国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

骨髓微環(huán)境信號(hào)通路介導(dǎo)的白血病耐藥機(jī)制研究進(jìn)展*

2018-01-23 13:59張利萍劉文君
關(guān)鍵詞:白血病耐藥性耐藥

張利萍,劉文君

(西南醫(yī)科大學(xué)附屬醫(yī)院 兒科,四川 瀘州 646000)

白血病是造血組織的惡性腫瘤性疾病,雖然對其發(fā)病機(jī)制的研究越來越深入,但其耐藥性和復(fù)發(fā)的比例仍逐年上升。近年研究發(fā)現(xiàn),骨髓微環(huán)境(bone marrow microenvironment, BMM)為白血病干細(xì)胞(leukemia stem cells, LSCs)提供了一個(gè)避難所,使LSCs逃避化療藥物的殺傷作用而獲得耐藥。研究顯示,BMM中許多信號(hào)通路參與了白血病細(xì)胞耐藥的產(chǎn)生,如CXCL12/CXC趨化因子受體4(CXC chemokine receptor 4, CXCR4)﹑Wnt/β-catenin﹑核轉(zhuǎn)錄因子 κB(nuclear transcription factor κB, NF-κB)﹑磷脂酰肌醇-3激酶/絲氨酸-蘇氨酸激酶信號(hào)通路(phosphatidylinositol 3-kinase/ Serine-threonine kinase, PI3K/Akt)﹑Notch及Hh等信號(hào)通路[1-6]。本文就BMM中主要信號(hào)通路介導(dǎo)的白血病細(xì)胞耐藥性作如下綜述。

1 CXCL12/CXCR4信號(hào)通路介導(dǎo)的耐藥

趨化因子CXCL12又被稱為基質(zhì)細(xì)胞衍生因子-1(stromal cell-derived factor-1, SDF-1),屬于趨化因子蛋白家族,主要由骨髓基質(zhì)細(xì)胞(bone marrow stromal cells, BMSCs)和內(nèi)皮細(xì)胞產(chǎn)生,通過與其特異性受體CXCR4相互作用,產(chǎn)生一系列的病理生理改變。

CXCR4存在于多種細(xì)胞中,包括淋巴細(xì)胞﹑造血干細(xì)胞﹑內(nèi)皮細(xì)胞﹑上皮細(xì)胞及癌細(xì)胞等[7]。研究顯示,其通過調(diào)節(jié)白血病細(xì)胞和骨髓間質(zhì)細(xì)胞的相互作用,從而保護(hù)白血病細(xì)胞免于自發(fā)和化療所致的死亡[8]。其抑制劑AMD 3100可通過阻斷白血病細(xì)胞對成骨細(xì)胞的黏附作用而逆轉(zhuǎn)其多藥耐藥性[1]。因此,CXCR4被認(rèn)為可能是影響白血病生存和耐藥白血病預(yù)后的一個(gè)關(guān)鍵因素。LIU等[9]的研究結(jié)果表明,miR-146 a與CXCR4的表達(dá)呈負(fù)相關(guān);通過miR-146a抑制劑的誘導(dǎo)下調(diào)CXCR4的表達(dá),從而減弱K562細(xì)胞的耐藥性,這表明CXCR4是通過介導(dǎo)miR-146a下調(diào)而產(chǎn)生阿霉素(Adriamycin, ADM)耐藥的關(guān)鍵因素。而且,上調(diào)的CXCR4能促使慢性粒細(xì)胞白血病(chronic myeloid leukemia, CML)細(xì)胞遷移至BMM,導(dǎo)致CML細(xì)胞停滯于G0/G1期,處于相對靜止?fàn)顟B(tài),從而免于藥物的殺傷[10]。同時(shí),CXCL12通過增加CXCR4的表達(dá),上調(diào)下游的PI3K/Akt和促進(jìn)NF-κB二聚體易位到細(xì)胞核,降低凋亡相關(guān)蛋白的表達(dá),最終提高K562細(xì)胞對ADM的耐藥性[11]。文獻(xiàn)還報(bào)道,CXCR4/SDF-1信號(hào)通路也在套細(xì)胞淋巴瘤細(xì)胞自噬體的形成中起作用,促進(jìn)腫瘤細(xì)胞在BMM內(nèi)的生存,介導(dǎo)細(xì)胞耐藥[12]。動(dòng)物體內(nèi)實(shí)驗(yàn)表明,CXCR4拮抗劑可通過誘導(dǎo)急性髓系白血?。╝cute myeloid leukemia, AML)細(xì)胞和祖細(xì)胞動(dòng)員進(jìn)入血液循環(huán),或誘導(dǎo)白血病細(xì)胞凋亡,而增強(qiáng)化療藥物的抗白血病作用[13]。有研究顯示,下調(diào)miR-146a和上調(diào)CXCR4可能與K562/ADM細(xì)胞的耐藥性有關(guān);大黃素甲醚可以通過誘導(dǎo)miR-146a的表達(dá)抑制CXCL12/CXCR4信號(hào)通路從而逆轉(zhuǎn)K562/ADM細(xì)胞對ADM的耐藥性,因此,鑒于大黃素甲醚對正常細(xì)胞的毒性較低,其可以被考慮作為一個(gè)治療CML的潛在候選輔助劑[9]。

2 Wnt/β-catenin信號(hào)通路介導(dǎo)的耐藥

Wnt信號(hào)通路是由蛋白相互作用形成的網(wǎng)絡(luò)通路,分為經(jīng)典Wnt信號(hào)途徑(Wnt/β-catenin)和非經(jīng)典Wnt信號(hào)途徑(Wnt/Ca2+/nuclear factor of activated T cells),兩者調(diào)控細(xì)胞的生長,Wnt/β-catenin信號(hào)通路起主要作用。

研究發(fā)現(xiàn)在血液系統(tǒng)惡性腫瘤的研究中,如CML﹑急性淋巴細(xì)胞白血?。╝cute lymphoblastic leukemia,ALL)及AML,均能檢測到Wnt信號(hào)通路的活化。HU等[14]研究發(fā)現(xiàn),CML的急變期,BCRABL可通過激活PI3K/AKT信號(hào)通路,刺激β-catenin的表達(dá),從而激活Wnt/β-catenin信號(hào)通路;當(dāng)抑制BCR-ABL﹑PI3K或AKT的激酶活性時(shí),能夠降低K562細(xì)胞和CML小鼠模型中β-catenin的水平。在ALL復(fù)發(fā)患者中發(fā)現(xiàn)β-catenin的活化增加,用Wnt抑制劑iCRT14可誘導(dǎo)Wnt靶基因下降[15]。同樣在AML細(xì)胞中,β-catenin的異常表達(dá)和核異位參與維持LSCs的自我更新[16]。因此,Wnt/β-catenin信號(hào)通路可能在白血病耐藥方面起到了重要作用。其信號(hào)通路的活化可通過抑制糖原合成酶激酶-3的活性,使胞漿內(nèi)β-catenin的表達(dá)水平升高并發(fā)生核轉(zhuǎn)移,隨后進(jìn)入核內(nèi)的β-catenin與組織權(quán)重因子/白細(xì)胞移動(dòng)增強(qiáng)因子復(fù)合物結(jié)合,從而上調(diào)下游的促癌基因,如原癌基因c-myc﹑細(xì)胞周期蛋白D1及基質(zhì)金屬蛋白酶-7的表達(dá),從而影響腫瘤的發(fā)生和耐藥。研究顯示,骨髓微環(huán)境中間充質(zhì)干細(xì)胞(mesenchyma stem cell,MSC)可通過激活Wnt/β-catenin信號(hào)通路,調(diào)節(jié)Bcl-2﹑Bax﹑存活素﹑p53和c-myc基因,進(jìn)而抑制凋亡信號(hào)通路,保護(hù)K562細(xì)胞免于凋亡;用Wnt抑制劑DKK-1,能夠下調(diào)β-catenin的表達(dá),促使K562細(xì)胞的凋亡增加[17]。FISKUS等[18]研究顯示,將β-catenin拮抗劑BC2059與帕比司他聯(lián)合運(yùn)用,可誘導(dǎo)AML干/祖細(xì)胞的凋亡。所以,探索Wnt/β-catenin信號(hào)通路對白血病耐藥的影響機(jī)制,對治療的研究有著重要的臨床意義。

3 NF-κB信號(hào)通路介導(dǎo)的耐藥

NF-κB信號(hào)通路存在于多種白血病細(xì)胞中,尤其是LSCs并出現(xiàn)持續(xù)性的活化,參與了白血病的發(fā)生﹑發(fā)展及復(fù)發(fā)。馮金等[19]研究顯示,在人CML急變K562細(xì)胞﹑人急性單核白血病THP-1細(xì)胞和急性早幼粒細(xì)胞白血病HL-60細(xì)胞中,NF-κB的轉(zhuǎn)錄活性均較對照組升高;另外,其持續(xù)性激活可改變凋亡相關(guān)蛋白Bax﹑Bcl-2的表達(dá)水平,進(jìn)而阻礙白血病細(xì)胞凋亡,最終影響其生存。例如NF-κB信號(hào)通路可通過增強(qiáng)抗凋亡蛋白基因Bcl-XL﹑Bcl-2和Bcl-X的轉(zhuǎn)錄,上調(diào)其表達(dá),Bcl-XL進(jìn)而降低線粒體膜的通透性﹑抑制線粒體去極化及細(xì)胞色素C釋放,從而發(fā)揮其抗細(xì)胞凋亡作用[20]。此外,還可以通過上調(diào)細(xì)胞凋亡抑制蛋白家族的表達(dá)(如存活素)以及下調(diào)促凋亡因子的表達(dá),抑制細(xì)胞凋亡從而參與細(xì)胞耐藥[21-22]。還有研究顯示,異常的NF-κB信號(hào)通路可誘導(dǎo)核因子E2相關(guān)因子2在AML細(xì)胞的異常連續(xù)活化,保護(hù)細(xì)胞免受氧化應(yīng)激的損傷,促進(jìn)白血病細(xì)胞存活,甚至使其對細(xì)胞毒性化療藥物產(chǎn)生抵抗而耐藥[23]。WANG等[24]研究表明,該信號(hào)通路的激活也可上調(diào)細(xì)胞膜P-糖蛋白(P-glycoprotein, P-gp)的表達(dá),將藥物泵到細(xì)胞外,降低細(xì)胞內(nèi)藥物的濃度,進(jìn)而介導(dǎo)白血病細(xì)胞多藥耐藥;使用硼替佐米可以對易位到細(xì)胞核的NF-κB起到抑制作用,導(dǎo)致多藥耐藥蛋白1(multidrug resistance 1, MDR1)下調(diào)和P-gp的表達(dá)減少,從而增加細(xì)胞內(nèi)藥物濃度,誘導(dǎo)細(xì)胞的藥物殺傷作用。

4 PI3K/AKT信號(hào)通路介導(dǎo)的耐藥

近年來,PI3K/AKT被證實(shí)廣泛存在于細(xì)胞中,是細(xì)胞內(nèi)重要的信號(hào)通路之一,發(fā)揮著抑制細(xì)胞凋亡﹑促進(jìn)細(xì)胞增殖的作用。PI3K通過將Akt即蛋白激酶B分子中的絲氨酸/蘇氨酸磷酸化而使其激活;活化的Akt作用于其下游靶分子,包括促凋亡蛋白Bad和Caspase-9﹑轉(zhuǎn)錄因子NF-κB和Foxo﹑細(xì)胞周期依賴性激酶抑制分子P21及糖原合成酶激酶3β(glycogen synthase kinase 3β, GSK3β)等,進(jìn)而發(fā)揮其抑制凋亡和促進(jìn)細(xì)胞周期進(jìn)程的作用[25]。

在白血病的研究中發(fā)現(xiàn)間充質(zhì)干細(xì)胞可通過上調(diào)PI3K/AKT信號(hào)通路使其與共培養(yǎng)的AML細(xì)胞獲得耐藥[26]。而在CML研究中發(fā)現(xiàn),細(xì)胞表面的唾液酸作為一個(gè)新興的腫瘤細(xì)胞多藥耐藥的重要特征,且α-2,8-唾液酸轉(zhuǎn)移酶可能通過ST8SIA4調(diào)節(jié)PI3K/AKT信號(hào)通路和P-gp的表達(dá)活性而參與其細(xì)胞耐藥[27]。此外,該信號(hào)通路介導(dǎo)CML細(xì)胞耐藥的機(jī)制與MDR1和鎂依賴性磷酸酶1(magnesium-dependent phosphatase 1,MRP1)的表達(dá)有關(guān)。有研究發(fā)現(xiàn)知母皂苷A-III能夠抑制某些人的腫瘤進(jìn)程并具有抗癌的作用,可通過下調(diào)MDR1和MRP1的表達(dá)抑制PI3K/AKT信號(hào)通路,從而逆轉(zhuǎn)CML細(xì)胞多藥耐藥[28]。PI3K的活化還可通過增強(qiáng)腫瘤細(xì)胞的糖酵解,而使其在體內(nèi)有利于獲得生存優(yōu)勢,如BCR/ABL通過激活PI3K,進(jìn)而促使CML細(xì)胞的葡萄糖轉(zhuǎn)運(yùn)加快,最終促進(jìn)CML細(xì)胞的存活。另外,在B細(xì)胞急性淋巴細(xì)胞白血?。˙-cell acute lymphoblastic leukemia,B-ALL)患者中過度表達(dá)的ADAM28基因與其復(fù)發(fā)有關(guān),且其可能是通過PI3K/AKT信號(hào)通路調(diào)節(jié),因此可作為B-ALL患者的潛在治療靶點(diǎn)[29]。由此可以看出阻斷PI3K/AKT信號(hào)通路可以減少白血病細(xì)胞耐藥,為白血病的治療提供依據(jù)。

5 Notch信號(hào)通路介導(dǎo)的耐藥

Notch信號(hào)通路是由Notch受體﹑Notch配體(DSL蛋白)及細(xì)胞內(nèi)效應(yīng)器分子(CSL-DNA結(jié)合蛋白)構(gòu)成的。Notch受體表達(dá)于造血干細(xì)胞,Notch配體來自于BMSCs,BMM中通過兩者的相互作用介導(dǎo)細(xì)胞增殖﹑分化等。

研究發(fā)現(xiàn)Notch信號(hào)通路與白血病的發(fā)生發(fā)展有著密切關(guān)系,如在慢性淋巴細(xì)胞白血病(chronic lymphocytic leukemia, CLL)的研究中,Notch分子在CLL細(xì)胞高表達(dá)或突變,并且這些Notch分子與CLL的預(yù)后﹑抗凋亡自發(fā)及耐藥等有關(guān)[30]。NWABO KAMDJE等[31]研究表明,骨髓MSCs可保護(hù)CLL細(xì)胞免受和后續(xù)各種藥物誘導(dǎo)的凋亡,包括氟達(dá)拉濱﹑環(huán)磷酰胺﹑苯達(dá)莫司汀﹑強(qiáng)的松和氫化可的松;結(jié)合使用抗Notch-1﹑Notch-2及Notch-4抗體或γ-分泌酶抑制劑XII能逆轉(zhuǎn)這種保護(hù)作用,說明了Notch-1﹑Notch-2及Notch-4信號(hào)在BMSCs介導(dǎo) CLL細(xì)胞的存活和耐藥性中扮演重要的角色。此外,ZHANG等[5]研究顯示,CLL細(xì)胞中Notch1﹑Notch2﹑Bcl-2及NF-κB基因的mRNA表達(dá)水平均高于健康對照組,但Notch3和Notch4基因之間無差異,當(dāng)用阿糖胞苷(cytosine arabinoside, Ara-C)和地塞米松抑制L1210細(xì)胞增殖時(shí),其細(xì)胞中Notch1蛋白的表達(dá)將下調(diào),所以也證實(shí)Notch信號(hào)通路介導(dǎo)了白血病細(xì)胞的抗凋亡和耐藥性,但其各種Notch分子的具體作用機(jī)制仍然不清楚。NWABO KAMDJE等[31]研究表明CLL細(xì)胞其Notch信號(hào)通路可通過下調(diào)Caspase-3的活性和促使Bcl-2﹑NF-κB過表達(dá),影響細(xì)胞凋亡而促使其耐藥的發(fā)生。CHADWICK等[32]研究顯示,急性T淋巴細(xì)胞白血病細(xì)胞株中,Notch信號(hào)通路可通過上調(diào)編碼抗凋亡細(xì)胞內(nèi)蛋白的基因GIMAP5的表達(dá),保護(hù)細(xì)胞免受凋亡,當(dāng)使用siRNA敲除掉GIMAP5基因的表達(dá)時(shí),可促進(jìn)糖皮質(zhì)激素誘導(dǎo)的細(xì)胞凋亡。另外還在多發(fā)性骨髓瘤(multiple myeloma, MM)的研究中發(fā)現(xiàn),Notch信號(hào)通路能夠通過上調(diào)整合素αvβ5在骨髓瘤細(xì)胞中的表達(dá),進(jìn)而增強(qiáng)其黏附到玻璃粘連蛋白上,已知玻璃黏連蛋白介導(dǎo)的黏附作用可保護(hù)骨髓瘤細(xì)胞免受藥物誘導(dǎo)的細(xì)胞凋亡,最終介導(dǎo)MM細(xì)胞耐藥[33]。因此,Notch信號(hào)通路對于白血病治療的研究來說是一個(gè)值得深入探討的方向。

6 Hedgehog信號(hào)通路介導(dǎo)的耐藥

Hedgehog信號(hào)又稱為Hh信號(hào),Hh信號(hào)通路受靶細(xì)胞膜上的Patched(以下簡稱Ptc)和Smoothened(以下簡稱Smo)2種受體的調(diào)控,其中受體Ptc對Hh信號(hào)起負(fù)調(diào)控作用,受體Smo是Hh信號(hào)通路所必需的受體。正常情況下,Hh信號(hào)通路調(diào)控著動(dòng)物胚胎期組織細(xì)胞的生長﹑分化。但是當(dāng)其被異常激活,將會(huì)增強(qiáng)下游靶基因如c-myc﹑血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)等表達(dá),導(dǎo)致腫瘤的發(fā)生。Hh配體與細(xì)胞表面的受體Patched1結(jié)合解除對Smo的抑制,激活的Smo通過抑制激酶如GSK3β的活性,調(diào)節(jié)蛋白質(zhì)降解和Gli蛋白(GLi1﹑Gli2及Gli3)亞細(xì)胞定位,最后調(diào)節(jié)Hedgehog反應(yīng)基因促使細(xì)胞生存和增殖。

在原發(fā)性AML細(xì)胞中,Hh信號(hào)通路的激活在CD34+細(xì)胞中比CD34-細(xì)胞更明顯,且小分子Hedgehog抑制劑PF-913能夠調(diào)節(jié)細(xì)胞自我更新的特征和細(xì)胞周期的進(jìn)程,進(jìn)而增強(qiáng)AML細(xì)胞對Ara-C的敏感性,阻斷其耐藥的發(fā)生[34]。BABASHAH等[35]研究發(fā)現(xiàn),來自確診CML患者的CD34+細(xì)胞中Hh Smo信號(hào)傳導(dǎo)蛋白的上調(diào)與miR-326的表達(dá)降低有關(guān),另外還發(fā)現(xiàn)通過過表達(dá)miR-326可導(dǎo)致SMO下調(diào),進(jìn)而抑制細(xì)胞增殖和上調(diào)細(xì)胞凋亡率,因此miR-326的下調(diào)可能是Hh信號(hào)通路中SMO不受限制激活的一個(gè)可能的機(jī)制,因此通過上調(diào)miR-326可能有益于消除CML干/祖細(xì)胞,這可作為其治療研究的一個(gè)方向。此外,Hh信號(hào)通路還可通過調(diào)節(jié)轉(zhuǎn)錄因子Gli1的下游靶基因,調(diào)節(jié)細(xì)胞周期蛋白B的活性,以及通過調(diào)節(jié)P21(1種依賴細(xì)胞周期蛋白激酶的抑制蛋白)來阻斷細(xì)胞休眠狀態(tài)等,影響細(xì)胞增殖,最終介導(dǎo)細(xì)胞耐藥[36]。因此,針對Hh信號(hào)通路的靶向治療可能為克服白血病耐藥提供有利的依據(jù)。研究發(fā)現(xiàn),環(huán)杷明可通過使Bcl-2下調(diào)誘導(dǎo)耐藥性CD34+ AML細(xì)胞凋亡,并增加其對Ara-C的敏感性[37]。但因?yàn)閏yclopamine有毒性作用使得其在臨床上沒有被得到有效的應(yīng)用。近期有研究顯示,通過直接干擾Gli轉(zhuǎn)錄因子的活性以及與其他信號(hào)通路的相互作用來針對非標(biāo)準(zhǔn)Hh/Gli信號(hào)通路可能特別有前途,因?yàn)檫@種交替的方法可能防止抗藥性的發(fā)展以及作為SMO抑制劑嚴(yán)重的副作用[38]。但這些實(shí)驗(yàn)結(jié)果是否有益于使患者獲得真正的臨床療效還有待進(jìn)一步研究。

7 結(jié)語與展望

本文總結(jié)了近年來,BMM主要信號(hào)通路介導(dǎo)的白血病細(xì)胞耐藥機(jī)制,這些信號(hào)通路在白血病細(xì)胞的生存﹑增殖﹑凋亡以及遷移和耐藥中發(fā)揮了重要的作用,各通路之間又存在著相互聯(lián)系,形成更為復(fù)雜的調(diào)控網(wǎng)絡(luò),共同參與介導(dǎo)白血病細(xì)胞的耐藥性。當(dāng)然還包括其他的信號(hào)途徑,如HIF-1α/VEGF﹑血管細(xì)胞黏附分子1/極遲抗原4﹑血管內(nèi)皮生長因子A/血管內(nèi)皮生長因子受體2及p38絲裂原激活的蛋白激酶等信號(hào)途徑也參與了白血病細(xì)胞的生存和耐藥過程。雖然目前已有很多學(xué)者在探索BMM與白血病細(xì)胞耐藥方面有了一定的成果,但這些機(jī)制仍然不是完全清楚,況且其中涉及到的信號(hào)通路更繁瑣復(fù)雜,尚有待進(jìn)一步的研究。闡明BMM介導(dǎo)白血病細(xì)胞耐藥的信號(hào)機(jī)制可以為白血病的治療提供依據(jù)和靶點(diǎn),有助于提高白血病治療的療效。

參 考 文 獻(xiàn):

[1]SHEN Z, ZENG D, ZOU Z, et al. Effects of SDF-1/CXCR4 signal pathway blockade by AMD3100 on the adhesion of leukemia cells to osteoblast niche and the drug resistance of leukemia cells[J].Zhonghua Xue Ye Xue Za Zhi, 2015, 36(5): 413-417.

[2]HU K, GU Y, LOU L, et al. Galectin-3 mediates bone marrow microenvironment-induced drug resistance in acute leukemia cells via Wnt/β-catenin signaling pathway[J]. J Hematol Oncol, 2015, 8: 1.

[3]BOSMAN M C, SCHURINGA JJ, VELLENGA E. Constitutive NF-κB activation in AML: Causes and treatment strategies[J]. Crit Rev Oncol Hematol, 2016, 98: 35-44.

[4]CHEN J R, JIA X H, WANG H, et al. Timosaponin A-III reverses multi-drug resistance in human chronic myelogenous leukemia K562/ADM cells via downregulation of MDR1 and MRP1 expression by inhibiting PI3K/Akt signaling pathway[J]. Int J Oncol, 2016, 48(5): 2063-2070.

[5]ZHANG J Y. ZHANG J S. XU Z S. Expression of notch gene and its role of anti-apoptosis and drug-resistance of cells in chronic lymphocytic leukemia[J].Zhongguo Shi Yan Xue Ye Xue Za Zhi,2015, 23(4): 919-924.

[6]ZENG X, ZHAO H, LI Y. et al. Targeting Hedgehog signaling pathway and autophagy Overcomes drug resistance of BCR-ABL-positive chronic myeloid leukemia[J]. Autophagy, 2015, 11(2):355-372.

[7]TEICHER B A. FRICKER S P. CXCL12 (SDF-1)/CXCR4 pathway in cancer[J]. Clin Cancer Res, 2010, 16(11): 2927-2931.

[8]BURGER J A, PELED A. CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers[J]. Leukemia,2009, 23(1): 43-52.

[9]LIU W, HE J, YANG Y, et al. Upregulating miR-146a by physcion reverses multidrug resistance in human chronic myelogenous leukemia K562/ADM cells[J]. Am J Cancer Res, 2016, 6(11):2547-2560.

[10]JIN L, TABE Y, KONOPLEV S, et al. CXCR4 up-regulation by imatinib induces chronic myelogenous leukemia (CML) cell migration to bone marrow stroma and promotes survival of quiescent CML cells[J]. Mol Cancer Ther, 2008, 7(1): 48-58.

[11]WANG Y, MIAO H, LI W, et al. CXCL12/CXCR4 axis confers adriamycin resistance to human chronic myelogenous leukemia and oroxylin A improves the sensitivity of K562/ADM cells[J].Biochem Pharmacol, 2014, 90(3): 212-225.

[12]CHEN Z, TEO A E, MCCARTY N. ROS-Induced CXCR4 signaling regulates mantle cell lymphoma (MCL) cell survival and drug resistance in the bone marrow microenvironment via autophagy[J]. Clin Cancer Res, 2016, 22(1): 187-199.

[13]PELED A, TAVOR S. Role of CXCR4 in the pathogenesis of acute myeloid leukemia[J]. Theranostics, 2013, 3(1): 34-39.

[14]HU J, FENG M, LIU Z L, et al. Potential role of Wnt/β-catenin signaling in blastic transformation of chronic myeloid leukemia:cross talk between β-catenin and BCR-ABL[J]. Tumour Biol,2016: 1-14.

[15]DANDEKAR S, ROMANOS-SIRAKIS E, PAIS F, et al. Wnt inhibition leads to improved chemosensitivity in paediatric acute lymphoblastic leukaemia[J]. Br J Haematol, 2014, 167(1): 87-99.

[16]朱麗霞. β-及γ-catenin與急性髓細(xì)胞白血病關(guān)系的研究進(jìn)展[J]. 國際輸血及血液學(xué)雜志, 2015, 38(5): 419-422.

[17]HAN Y, WANG Y, XU Z, et al. Effect of bone marrow mesenchymal stem cells from blastic phase chronic myelogenous leukemia on the growth and apoptosis of leukemia cells[J]. Oncol Rep, 2013, 30(2): 1007-1013.

[18]FISKUS W, SHARMA S, SAHA S, et al. Pre-clinical efficacy of combined therapy with novel β-catenin antagonist BC2059 and histone deacetylase inhibitor against AML cells[J]. Leukemia,2015, 29(6): 1267-1278.

[19]馮金, 劉小勇. 白血病細(xì)胞中NF-κB的活化狀態(tài)及其對細(xì)胞凋亡的影響[J]. 海南醫(yī)學(xué), 2013, 24(6): 785-787.

[20]VACHHANI P, BOSE P, RAHMANI M, et al. Rational combination of dual PI3K/mTOR blockade and Bcl-2/-xL inhibition in AML[J]. Physiol Genomics, 2014, 46(13): 448-456.

[21]KNAUER S K, UNRUHE B, KARCZEWSKI S, et al. Functional characterization of novel mutations affecting survivin (BIRC5)-mediated therapy resistance in head and neck cancer patients[J].Hum Mutat, 2013, 34(2): 395-404.

[22]VOLK A, LI J, XIN J, et al. Co-inhibition of NF-κB and JNK is synergistic in TNF-expressing human AML[J]. J Exp Med, 2014,211(6): 1093-1108.

[23]RUSHWORTH S A, ZAITSEVA L, MURRAY M Y, et al. The high Nrf2 expression in human acute myeloid leukemia is driven by NF-κB and underlies its chemo-resistance[J]. Blood, 2012,120(26): 5188-5198.

[24]WANG H, WANG X, LI Y, et al. The proteasome inhibitor bortezomib reverses P-glycoprotein-mediated leukemia multidrug resistance through the NF-kappaB pathway[J]. Pharmazie,2012, 67(2): 187-192.

[25]CHANG F, LEE J T, NAVOLANIC P M, et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy[J].Leukemia, 2003, 17(3): 590-603.

[26]CHEN P, JIN Q, FU Q, et al. Induction of multidrug resistance of acute myeloid leukemia cells by cocultured stromal cells via upregulation of the PI3K/Akt signaling pathway[J]. Oncol Res,2016, 24(4): 215-223.

[27]ZHANG X, DONG W, ZHOU H, et al. α-2, 8-Sialyltransferase is involved in the development of multidrug resistance via PI3K/Akt pathway in human chronic myeloid leukemia[J]. IUBMB Life, 2015, 67(2): 77-87.

[28]CHEN J R, JIA X H, WANG H, et al. Timosaponin A-III reverses multi-drug resistance in human chronic myelogenous leukemia K562/ADM cells via downregulation of MDR1 and MRP1 expression by inhibiting PI3K/Akt signaling pathway[J]. Int J Oncol, 2016, 48(5): 2063-2070.

[29]ZHANG X H, WANG C C, JIANG Q, et al. ADAM28 overexpression regulated via the PI3K/Akt pathway is associated with relapse in de novo adult B-cell acute lymphoblastic leukemia[J]. Leuk Res, 2015, 39(11): 1229-1238.

[30]ZHANG J Y, XU Z S. Notch signal pathway and chronic lymphocytic leukemia[J].Zhongguo Shi Yan Xue Ye Xue Za Zhi,2014, 22(5): 1472-1475.

[31]NWABO KAMDJE A H, BASSI G, PACELLI L, et al. Role of stromal cell-mediated Notch signaling in CLL resistance to chemotherapy[J]. Blood Cancer J, 2012, 2(5): DOI: 10.1038/bcj.2012.17.

[32]CHADWICK N, ZEEF L, PORTILLO V, et al. Notch protection against apoptosis in T-ALL cells mediated by GIMAP5[J]. Blood Cells Mol Dis, 2010, 45(3): 201-209.

[33]DING Y, SHEN Y. Notch increased vitronection adhesion protects myeloma cells from drug induced apoptosis[J]. Biochem Biophys Res Commun, 2015, 467(4): 717-722.

[34]FUKUSHIMA N,minAMI Y, KAKIUCHI S, et al. Smallmolecule Hedgehog inhibitor attenuates the leukemia-initiation potential of acute myeloid leukemia cells[J]. Cancer Sci, 2016,107(10): 1422-1429.

[35]BABASHAH S, SADEGHIZADEH M, HAJIFATHALI A, et al. Targeting of the signal transducer Smo links microRNA-326 to the oncogenic Hedgehog pathway in CD34+ CML stem/progenitor cells[J]. Int J Cancer, 2013, 133(3): 579-589.

[36]PASCA DI MAGLIANO M, HEBROK M. Hedgehog signalling in cancer formation and maintenance[J]. Nat Rev Cancer, 2003,3(12): 903-911.

[37]KOBUNE M, TAKIMOTO R, MURASE K, et al. Drug resistance is dramatically restored by hedgehog inhibitors in CD34+leukemic cells[J]. Cancer Sci, 2009, 100(5): 948-955.

[38] ABERGER F, HUTTERER E, STERNBERG C, et al. Acute myeloid leukemia-strategies and challenges for targeting oncogenic Hedgehog/GLI signaling[J]. Cell Commun Signal,2017, 15(1): 8.

猜你喜歡
白血病耐藥性耐藥
白血病“造訪”,人體會(huì)有哪些信號(hào)?
如何判斷靶向治療耐藥
Ibalizumab治療成人多耐藥HIV-1感染的研究進(jìn)展
miR-181a在卵巢癌細(xì)胞中對順鉑的耐藥作用
長絲鱸潰爛癥病原分離鑒定和耐藥性分析
超級耐藥菌威脅全球,到底是誰惹的禍?
走進(jìn)兒童白血病的世界
WHO:HIV耐藥性危機(jī)升級,普及耐藥性檢測意義重大
澤漆乙酸乙酯提取物對SGC7901/DDP多藥耐藥性的逆轉(zhuǎn)及機(jī)制
美洲大蠊逆轉(zhuǎn)肝癌多藥耐藥性的研究
巩义市| 浮山县| 潮州市| 凯里市| 衡南县| 馆陶县| 福泉市| 静乐县| 大足县| 台南县| 九江市| 革吉县| 锡林郭勒盟| 陵川县| 缙云县| 利川市| 昂仁县| 景谷| 湖口县| 云和县| 朝阳市| 通化市| 原平市| 灵武市| 镇康县| 修武县| 昌吉市| 金华市| 依安县| 南江县| 张家川| 永吉县| 怀集县| 都兰县| 高安市| 高邑县| 黄石市| 垫江县| 桃江县| 安岳县| 连平县|