,3-雙加氧酶的表達(dá)從而促進(jìn)Th2免疫反應(yīng)[52]。相反在LPS和阿拉伯半乳聚糖(Arabinogalactan,AG)的共同刺激下,DC表面的MR和DC-SIGN識(shí)別AG抑制NF-κB p65的表達(dá)從而抑制DC的活化和T細(xì)胞的增殖,預(yù)防過敏反應(yīng)[53]。在抗真菌感染方面,MR在不同真菌引起的免疫反應(yīng)中促進(jìn)DC吞噬及分泌細(xì)胞因子,例如MR識(shí)別結(jié)合申克孢子絲菌(S.schenckii sensu stricto conidia and S.brasiliensis yeast)促進(jìn)炎性因子的分泌[54];MR促進(jìn)pDC吞噬攝取并清除病原體煙曲霉菌[55]。在抗腫瘤免疫方面,MR可能成為腫瘤預(yù)測性的指征:經(jīng)相關(guān)統(tǒng)計(jì)數(shù)據(jù)分析,高表達(dá)的MR可能預(yù)示乳突狀胃癌患者的不良預(yù)后,其具體機(jī)制未明[56],在子宮內(nèi)膜異位患者中,子宮內(nèi)膜異位組織中腹膜DC高表達(dá)MR,MR可能促進(jìn)DC吞噬死亡的子宮內(nèi)膜細(xì)胞,從而促進(jìn)子宮內(nèi)膜異位癥的發(fā)生發(fā)展[57]。MR配體在抗腫瘤疫苗中也具有廣泛應(yīng)用前景,納米粒子包裹的MR配體(如脂質(zhì)體、PLGA粒子、樹狀分子)含有多肽、腫瘤裂解DNA或蛋白質(zhì),是在體內(nèi)誘導(dǎo)腫瘤特異性T細(xì)胞的有效疫苗配方[58]。
MBL是游離于血清中的可溶性CLR,具有多種功能,例如,促進(jìn)補(bǔ)體激活、促進(jìn)補(bǔ)體介導(dǎo)的調(diào)理吞噬作用和炎癥調(diào)節(jié)作用對體內(nèi)危險(xiǎn)信號(hào)的識(shí)別和凋亡細(xì)胞的清除、識(shí)別甘露糖或病原微生物的N-乙酰氨基葡糖。MBL識(shí)別病毒可抑制病毒(如流感A病毒、HBV、HIV)感染細(xì)胞,但目前有關(guān)MBL缺陷與HIV病情進(jìn)展的相關(guān)性報(bào)道存在爭議,臨床統(tǒng)計(jì)數(shù)據(jù)表明,血漿MBL水平和MBL2基因變異不被建議作為艾滋病毒感染、疾病進(jìn)展和生存的預(yù)后標(biāo)志[59],而較高的血漿MBL水平與血吸蟲感染易感性升高相關(guān)[60]。MBL在免疫反應(yīng)過程中還起負(fù)向調(diào)控的作用,研究發(fā)現(xiàn),高濃度的MBL可抑制LPS刺激的單核來源DC的活化,CD14+單核細(xì)胞在含IL-4和高濃度MBL(20 μg/ml)的培養(yǎng)基培養(yǎng)下,其表達(dá)的MHCⅡ類分子和共刺激分子(CD80和CD40)顯著下調(diào),IL-10和IL-6的分泌增多但混合細(xì)胞反應(yīng)能力減弱[61],這一點(diǎn)在白色念珠菌感染中也得到證明,大量的MBL識(shí)別白色念珠菌抗原后,與未成熟DC以Ca2+依賴方式相結(jié)合,通過減少IκBα、p65/NF-κB的磷酸化來抑制DC成熟活化和因子分泌[62]。
在DC表達(dá)的PRR中,除了CLR,TLR也因其重要作用而被人們所熟知,研究發(fā)現(xiàn),CLR與TLR的相互作用也參與了對DC功能的調(diào)控。我們知道,TLR參與CLR依賴的抗真菌反應(yīng),比如,白色念珠菌的細(xì)胞壁由外層的N端或O端甘露糖糖基化的蛋白質(zhì)和內(nèi)層β-葡聚糖和甲殼素所組成,MR識(shí)別N端甘露糖糖基,TLR4識(shí)別O端甘露糖糖基,而dectin-1、TLR2則識(shí)別β-葡聚糖,各TLR和CLR成員通過識(shí)別白色念珠菌細(xì)胞壁的不同成分協(xié)同活化下游信號(hào)通路進(jìn)而促進(jìn)機(jī)體抗真菌感染反應(yīng)。而dectin-1和TLR-2識(shí)別不同抗原表位活化后也能協(xié)同促進(jìn)DC最大化分泌IL-10、IL-23和IL-6,拮抗抑制IL-12的產(chǎn)生,其具體機(jī)制未明;也有研究報(bào)道,dectin-1受體識(shí)別結(jié)合β-葡聚糖誘發(fā)免疫反應(yīng),TLR4的活化進(jìn)一步促進(jìn)炎癥因子IL-23、IL-4、IL-6和TNF-α的分泌[63]。在對煙熏曲霉菌感染的研究中, 也發(fā)現(xiàn)TLR-2或dectin-1其中任一受體被相對應(yīng)的抗體抑制后都會(huì)導(dǎo)致趨化因子CXCL1、CXCL8分泌下降,未結(jié)合抗體的dectin-1或TLR2的表達(dá)下調(diào)[64]。事實(shí)上CLR與TLR的協(xié)同作用在機(jī)體對抗病原菌感染方面產(chǎn)生重要效應(yīng),臨床結(jié)果顯示著色芽生菌感染患者注射外源性TLR激動(dòng)劑后病情得到緩解[65]。
除了在抗真菌方面,CLR與TLR在引發(fā)過敏反應(yīng)中也發(fā)揮相應(yīng)作用。研究表明,BMDC通過TLR4和CLR(DC-SIGN)識(shí)別結(jié)合過敏原Der p7促進(jìn)了OX40L和Jagged-1的表達(dá),從而促進(jìn)CD4+T細(xì)胞分泌IL-4,觸發(fā)Th2免疫反應(yīng)[66]。
在抗細(xì)菌免疫方面,研究發(fā)現(xiàn),dectin-2可識(shí)別一些革蘭陰性菌的甘露糖化的O-抗原,通過酪氨酸激酶(Syk)途徑促進(jìn)TLR4觸發(fā)的免疫反應(yīng)[67]。近期更有研究表明CLR與TLR在機(jī)體對抗分枝桿菌感染方面也存在協(xié)同作用,TLR2、dectin-1和DC-SIGN都能識(shí)別結(jié)合結(jié)核分枝桿菌抗原共同促進(jìn)DC成熟活化,而兩者不同的是TLR2、dectin-1通過下游信號(hào)ROS活化發(fā)揮效應(yīng),DC-SIGN則是ROS非依賴途徑[64]。
在疫苗方面,新生兒由于免疫系統(tǒng)未完全成熟更容易發(fā)生感染,故新生兒疫苗的開發(fā)也迫在眉睫,在dectin-1對新生兒moDC的協(xié)同激活作用下,TLR介導(dǎo)的IL-12p70的分泌增強(qiáng)和新生兒TH1細(xì)胞進(jìn)一步活化,使得dectin-1激動(dòng)劑作為新生兒疫苗中促Th1免疫反應(yīng)的佐劑具有重大前景[67];并且Mincle與TLR7/8協(xié)同作用增強(qiáng)半胱天冬酶-1(caspase-1)和 NF-κB的活化從而促進(jìn)Th1免疫,而這二者作用限于嬰幼兒,成人效果減弱[68]。
而在抗腫瘤免疫方面, dectin-1和TLR4都能識(shí)別凝膠多糖(Curdlan)并活化下游信號(hào)通路,促進(jìn)DC表達(dá)CD40、CD80、CD86以及MHCⅠ/Ⅱ分子并分泌細(xì)胞因子(IL-12、IL-1β、TNF-α 和IFN-β),增強(qiáng)DC表達(dá)巨噬細(xì)胞炎癥蛋白3β(MIP-3β)來促進(jìn)DC與T細(xì)胞接觸并呈遞抗原從而激活有效的免疫反應(yīng),研究表明DC與凝膠多糖混合輸入小鼠體內(nèi)能有效抑制腫瘤生長[69]。同樣地,可溶性β-葡聚糖和TLR9激動(dòng)劑通過激活DC的dectin-1和TLR9信號(hào)通路協(xié)同增強(qiáng)體內(nèi)抗腫瘤免疫功能[70]。
到目前為止,已在人類發(fā)現(xiàn)有多達(dá)60多種的CLR,不同的CLR發(fā)揮多種不同功能,絕大多數(shù)CLR識(shí)別結(jié)合抗原后能正向調(diào)控DC功能,在抗感染、抗過敏和抗腫瘤反應(yīng)中發(fā)揮重要作用。但某些病原體也可以通過靶向結(jié)合DC表面的CLR以逃逸免疫應(yīng)答。而且,CLR識(shí)別結(jié)合的相關(guān)配體仍有待于進(jìn)一步探索完善,DC表面表達(dá)的不同CLR在識(shí)別結(jié)合同一抗原后或者同時(shí)識(shí)別同一病原體的不同抗原后是否觸發(fā)DC胞內(nèi)相協(xié)同或相拮抗的信號(hào)通路,從而在抗感染、抗過敏和抗腫瘤反應(yīng)中發(fā)揮協(xié)同或拮抗作用,理解這些問題對我們深入研究不同類型CLR在特定疾病的情況下對DC功能的綜合調(diào)控而言是十分重要的,也有利于完善不同CLR間相互作用的網(wǎng)絡(luò)構(gòu)建。目前,我們對DC表面CLR 發(fā)揮作用的確切機(jī)制以及與TLR相互作用所引起的最終免疫效應(yīng)的了解仍然很局限。 因此,探索不同CLR分子對DC功能調(diào)控的綜合效應(yīng)及具體機(jī)制,以及其與DC上其他受體之間的交互作用將具有重要意義。希望通過深入研究CLR對DC功能的調(diào)控效應(yīng),有助于將其作為新的治療性藥物靶點(diǎn),并由此推動(dòng)抗感染、抗過敏和抗腫瘤治療的研究。
參考文獻(xiàn):
[1] Dambuza IM,Brown GD.C-type lectins in immunity:recent developments[J].Curr Opin Immunol,2015,32:21-27.
[2] Cao L,Chang H,Shi X,etal.Keratin mediates the recognition of apoptotic and necrotic cells through dendritic cell receptor DEC205/CD205[J].Proc Natl Acad Sci U S A,2016,113(47):13438-13443.
[3] Wagener M,Hoving JC,Ndlovu H,etal.Dectin-1-Syk-CARD9 Signaling Pathway in TB Immunity[J].Front Immunol,2018,9:225.
[4] Han P,Fujii T,Iborra S,etal.Structure of the complex of F-actin and DNGR-1,a C-type lectin receptor involved in dendritic cell cross-presentation of dead cell-associated antigens[J].Immunity,2015,42(5):839-849.
[5] Lepenies B,Lee J,Sonkaria S.Targeting C-type lectin receptors with multivalent carbohydrate ligands[J].Adv Drug Deliv Rev,2013,65(9):1271-1281.
[6] Kralova J,Fabisik M,Pokorna J,etal.The transmembrane adaptor protein scimp facilitates sustained dectin-1 signaling in dendritic cells[J].J Biol Chem,2016,291(32):16530-16540.
[7] Drummond RA,Dambuza IM,Vautier S,etal.CD4(+) T-cell survival in the GI tract requires dectin-1 during fungal infection[J].Mucosal Immunol,2016,9(2):492-502.
[8] Pan YG,Yu YL,Lin CC,etal.FcepsilonRI gamma-chain negatively modulates dectin-1 responses in dendritic cells[J].Front Immunol,2017,8:1424.
[9] Yu HB,Yurieva M,Balachander A,etal.NFATc2 mediates epigenetic modification of dendritic cell cytokine and chemokine responses to dectin-1 stimulation[J].Nucleic Acids Res,2015,43(2):836-847.
[10] Yoshikawa FS,Yabe R,Iwakura Y,etal.Dectin-1 and Dectin-2 promote control of the fungal pathogen Trichophyton rubrum independently of IL-17 and adaptive immunity in experimental deep dermatophytosis[J].Innate Immun,2016,22(5):316-324.
[11] Cunha C,Di Ianni M,Bozza S,etal.Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient-and donor-dependent mechanisms of antifungal immunity[J].Blood,2010,116(24):5394-5402.
[12] Chai LY,de Boer MG,van der Velden WJ,etal.The Y238X stop codon polymorphism in the human beta-glucan receptor dectin-1 and susceptibility to invasive aspergillosis[J].J Infect Dis,2011,203(5):736-743.
[13] Ma J,Becker C,Lowell CA,etal.Dectin-1-triggered recruitment of light chain 3 protein to phagosomes facilitates major histocompatibility complex class II presentation of fungal-derived antigens[J].J Biol Chem,2012,287(41):34149-34156.
[14] Deng Z,Ma S,Zhou H,etal.Tyrosine phosphatase SHP-2 mediates C-type lectin receptor-induced activation of the kinase Syk and anti-fungal TH17 responses[J].Nat Immunol,2015,16(6):642-652.
[15] Smith IM,Baker A,Christensen JE,etal.Kluyveromyces marxianus and saccharomyces boulardii induce distinct levels of dendritic cell cytokine secretion and significantly different T cell responses in vitro[J].PLoS One,2016,11(11):e167410.
[16] Shiokawa M,Yamasaki S,Saijo S.C-type lectin receptors in anti-fungal immunity[J].Curr Opin Microbiol,2017,40:123-130.
[17] Tang C,Kamiya T,Liu Y,etal.Inhibition of dectin-1 signaling ameliorates colitis by inducing lactobacillus-mediated regulatory T cell expansion in the intestine[J].Cell Host Microbe,2015,18(2):183-197.
[18] Wilbers RH,Westerhof LB,van de Velde J,etal.Physical interaction of T cells with dendritic cells is not required for the immunomodulatory effects of the edible mushroom agaricus subrufescens[J].Front Immunol,2016,7:519.
[19] Ito T,Hirose K,Norimoto A,etal.Dectin-1 plays an important role in house dust mite-induced allergic airway inflammation through the activation of CD11b+dendritic cells[J].J Immunol,2017,198(1):61-70.
[20] Zhao Y,Chu X,Chen J,etal.Dectin-1-activated dendritic cells trigger potent antitumour immunity through the induction of Th9 cells[J].Nat Commun,2016,7:12368.
[21] Donadei A,Gallorini S,Berti F,etal.Rational design of adjuvant for skin delivery:conjugation of synthetic beta-glucan dectin-1 agonist to protein antigen[J].Mol Pharm,2015,12(5):1662-1672.
[22] Mori D,Shibata K,Yamasaki S.C-type lectin receptor dectin-2 binds to an endogenous protein beta-glucuronidase on dendritic cells[J].PLoS One,2017,12(1):e169562.
[23] Chang TH,Huang JH,Lin HC,etal.Dectin-2 is a primary receptor for NLRP3 inflammasome activation in dendritic cell response to Histoplasma capsulatum[J].PLoS Pathog,2017,13(7):e1006485.
[24] Zhao L,Shi M,Zhou L,etal.Clonorchis sinensis adult-derived proteins elicit Th2 immune responses by regulating dendritic cells via mannose receptor[J].PLoS Negl Trop Dis,2018,12(3):e6251.
[25] Geijtenbeek TB,Gringhuis SI.C-type lectin receptors in the control of T helper cell differentiation[J].Nat Rev Immunol,2016,16(7):433-448.
[26] Wang H,Lee TJ,Fites SJ,etal.Ligation of Dectin-2 with a novel microbial ligand promotes adjuvant activity for vaccination[J].PLoS Pathog,2017,13(8):e1006568.
[27] Williams SJ.Sensing lipids with mincle:structure and function[J].Front Immunol,2017,8:1662.
[28] Kim JW,Roh YS,Jeong H,etal.Spliceosome-associated protein 130 exacerbates alcohol-induced liver injury by inducing NLRP3 inflammasome-mediated il-1beta in mice[J].Am J Pathol,2018,188(4):967-980.
[29] Hupfer T,Schick J,Jozefowski K,etal.Stat6-dependent inhibition of mincle expression in mouse and human antigen-presenting cells by the Th2 cytokine IL-4[J].Front Immunol,2016,7:423.
[30] Behler F,Maus R,Bohling J,etal.Macrophage-inducible C-type lectin Mincle-expressing dendritic cells contribute to control of splenic Mycobacterium bovis BCG infection in mice[J].Infect Immun,2015,83(1):184-196.
[31] Kalantari P,Morales Y,Miller EA,etal.CD209a synergizes with dectin-2 and mincle to drive severe Th17 cell-mediated schistosome egg-induced immunopathology[J].Cell Rep,2018,22(5):1288-1300.
[32] von Stebut E.Parasites dampen dendritic cell activation to ensure their survival[J].Trends Parasitol,2017,33(2):78-80.
[33] Iborra S,Martinez-Lopez M,Cueto FJ,etal.Leishmania uses mincle to target an inhibitory ITAM signaling pathway in dendritic cells that dampens adaptive immunity to infection[J].Immunity,2016,45(4):788-801.
[34] Wuthrich M,Wang H,Li M,etal.Fonsecaea pedrosoi-induced Th17-cell differentiation in mice is fostered by Dectin-2 and suppressed by Mincle recognition[J].Eur J Immunol,2015,45(9):2542-2552.
[35] Kiyotake R,Oh-Hora M,Ishikawa E,etal.Human mincle binds to cholesterol crystals and triggers innate immune responses[J].J Biol Chem,2015,290(42):25322-25332.
[36] Zhu W,Yan H,Li S,etal.PPAR-gamma agonist pioglitazone regulates dendritic cells immunogenicity mediated by DC-SIGN via the MAPK and NF-kappaB pathways[J].Int Immunopharmacol,2016,41:24-34.
[37] Prasad A,Kulkarni R,Jiang S,etal.Cocaine enhances DC to T-cell HIV-1 transmission by activating DC-SIGN/LARG/LSP1 complex and facilitating infectious synapse formation[J].Sci Rep,2017,7:40648.
[38] Tsai JJ,Wang HC,Chiu CL,etal.The effect of Dermatophagoides pteronyssinus group 7 allergen (Der p 7) on dendritic cells and its role in T cell polarization[J].Immunobiology,2016,221(11):1319-1328.
[39] Drummond RA,Gaffen SL,Hise AG,etal.Innate defense against fungal pathogens[J].Cold Spring Harb Perspect Med,2014,5(6):a019620.
[40] Ribeiro CM,Sarrami-Forooshani R,Setiawan LC,etal.Receptor usage dictates HIV-1 restriction by human TRIM5alpha in dendritic cell subsets[J].Nature,2016,540(7633):448-452.
[41] Qian YW,Li C,Jiang AP,etal.HIV-1 gp120 glycoprotein interacting with dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) down-regulates tight junction proteins to disrupt the blood retinal barrier and increase its permeability[J].J Biol Chem,2016,291(44):22977-22987.
[42] Phoenix I,Nishiyama S,Lokugamage N,etal.N-glycans on the rift valley fever virus envelope glycoproteins gn and gc redundantly support viral infection via DC-SIGN[J].Viruses,2016,8(5):149.
[43] Cai M,Zhou T,Wang X,etal.DC-SIGN expression on podocytes and its role in inflammatory immune response of lupus nephritis[J].Clin Exp Immunol,2016,183(3):317-325.
[44] Prado AM,Ruzal SM,Cordo SM.S-layer proteins from Lactobacillus sp.inhibit bacterial infection by blockage of DC-SIGN cell receptor[J].Int J Biol Macromol,2016,92:998-1005.
[45] Ribeiro-Viana R,Sánchez-Navarro M,Luczkowiak J,etal.Erratum:Virus-like glycodendrinanoparticles displaying quasi-equivalent nested polyvalency upon glycoprotein platforms potently block viral infection.[J].Nat Commun,2012,3(10):1303.
[46] Wang P,Hu K,Luo S,etal.DC-SIGN as an attachment factor mediates Japanese encephalitis virus infection of human dendritic cells via interaction with a single high-mannose residue of viral E glycoprotein[J].Virology,2016,488:108-119.
[47] Nabatov AA,Raginov IS.The DC-SIGN-CD56 interaction inhibits the anti-dendritic cell cytotoxicity of CD56 expressing cells[J].Infect Agent Cancer,2015,10:49.
[48] Na H,Liu X,Li X,etal.Novel roles of DC-SIGNR in colon cancer cell adhesion,migration,invasion,and liver metastasis[J].J Hematol Oncol,2017,10(1):28.
[49] Odegard JM,Kelley-Clarke B,Tareen SU,etal.Virological and preclinical characterization of a dendritic cell targeting,integration-deficient lentiviral vector for cancer immunotherapy[J].J Immunother,2015,38(2):41-53.
[50] Fehres CM,van Beelen AJ,Bruijns S,etal.In situ delivery of antigen to DC-SIGN(+)CD14(+) dermal dendritic cells results in enhanced CD8(+) T-cell responses[J].J Invest Dermatol,2015,135(9):2228-2236.
[51] Lundberg K,Rydnert F,Broos S,etal.Allergen-specific immunotherapy alters the frequency,as well as the FcR and CLR expression profiles of human dendritic cell subsets[J].PLoS One,2016,11(2):e148838.
[52] Salazar F,Hall L,Negm OH,etal.The mannose receptor negatively modulates the Toll-like receptor 4-aryl hydrocarbon receptor-indoleamine 2,3-dioxygenase axis in dendritic cells affecting T helper cell polarization[J].J Allergy Clin Immunol,2016,137(6):1841-1851.
[53] Peters M,Guidato PM,Peters K,etal.Allergy-protective arabinogalactan modulates human dendritic cells via C-type lectins and inhibition of NF-κB.[J].J Immunol,2016,196(4):1626-1635.
[54] Martinez-Alvarez JA,Perez-Garcia LA,Mellado-Mojica E,etal.Sporothrix schenckii sensu stricto and sporothrix brasiliensis are differentially recognized by human peripheral blood mononuclear cells[J].Front Microbiol,2017,8:843.
[55] Wang Q,Zhao G,Lin J,etal.Role of the mannose receptor during aspergillus fumigatus infection and interaction with dectin-1 in corneal epithelial cells[J].Cornea,2016,35(2):267-273.
[56] Liu DR,Guan QL,Gao MT,etal.Mannose receptor as a potential biomarker for gastric cancer:a pilot study[J].Int J Biol Markers,2017,32(3):e278-e283.
[57] Izumi G,Koga K,Takamura M,etal.Mannose receptor is highly expressed by peritoneal dendritic cells in endometriosis[J].Fertil Steril,2017,107(1):167-173.
[58] Shi GN,Zhang CN,Xu R,etal.Enhanced antitumor immunity by targeting dendritic cells with tumor cell lysate-loaded chitosan nanoparticles vaccine[J].Biomaterials,2017,113:191-202.
[59] Zinyamagutsire RBL,Chasela C,Kallestrup P,etal.HIV-1 disease progression and survival in an adult population in zimbabwe:is there an effect of the mannose binding lectin deficiency?[J].Omics A J Integrat Biol,2015,19(9):542.
[60] Zinyamagutsire RBL,Chasela C,Madsen HO,etal.Role of mannose-binding lectin deficiency in HIV-1 and schistosoma infections in a rural adult population in zimbabwe[J].PLoS One,2015,10(4):e122659.
[61] Xu XY,Li HJ,Zhang LY,etal.Mannan-binding lectin at a supraphysiological concentration inhibits differentiation of dendritic cells from human CD14(+) monocytes.[J].Microbiol Immunol,2015,59(12):724-734.
[62] Wang MY,Wang FP,Zhai JJ,etal.Mannan-binding lectin inhibits candida albicans-induced DC maturation and cytokine secretion[J].Zhongguo Shi Yan Xue Ye Xue Za Zhi,2015,23(2):517-521.
[63] Wittmann A,Lamprinaki D,Bowles KM,etal.Dectin-2 recognizes mannosylated O-antigens of human opportunistic pathogens and augments lipopolysaccharide activation of myeloid cells[J].J Biol Chem,2016,291(34):17629-17638.
[64] Li J,Ma JM,Ge X.Role of IgG4 serology in identifying common orbital lymphoproliferative disorders[J].Int J Ophthalmol,2016,9(2):275-277.
[65] Sousa MDG,Reid D,Schweighoffer E,etal.Restoration of pattern recognition receptor costimulation to treat chromoblastomycosis,a chronic fungal infection of the skin[J].Cell Host & Microbe,2011,9(5):436.
[66] Tsai JJ,Wang HC,Chiu CL,etal.The effect of Dermatophagoides pteronyssinus group 7 allergen (Der p 7) on dendritic cells and its role in T cell polarization[J].Immunobiology,2016,221(11):1319-1328.
[67] Lemoine S,Jaron B,Tabka S,etal.Dectin-1 activation unlocks IL12A expression and reveals the TH1 potency of neonatal dendritic cells[J].J Allergy Clin Immunol,2015,136(5):1355-1368.
[68] van Haren SD,Dowling DJ,Foppen W,etal.Age-specific adjuvant synergy:dual TLR7/8 and mincle activation of human newborn dendritic cells enables Th1 polarization[J].J Immunol,2016,197(11):4413-4424.
[69] Kim HS,Park KH,Lee HK,etal.Curdlan activates dendritic cells through dectin-1 and toll-like receptor 4 signaling[J].Int Immunopharmacol,2016,39:71-78.
[70] Masuda Y,Nawa D,Nakayama Y,etal.Soluble beta-glucan from Grifola frondosa induces tumor regression in synergy with TLR9 agonist via dendritic cell-mediated immunity[J].J Leukoc Biol,2015,98(6):1015-1025.