吳成君 曹一翀 馬雪霞 楊印祥 欒 佐
隨著醫(yī)療技術(shù)的進(jìn)步,胎齡≤32周的極早產(chǎn)兒和出生體重≤1 500 g的極低出生體重兒的存活率顯著提高,然而,他們的腦發(fā)育與足月正常出生體重兒有明顯差距,表現(xiàn)為大腦和小腦結(jié)構(gòu)的多種特異性改變和神經(jīng)功能方面的缺陷[1~3]。由于髓鞘形成過程受到影響,使得極早產(chǎn)和極低出生體重兒的腦白質(zhì)改變明顯,且往往與腦皮質(zhì)的改變同時(shí)存在[4, 5]。這種結(jié)構(gòu)改變對其神經(jīng)功能(包括運(yùn)動、認(rèn)知和行為的發(fā)育)產(chǎn)生的影響可持續(xù)至成人[6~8]。許多腦部特定區(qū)域如小腦、海馬和胼胝體等的結(jié)構(gòu)改變與神經(jīng)認(rèn)知功能呈明顯的負(fù)相關(guān)[9]。MRI是目前常用的測量腦發(fā)育(包括腦體積)的非侵入性方法[10]。目前測量腦體積的研究中有些是測量腦整體體積,包括全腦、白質(zhì)和灰質(zhì)體積,有些是測量腦特定區(qū)域體積,如小腦、海馬和胼胝體的體積。本Meta分析主要研究極早產(chǎn)/極低出生體重兒相對于足月正常出生體重兒在青少年時(shí)腦體積變化。
1.1 文獻(xiàn)納入標(biāo)準(zhǔn) ①研究類型為隊(duì)列研究;②暴露組為出生胎齡≤32周或出生體重≤1 500 g,非暴露組為出生胎齡38~42周且出生體重≥2 500 g;③隊(duì)列終點(diǎn)為13~18歲;④隊(duì)列終點(diǎn)人群使用MRI行腦體積的測量;⑤中文和英文文獻(xiàn)。
1.2 文獻(xiàn)排除標(biāo)準(zhǔn) ①出生時(shí)存在先天畸形或其他先天性疾病,②隨訪期間存在可能影響測量結(jié)果的疾病,如顱腦損傷、腦積水;③雖然采用MRI行腦體積的測量,但無本文Meta分析MRI測量指標(biāo);④重復(fù)發(fā)表的文獻(xiàn),若包含本Meta分析設(shè)定的不同測量指標(biāo),則均納入,若納入指標(biāo)相同,取較早發(fā)表的文獻(xiàn)。
1.3 測量指標(biāo) ①腦整體體積參數(shù),包括全腦、白質(zhì)和灰質(zhì)體積,②小腦、海馬和胼胝體等腦特定區(qū)域的體積。
1.4 文獻(xiàn)檢索策略檢索 ①數(shù)據(jù)庫:PubMed、EMBASE、the Cochrane Library、Web of Science、中國生物醫(yī)學(xué)文獻(xiàn)數(shù)據(jù)庫(CBM)、萬方和知網(wǎng)(CNKI)數(shù)據(jù)庫;②檢索時(shí)間均為建庫至2017年10月20日;③采用主題詞和自由詞結(jié)合的方式進(jìn)行檢索,中文數(shù)據(jù)庫以萬方為例,檢索式:(早產(chǎn) OR低出生體重 OR極低出生體重)AND(腦 OR白質(zhì) OR灰質(zhì) OR小腦OR海馬 OR胼胝體) AND體積 AND(MRI OR 磁共振);英文數(shù)據(jù)庫以PubMed為例,檢索式:(“very premature*” OR “very preterm” OR preterm OR pre-term OR “very low birth weight” OR “l(fā)ow birth weight” )AND( (brain volume) OR (white matter volume) OR (grey matter volume) OR (cerebellum volume) OR (cerebellar volume) OR (hippocampus volume) OR (hippocampal volume) OR (corpus callosum volume) AND (MRI OR “Magnetic resonance imaging”) ) AND (adolescence OR adolescent OR teenager OR teenage OR puberty)。
1.5 文獻(xiàn)篩選和資料提取 由吳成君和曹一翀分別獨(dú)立進(jìn)行文獻(xiàn)檢索、篩選和提取資料,通過計(jì)算Kappa值比較納入文獻(xiàn)的一致性來校對結(jié)果。提取資料:①文獻(xiàn)的作者、發(fā)表時(shí)間、國家,②研究對象的樣本量、性別、出生胎齡、出生體重,③本文觀察的測量指標(biāo)。
1.6 文獻(xiàn)質(zhì)量評價(jià) 采用Newcastle-Ottawa量表(NOS)進(jìn)行文獻(xiàn)質(zhì)量評估。
1.7 統(tǒng)計(jì)分析 采用R3.4.0軟件進(jìn)行Meta分析,計(jì)數(shù)數(shù)據(jù)采用優(yōu)勢比(OR)或相對危險(xiǎn)度(RR)為效應(yīng)量,計(jì)量數(shù)據(jù)采用加權(quán)均數(shù)差(MD)或標(biāo)準(zhǔn)化均數(shù)差(SMD)為效應(yīng)量,結(jié)果均以95%CI表示。采用Q和I2檢驗(yàn)文獻(xiàn)異質(zhì)性,I2≤50%時(shí)采用固定效應(yīng)模型合并;I2>50%時(shí)采用隨機(jī)效應(yīng)模型并分析異質(zhì)性來源。采用漏斗圖和Peters法檢驗(yàn)發(fā)表偏倚。
2.1 文獻(xiàn)檢索結(jié)果 檢出367篇文獻(xiàn),經(jīng)篩選最終13篇文獻(xiàn)進(jìn)入Meta分析(圖1)。13篇共1 272例,暴露組686例,非暴露組586例,文獻(xiàn)基本情況見表1。
2.2 納入文獻(xiàn)一般情況 13篇文獻(xiàn)中,文獻(xiàn)[11~14]以極低出生體重兒為研究對象,其余9篇文獻(xiàn)均以極早產(chǎn)兒為研究對象。
圖1 文獻(xiàn)篩選流程圖 表1 納入文獻(xiàn)基本情況
注 1)隨訪終點(diǎn)時(shí)的樣本量,T:暴露組,C:非暴露組;2)出生胎齡:周;3)出生體重:g;4)胼胝體大小以正中矢狀位的胼胝體面積衡量
2.3 文獻(xiàn)偏倚風(fēng)險(xiǎn)評價(jià) 表2顯示,13篇文獻(xiàn)均隨訪不完整,有失訪情況發(fā)生;9篇研究[11, 13, 15~21]非暴露組與暴露組來源于不同社區(qū);3篇研究[12, 14, 19]僅根據(jù)問卷回顧出生數(shù)據(jù)(早產(chǎn)孕周或低體重)。13篇文獻(xiàn)都采用1.5T場強(qiáng)的MRI,采用計(jì)算機(jī)軟件自動測量體積,測量偏倚風(fēng)險(xiǎn)小。13篇文獻(xiàn)的暴露組和非暴露組隊(duì)列終點(diǎn)年齡一致。
表2 文獻(xiàn)質(zhì)量評價(jià)(NOS)
2.4 Meta分析結(jié)果 圖2顯示,①全腦體積:6篇文獻(xiàn)[11, 13, 16, 21~23]報(bào)告(n=720),其中暴露組449例,異質(zhì)性檢驗(yàn)I2=0,采用固定效應(yīng)模型合并,暴露組與非暴露組相比全腦體積明顯縮小(SMD=-0.66,95%CI=-0.81~-0.51)。②白質(zhì)體積:8篇文獻(xiàn)[11~13, 16, 17, 19, 20, 22]報(bào)告(n=970),其中暴露組512例,異質(zhì)性檢驗(yàn)I2=29.9%,采用固定效應(yīng)模型合并,暴露組與非暴露組相比白質(zhì)體積明顯縮小(SMD=-0.51,95%CI=-0.64~-0.38);圖3顯示,依據(jù)年齡行亞組分析,年齡≥16歲組和<16歲組間差異無統(tǒng)計(jì)學(xué)意義(Q=0.00,P=0.980 1),年齡<16歲組的異質(zhì)性(I2=69.3%)大于年齡≥16歲組(I2=0),顯示白質(zhì)體積Meta分析的異質(zhì)性來源于年齡<16歲組。③灰質(zhì)體積:5篇文獻(xiàn)[12, 15, 19, 20, 23]報(bào)告(n=515),其中暴露組280例,異質(zhì)性檢驗(yàn)I2=67.9%,由于納入文獻(xiàn)數(shù)量偏少,難以分析異質(zhì)性來源,故采用隨機(jī)效應(yīng)模型合并,暴露組與非暴露組相比灰質(zhì)體積明顯縮小(SMD=-0.60,95%CI=-0.93~-0.28)。④小腦體積:5篇文獻(xiàn)[11, 13, 14, 20, 23]報(bào)告(n=329),其中暴露組172例,異質(zhì)性檢驗(yàn)I2=34.4%,采用固定效應(yīng)模型合并,以SMD為效應(yīng)量,暴露組與非暴露組相比,小腦體積明顯減少(SMD=-0.45,95%CI=-0.64~-0.25)。⑤海馬體積:3篇文獻(xiàn)[11, 13, 21]報(bào)告(n=274),其中暴露組146例,異質(zhì)性檢驗(yàn)I2=13.3%,采用固定效應(yīng)模型合并,暴露組與非暴露組相比,海馬體積明顯縮小(SMD=-0.48,95%CI=-0.73~-0.24)。⑥胼胝體大?。?篇文獻(xiàn)[13, 17~19, 23]報(bào)告(n=450),胼胝體大小均以正中矢狀位的胼胝體面積衡量,其中暴露組247例,文獻(xiàn)異質(zhì)性中等(I2=40.2%),采用固定效應(yīng)模型合并,暴露組與非暴露組相比,胼胝體明顯縮小(SMD=-0.43,95%CI=-0.63~-0.24)。
2.5 發(fā)表偏倚檢驗(yàn) 圖4顯示,對全腦和白質(zhì)體積的Meta分析做漏斗圖檢驗(yàn)發(fā)表偏倚,兩者均分布對稱,無明顯偏向提示無明顯發(fā)表偏倚,但在白質(zhì)體積,Meta分析的漏斗圖中有2項(xiàng)研究落在95%可信區(qū)間外。由于納入文獻(xiàn)數(shù)量<10且評價(jià)指標(biāo)為連續(xù)性變量,Peters檢驗(yàn)無法進(jìn)行?;屹|(zhì)、小腦、海馬體積和胼胝體大小的Meta分析納入文獻(xiàn)數(shù)量較少,難以判斷發(fā)表偏倚,未進(jìn)行漏斗圖和Peters檢驗(yàn)。
圖2極早產(chǎn)/極低出生體重對13~18歲時(shí)腦體積影響的Meta分析
圖3 極早產(chǎn)/極低出生體重對13~18歲時(shí) 白質(zhì)體積影響的亞組分析
圖4極早產(chǎn)/極低出生體重對13~18歲時(shí)全腦和白質(zhì)體積影響的漏斗圖
腦發(fā)育是兒童機(jī)體發(fā)育的重要部分,與足月正常出生體重個體相比較,極早產(chǎn)和/或極低出生體重兒在生后腦發(fā)育有不同程度的遲滯,也更容易發(fā)生腦損傷,影響神經(jīng)和認(rèn)知功能發(fā)育[2, 3]。在不同發(fā)育階段測量極早產(chǎn)和/或極低出生體重兒的腦發(fā)育數(shù)據(jù),對有效評估其神經(jīng)功能的發(fā)育有重要意義。
本文Meta分析對采用MRI測量極早產(chǎn)和/或極低出生體重的13~18歲青少年時(shí)腦體積參數(shù)的文獻(xiàn)進(jìn)行系統(tǒng)評價(jià),共納入文獻(xiàn)13篇,極早產(chǎn)和/或極低出生體重的暴露組686例,足月正常出生體重的非暴露組586例,結(jié)局指標(biāo)包括MRI測量的腦整體(全腦、白質(zhì)和灰質(zhì)體積)和腦特定區(qū)域(小腦、海馬和胼胝體等)的體積參數(shù)。Meta分析結(jié)果顯示,出生時(shí)為極早產(chǎn)和/或極低出生體重的暴露組在13~18歲時(shí)的全腦、白質(zhì)和灰質(zhì)體積,以及小腦、海馬體積和胼胝體大小均明顯小于同年齡但足月正常出生體重的非暴露組,差異均有統(tǒng)計(jì)學(xué)意義。極早產(chǎn)和/或極低出生體重明顯影響13~18歲間青少年的腦體積發(fā)育,導(dǎo)致腦整體體積和腦特定區(qū)域體積的減少。有研究顯示,極早產(chǎn)β-內(nèi)酰胺類極低出生體重青年的腦體積減少與其IQ值和認(rèn)知功能下降正相關(guān)[24],本文Meta分析中的部分文獻(xiàn)也顯示同樣結(jié)果[22, 23],腦體積減少對神經(jīng)功能產(chǎn)生了明顯的負(fù)面影響。有研究顯示,特定腦局部區(qū)域如小腦、海馬和胼胝體體積與神經(jīng)功能的變化更為相關(guān)[17, 20, 25]。
以往關(guān)于早產(chǎn)兒和低出生體重兒神經(jīng)發(fā)育的功能研究有大量、深入的文獻(xiàn)報(bào)告,但是關(guān)于腦結(jié)構(gòu)的研究則很少,這與技術(shù)的限制有關(guān)。近年來,隨著影像學(xué)技術(shù)的快速發(fā)展和普及,基于影像學(xué)的早產(chǎn)兒腦結(jié)構(gòu)研究的文獻(xiàn)大量涌現(xiàn)。定量MRI技術(shù)的發(fā)展使得腦的宏觀數(shù)據(jù)測量如腦體積的測量成為可能。本文Meta分析系統(tǒng)評價(jià)了極早產(chǎn)兒和/或極低出生體重兒在青少年時(shí)MRI測量的腦體積差異。隨著功能性MRI(fMRI)和彌散張量成像(DTI)技術(shù)的發(fā)展,以及向量機(jī)等數(shù)據(jù)挖掘方法的應(yīng)用,腦的微觀結(jié)構(gòu)也逐漸能夠被觀察到[26, 27]。采用DTI的研究顯示,早產(chǎn)和極早產(chǎn)兒童的腦彌散各向異性值相比足月正常出生體重的兒童有明顯差異,且與IQ值變化相關(guān)[28, 29]。
最近文獻(xiàn)報(bào)告也揭示了極早產(chǎn)和極低出生體重的青少年與足月正常出生體重的同年齡個體之間腦結(jié)構(gòu)差異的潛在機(jī)制,顯示一系列神經(jīng)生長發(fā)育的進(jìn)程受到影響,包括少突膠質(zhì)前體細(xì)胞、軸突、底板神經(jīng)元的生長發(fā)育進(jìn)程,導(dǎo)致正常的神經(jīng)系統(tǒng)結(jié)構(gòu)和功能發(fā)育障礙,機(jī)制與許多因素有關(guān),包括炎癥反應(yīng)、缺氧缺血損傷和興奮性介質(zhì)損傷等[30]。
這些因素既在微觀上導(dǎo)致了腦結(jié)構(gòu)差異,也在宏觀上導(dǎo)致了腦體積的變化,但是目前對于造成這種差異的具體機(jī)制尚不清楚。
本文Meta分析不足與局限:①納入的文獻(xiàn)均為回顧性隊(duì)列研究,可能會對研究的信度產(chǎn)生影響;②納入的極早產(chǎn)兒和/或極低出生體重兒兒人群在胎齡和體重上均存在一定差異,納入研究的隊(duì)列終點(diǎn)年齡也存在差異,可能引入異質(zhì)性,對結(jié)果產(chǎn)生影響;③影響腦的發(fā)育的因素是復(fù)雜的,長期的隊(duì)列隨訪中不確定的因素難以確定;④MRI反映的腦結(jié)構(gòu)的體積大小可能與腦功能有關(guān),但文獻(xiàn)中并未對此具體機(jī)制作出解釋。
綜上所述,本文Meta分析表明極早產(chǎn)和/或極低出生體重對青少年時(shí)的腦體積有影響,導(dǎo)致全腦、白質(zhì)和灰質(zhì)體積4)以及腦特定區(qū)域小腦、海馬和胼胝體的體積相比足月正常出生體重兒減少。從本文Meta分析的結(jié)果看,MRI評估腦體積的年齡≥16歲時(shí),結(jié)果具有更好的一致性。
[1]Rose J, Vassar R, Cahill-Rowley K, et al. Brain microstructural development at near-term age in very-low-birth-weight preterm infants: an atlas-based diffusion imaging study. Neuroimage, 2014, 86: 244-256
[2]Linsell L, Malouf R, Johnson S, et al. Prognostic Factors for Behavioral Problems and Psychiatric Disorders in Children Born Very Preterm or Very Low Birth Weight: A Systematic Review. J Dev Behav Pediatr, 2016, 37(1): 88-102
[3]Oudgenoeg-Paz O, Mulder H, Jongmans MJ, et al. The link between motor and cognitive development in children born preterm and/or with low birth weight: A review of current evidence. Neurosci Biobehav Rev, 2017, 80: 382-393
[4]Kidokoro H, Neil JJ, Inder TE. New MR imaging assessment tool to define brain abnormalities in very preterm infants at term. AJNR Am J Neuroradiol, 2013, 34(11): 2208-2214
[5]Zhang Y, Inder TE, Neil JJ, et al. Cortical structural abnormalities in very preterm children at 7 years of age. Neuroimage, 2015, 109: 469-479
[6]Stewart AL, Rifkin L, Amess PN, et al. Brain structure and neurocognitive and behavioural function in adolescents who were born very preterm. Lancet, 1999, 353(9165): 1653-1657
[7]Bora S, Pritchard VE, Chen Z, et al. Neonatal cerebral morphometry and later risk of persistent inattention/hyperactivity in children born very preterm. J Child Psychol Psychiatry, 2014, 55(7): 828-838
[8]Kalpakidou AK, Allin MP, Walshe M, et al. Functional neuroanatomy of executive function after neonatal brain injury in adults who were born very preterm. PLoS One, 2014, 9(12): e113975[9]Peterson BS, Vohr B, Staib LH, et al. Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. JAMA, 2000, 284(15): 1939- PLo
[10]Nossin-Manor R, Card D, Morris D, et al. Quantitative MRI in the very preterm brain: assessing tissue organization and myelination using magnetization transfer, diffusion tensor and T(1) imaging. Neuroimage, 2013, 64: 505-516
[11]Martinussen M, Flanders DW, Fischl B, et al. Segmental brain volumes and cognitive and perceptual correlates in 15-year-old adolescents with low birth weight. J Pediatr, 2009, 155(6): 848-853
[12]Nagy Z, Ashburner J, Andersson J, et al. Structural correlates of preterm birth in the adolescent brain. Pediatrics, 2009, 124(5): e964-e972[13]Taylor HG, Filipek PA, Juranek J, et al. Brain volumes in adolescents with very low birth weight: effects on brain structure and associations with neuropsychological outcomes. Dev Neuropsychol, 2011, 36(1): 96-ts
[14]Botellero VL, Skranes J, Bjuland KJ, et al. Mental health and cerebellar volume during adolescence in very-low-birth-weight infants: a longitudinal study. Child Adolesc Psychiatry Ment Health, 2016, 10: 6
[15]Allin M, Matsumoto H, Santhouse AM, et al. Cognitive and motor function and the size of the cerebellum in adolescents born very pre-term. Brain, 2001, 124(Pt 1): 60-66
[16]Nosarti C, Al-Asady MH, Frangou S, et al. Adolescents who were born very preterm have decreased brain volumes. Brain, 2002, 125(Pt 7): 1616-1623
[17]Nosarti C, Rushe TM, Woodruff PW, et al. Corpus callosum size and very preterm birth: relationship to neuropsychological outcome. Brain, 2004, 127(Pt 9): 2080-2089
[18]Allin M, Nosarti C, Narberhaus A, et al. Growth of the corpus callosum in adolescents born preterm. Arch Pediatr Adolesc Med, 2007, 161(12): 1183-1189
[19]Narberhaus A, Segarra D, Caldu X, et al. Corpus callosum and prefrontal functions in adolescents with history of very preterm birth. Neuropsychologia, 2008, 46(1): 111-116
[20]Parker J, Mitchell A, Kalpakidou A, et al. Cerebellar growth and behavioural & neuropsychological outcome in preterm adolescents. Brain, 2008, 131(Pt 5): 1344-1351
[21]Cole JH, Filippetti ML, Allin MP, et al. Subregional Hippocampal Morphology and Psychiatric Outcome in Adolescents Who Were Born Very Preterm and at Term. PLoS One, 2015, 10(6): e130094[22]Cheong JL, Anderson PJ, Roberts G, et al. Contribution of brain size to IQ and educational underperformance in extremely preterm adolescents. PLoS One, 2013, 8(10): e77475[23]Northam GB, Liegeois F, Chong WK, et al. Total brain white matter is a major determinant of IQ in adolescents born preterm. Ann Neurol, 2011, 69(4): 702- PL
[24]Bjuland KJ, Rimol LM, Lohaugen GC, et al. Brain volumes and cognitive function in very-low-birth-weight (VLBW) young adults. Eur J Paediatr Neurol, 2014, 18(5): 578-590
[25]Aanes S, Bjuland KJ, Skranes J, et al. Memory function and hippocampal volumes in preterm born very-low-birth-weight (VLBW) young adults. Neuroimage, 2015, 105: 76-83
[26]Chu C, Lagercrantz H, Forssberg H, et al. Investigating the use of support vector machine classification on structural brain images of preterm-born teenagers as a biological marker. PLoS One, 2015, 10(4): e123108[27]Lawrence EJ, Froudist-Walsh S, Neilan R, et al. Motor fMRI and cortical grey matter volume in adults born very preterm. Dev Cogn Neurosci, 2014, 10: 1-a
[28]Vangberg TR, Skranes J, Dale AM, et al. Changes in white matter diffusion anisotropy in adolescents born prematurely. Neuroimage, 2006, 32(4): 1538-1548
[29]Thompson DK, Lee KJ, Egan GF, et al. Regional white matter microstructure in very preterm infants: predictors and 7 year outcomes. Cortex, 2014, 52: 60-74
[30]Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol, 2009, 8(1): 110-124