馬雨琴,張 波
(同濟大學(xué)附屬東方醫(yī)院醫(yī)學(xué)超聲科,上海 200120)
慢性腎臟病(chronic kidney disease, CKD)患者預(yù)后不佳,且醫(yī)療費用較高,已成為嚴(yán)重的公共健康問題。流行病學(xué)調(diào)查[1]顯示,心臟疾病發(fā)病率隨CKD程度加重而增加[2],即使腎功能僅有輕度減低,也與心血管風(fēng)險增加存在顯著相關(guān)[3]。傳統(tǒng)超聲心動圖評價左心室收縮功能減低常用指標(biāo)是左心室射血分?jǐn)?shù)(left ventricular ejection fraction, LVEF)。研究[4]表明,部分CKD患者心血管疾病的癥狀不典型,且LVEF可表現(xiàn)為正常,故傳統(tǒng)超聲心動圖較難早期、準(zhǔn)確診斷CKD患者左心室收縮功能異常。新技術(shù)三維斑點追蹤成像(3-dimensional speckle tracking imaging, 3D-STI)可準(zhǔn)確、無創(chuàng)評價CKD患者左心收縮功能,有助于減少CKD患者心血管不良事件并改善預(yù)后[5]。本文對3D-STI在評估CKD患者左心室收縮功能中的應(yīng)用進(jìn)行綜述。
Torrent-Guasp等[6]提出心肌帶理論,認(rèn)為左心室由內(nèi)中外三層心肌組成,心內(nèi)膜下心肌呈右手螺旋走行,心外膜下心肌呈左手螺旋走行,中層心肌呈環(huán)形走行。不同走行排列的心肌纖維決定左心室復(fù)雜的空間運動形式:①縱向縮短,即左心室在長軸方向上的縱向運動;②左心室壁增厚,即左心室在短軸方向上的徑向運動;③左心室短軸半徑縮小,即左心室在短軸方向上的圓周運動;④左心室心內(nèi)膜面積變化,即綜合長軸應(yīng)變和圓周應(yīng)變(circular strain, CS)的內(nèi)膜面積改變;⑤左心室扭轉(zhuǎn)和解旋,為完成心臟射血,左心室在收縮期發(fā)生“擰毛巾樣”扭轉(zhuǎn);從心尖向心底方向觀察,左心室心尖部逆時針旋轉(zhuǎn),左心室基底部順時針旋轉(zhuǎn);舒張期左心室反方向解旋,心室充盈[7]。
STI為無創(chuàng)、實時的定量檢查技術(shù)。由于心肌的細(xì)小結(jié)構(gòu)會對入射超聲波產(chǎn)生散射,在圖像上形成散射斑點,故通過標(biāo)記心動周期中某“斑點”運動軌跡,可逐幀追蹤心動周期中該“斑點”對應(yīng)部位心肌的形變,從而獲得心肌運動速度、應(yīng)變以及心肌扭轉(zhuǎn)等變形情況[8]。與組織多普勒技術(shù)(tissue Doppler imaging, TDI)技術(shù)相比,STI不僅與組織多普勒頻移無關(guān)、無明顯角度依賴性,還對局部噪聲敏感度較小,可更全面及準(zhǔn)確評價心肌功能[9]。二維斑點追蹤技術(shù)(2-dimensional speckle tracking imaging, 2D-STI)局限于二維平面內(nèi),無法完全跟蹤斑點運動的空間位置[10]。3D-STI通過連續(xù)性分析心臟全容積圖像,追蹤心肌聲學(xué)斑點在三維空間內(nèi)的運動軌跡,應(yīng)用縱向應(yīng)變(longitudinal strain, LS)、徑向應(yīng)變(radial strain, RS)、CS、面積應(yīng)變(area strain, AS)、旋轉(zhuǎn)及扭轉(zhuǎn)運動等參數(shù)來評價心肌各節(jié)段形變,從而實現(xiàn)定量評價心肌組織的運動情況[11]。
3.1 左心室應(yīng)變及應(yīng)變率 CKD患者左心室由于長期壓力負(fù)荷及容量負(fù)荷增加、心肌代償性增厚、心腔擴大及心肌缺血[12],于二維超聲心動圖上多表現(xiàn)為左心室擴大、室壁增厚,舒張功能、局部室壁運動及LVEF減低[13]。評估左心室整體收縮功能最常用的參數(shù)是LVEF,其代表心搏量占左心室舒張末期容積的比例,有重要的預(yù)后評估作用[14],而計算LVEF有賴于圖像質(zhì)量、容量負(fù)荷及操作者經(jīng)驗。研究[15]表明,部分CKD患者已出現(xiàn)心功能不全癥狀和體征時,LVEF仍可表現(xiàn)為正常。3D-STI應(yīng)用心肌整體或局部應(yīng)變及應(yīng)變率,可準(zhǔn)確、定量評價CKD左心室心肌收縮能力。劉開薇等[16]觀察LVEF正常(>55%)的早期CKD患者,發(fā)現(xiàn)CKD 2期和CKD 3期患者左心室整體LS較正常對照組明顯減低。Sun等[17]應(yīng)用3D-STI技術(shù)發(fā)現(xiàn)維持透析組左心室整體LS和RS明顯減低,隨訪2年,結(jié)果顯示左心室整體LS可作為心血管不良事件的獨立預(yù)測因素。早期CKD患者LS減低的可能原因如下:①LS代表心內(nèi)膜下心肌縱向纖維在長軸的縮短;②微血管病變,血鈣沉積于心內(nèi)膜,尿毒癥毒素及脂質(zhì)代謝障礙等因素致心內(nèi)膜下心肌灌注不良,故內(nèi)膜心肌層最早受累。Chen等[18]發(fā)現(xiàn)血液透析組和對照組心尖水平LS、RS及CS均高于基底段水平和乳頭肌水平,而未行血液透析組患者則無上述變化。
3.2 左心室旋轉(zhuǎn)和扭轉(zhuǎn) 左心室扭轉(zhuǎn)為左心室心尖水平與心底水平旋轉(zhuǎn)角度的差值。王淑珍等[19]應(yīng)用2D-STI發(fā)現(xiàn)尿毒癥患者心底部旋轉(zhuǎn)角度達(dá)峰早于主動脈瓣關(guān)閉,而心尖部旋轉(zhuǎn)角度達(dá)峰及扭轉(zhuǎn)角度達(dá)峰遲于主動脈瓣關(guān)閉。左心室扭轉(zhuǎn)和解旋是在三維空間內(nèi)的變形運動,不僅影響心臟的正常收縮功能,還可促進(jìn)舒張早期心室充盈。MRI可無創(chuàng)、準(zhǔn)確地測量心肌旋轉(zhuǎn)角度[20],但時間及空間分辨率較低,獲取信息量相對較少,后期數(shù)據(jù)處理繁瑣,檢查耗時較長且費用較貴,使其臨床應(yīng)用受限。3D-STI運用左心室基底段、中間段及心尖段平均旋轉(zhuǎn)角度、整體扭轉(zhuǎn)度、整體扭力及旋轉(zhuǎn)或扭轉(zhuǎn)角度達(dá)峰時間等參數(shù)評價左心室旋轉(zhuǎn)及扭轉(zhuǎn)[21]。Andrade等[22]發(fā)現(xiàn)采用3D-STI技術(shù)測得的左心室扭轉(zhuǎn)角度較2D-STI小,但二者左心室扭轉(zhuǎn)角度的達(dá)峰時間差異無統(tǒng)計學(xué)意義,可能由于2D-STI技術(shù)不能完全跟蹤斑點運動的空間位置,故從三維角度可更加準(zhǔn)確和全面地觀察扭轉(zhuǎn)運動。Pai等[23]運用3D-STI技術(shù)研究發(fā)現(xiàn),與正常對照組相比,維持透析的CKD患者左心室整體旋轉(zhuǎn)、扭轉(zhuǎn)角度及基底段和局部扭力均降低,可能由于心肌間質(zhì)纖維化、缺血、血鈣沉積及微血管病變等因素使心肌僵硬,從而導(dǎo)致心肌收縮力減弱;左心室容積擴張使心內(nèi)膜纖維角度傾斜度變小,減弱心外膜相對于心內(nèi)膜旋轉(zhuǎn)的運動優(yōu)勢。3D-STI技術(shù)可通過評價CKD患者左心室旋轉(zhuǎn)及扭轉(zhuǎn)運動,從而在機械力學(xué)角度發(fā)現(xiàn)CKD患者左心室收縮功能減低。
3.3 左心室同步性運動 CKD患者左心室壓力及容量負(fù)荷長期增加可引起左心室構(gòu)型改變,導(dǎo)致左心室收縮不同步,進(jìn)一步影響左心室收縮功能及局部心肌代謝和灌注[24]。研究[25]發(fā)現(xiàn),左心室收縮不同步是充血性心力衰竭患者發(fā)生嚴(yán)重心臟不良事件的獨立預(yù)測因子。Murata等[26]應(yīng)用2D-STI技術(shù)發(fā)現(xiàn),未透析終末期腎病組LS及RS不同步指數(shù)較對照組升高,而兩組CS不同步指數(shù)間差異無統(tǒng)計學(xué)意義;透析后,RS不同步指數(shù)較透析前下降,提示RS對前負(fù)荷改變較為敏感。Kobayashi等[27]應(yīng)用實時三維超聲心動圖觀察27例終末期腎病患兒,發(fā)現(xiàn)病例組左心室不同步指數(shù)易受前負(fù)荷及左心室厚度影響,且數(shù)值高于正常對照組。3D-STI技術(shù)結(jié)合了實時三維超聲與2D-STI技術(shù)的優(yōu)勢,能更準(zhǔn)確地評價左心室收縮的同步性。3D-STI技術(shù)可應(yīng)用左心室壁兩節(jié)段應(yīng)變達(dá)峰值時間最大差值(前室間隔和左心室側(cè)壁應(yīng)變達(dá)峰時間差)、各節(jié)段應(yīng)變達(dá)峰值時間標(biāo)準(zhǔn)差(左心室不同步指數(shù))以及AS不同步指數(shù)等參數(shù)來定量評價左心室收縮同步性[28-29]:上述參數(shù)值越高,提示左心室收縮不同步越嚴(yán)重。此外,3D-STI技術(shù)在評價心臟同步化治療(cardiac resynchronisation therapy, CRT)后療效中具有重要作用。Thebault等[30]采用3D-STI觀察接受CRT治療的慢性心力衰竭患者左心室同步性,發(fā)現(xiàn)雙腔起搏患者LS、RS及AS絕對值均大于右心室起搏患者,且LS、RS及AS左心室不同步指數(shù)均小于右心室起搏患者。Sun等[17]發(fā)現(xiàn)維持透析組左心室不同步指數(shù)較正常對照組升高。
3.4 血液透析前后左心收縮功能變化 作為有效的腎臟替代治療,血液透析能減輕水鈉潴留,排出毒素(如尿素氮、肌酐及甲狀旁腺素等),糾正電解質(zhì)、酸堿平衡紊亂,改善內(nèi)環(huán)境及減輕心臟前負(fù)荷,從而改善心臟功能。Chen等[18]觀察LVEF正常的尿毒癥患者,發(fā)現(xiàn)規(guī)律血液透析組各方向的三維整體應(yīng)變及不同心肌水平RS均優(yōu)于非透析組,提示堅持規(guī)律血液透析能夠改善左心室收縮功能。Kovács等[31]發(fā)現(xiàn),單次血液透析后,終末期腎病患者左心室整體LS、RS、CS及AS均增加。相反,Wu等[32]發(fā)現(xiàn)維持性血液透析患者單次血液透析后左心室整體LS、RS、CS、旋轉(zhuǎn)角度、扭轉(zhuǎn)角度及整體扭力較透析前無顯著變化,僅左心室局部扭力短期增加。胡科丹等[33]發(fā)現(xiàn)左心室整體AS隨透析時間延長而呈升高—降低—緩慢升高的趨勢,隨著透析時間推移,提示尿毒癥患者左心室心功能呈現(xiàn)“減低—好轉(zhuǎn)—再減低”的規(guī)律。上述研究表明,3D-STI技術(shù)可及時反映尿毒癥患者血液透析前后左心功能變化情況,但單次血透后左心室應(yīng)變的變化情況尚未明確,仍需進(jìn)一步研究。
3D-STI技術(shù)的局限性:①可由于肥胖、肺氣腫等患者因素或操作者水平所致圖像質(zhì)量較差,從而影響結(jié)果準(zhǔn)確性;②獲取的圖像幀頻較低,易出現(xiàn)拼接錯位,且部分CKD患者室壁增厚、心室擴大,為包絡(luò)整個心室,需調(diào)大扇角,故幀頻進(jìn)一步減低,圖像質(zhì)量進(jìn)一步變差,從而影響結(jié)果準(zhǔn)確性;③要求被檢者心電圖存在規(guī)則的R-R間期,且需被檢者屏氣達(dá)數(shù)個心動周期,以減小呼吸運動對圖像的干擾;對于心律失常及呼吸困難者,無法獲得理想的全容積圖像,從而影響結(jié)果準(zhǔn)確性。
雖然存在局限性,但目前3D-STI技術(shù)仍是重復(fù)性相對可靠的超聲定量分析技術(shù),采集和分析圖像較2D-STI技術(shù)更簡便和省時[34];可依靠準(zhǔn)確的心臟解剖空間定位,通過量化分析左心室應(yīng)變結(jié)果,客觀評價左心室整體及局部心肌功能[35]。
早期診斷及治療CKD患者心臟損傷能減少心臟不良事件。超聲心動圖可實時定性、定量評價心功能,而超聲新技術(shù)可發(fā)現(xiàn)CKD患者心臟結(jié)構(gòu)的改變及與其相關(guān)的心臟整體及心肌節(jié)段功能異常。正確認(rèn)識3D-STI技術(shù)的優(yōu)缺點,聯(lián)合應(yīng)用傳統(tǒng)超聲心動圖和3D-STI技術(shù),可為臨床早期、準(zhǔn)確診斷CKD心臟病變提供重要參考。
[參考文獻(xiàn)]
[1] Levey AS, Coresh J. Chronic kidney disease. Lancet, 2012,379(9811):165-180.
[2] Matsushita K, Van Der Velde M, Astor BC, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: A collaborative meta-analysis. Lancet, 2010,375(9731):2073-2081.
[3] Henry RM, Kostense PJ, Bos G, et al. Mild renal insufficiency is associated with increased cardiovascular mortality: The Hoorn Study. Kidney Int, 2002,62(4):1402-1407.
[4] Raghban A, Kirsop J, Tang W. Prevention of heart failure in patients with chronic kidney disease. Curr Cardiovasc Risk Rep, 2015,9(1):1-11.
[5] Chiu DY, Green D, Abidin N, et al. Cardiac imaging in patients with chronic kidney disease. Nat Rev Nephrol, 2015,11(4):207-220.
[6] Torrent-Guasp F, Buckberg GD, Clemente C, et al. The structure and function of the helical heart and its buttress wrapping. I. The normal macroscopic structure of the heart. Semin Thorac Cardiovasc Surg, 2001,13(4):301-319.
[7] Beladan CC, Calin A, Rosca M, et al. Left ventricular twist dynamics: Principles and applications. Heart, 2014,100(9):731-740.
[8] Mondillo S, Galderisi M, Mele D, et al. Speckle-tracking echocardiography: A new technique for assessing myocardial function. J Ultrasound Med, 2011,30(1):71-83.
[9] Citro R, Bossone E, Kuersten B, et al. Tissue Doppler and strain imaging: Anything left in the echo-lab? Cardiovasc Ultrasound, 2008,6(1):54-66.
[10] 覃小娟,謝明星,王靜,等.二維斑點追蹤成像技術(shù)評價實驗性大鼠慢性心力衰竭模型左心室徑向收縮功能.中國醫(yī)學(xué)影像技術(shù),2012,28(2):225-228.
[11] Seo Y, Ishizu T, Atsumi A, et al.Three-dimensional speckle tracking echocardiography. Circ J, 2014,78(6):1290-1301.
[12] Pateinakis P, Papagianni A. Cardiorenal syndrome type 4-cardiovascular disease in patients with chronic kidney disease: Epidemiology, pathogenesis, and management. Int J Nephrol, 2011,2011: 938651.
[13] Singal KK, Singal N, Gupta P, et al. Cardiac status in patients of chronic kidney disease: An assessment by non-invasive tools. Bangla J Med Sci, 2016,15(2):207-215.
[14] Cheitlin MD, Alpert JS, Armstrong WF, et al. ACC/AHA guidelines for the clinical application of echocardiography: Executive summary. A report of the American College of Cardiology/American Heart Assoc. Science, 2015,223(4643):1377-1377.
[15] Hassanin N, Alkemary A. Early detection of subclinical uremic cardiomyopathy using two-dimensional speckle tracking echocardiography. Echocardiography, 2016,33(4):527-536.
[16] 劉開薇,任衛(wèi)東,孫璐,等.三維縱向應(yīng)變評價早期慢性腎病患者左心室心肌收縮功能變化.中華醫(yī)學(xué)超聲雜志(電子版),2016,13(4):271-275.
[17] Sun M, Kang Y, Cheng L, et al. Global longitudinal strain is an Independent predictor of cardiovascular events in patients with maintenance hemodialysis: A prospective study using three-dimensional speckle tracking echocardiography. Int J Cardiovasc Imaging, 2016,32(5):757-766.
[18] Chen R, Wu X, Shen LJ, et al. Left ventricular myocardial function in hemodialysis andnondialysis uremia patients: A three-dimensional speckle-tracking echocardiography study. PLoS One, 2014,9(6):e100265.
[19] 王淑珍,謝明星,王新房,等.超聲二維斑點追蹤成像技術(shù)評價尿毒癥患者左心室扭轉(zhuǎn)與同步性運動.中國醫(yī)學(xué)影像技術(shù),2009,25(3):423-426.
[20] Young AA, Cowan BR. Evaluation of left ventricular torsion by cardiovascular magnetic resonance. J Cardiovasc Magn Reson, 2012,14(1):49-59.
[21] Lorenz CH, Pastorek JS, Bundy JM. Delineation of normal human left ventricular twist throughout systole by tagged cine magnetic resonance imaging. J Cardiovasc Magn Reson, 2009,2(2):97-108.
[22] Andrade J, Cortez LD, Campos O, et al. Left ventricular twist: Comparison between two- and three-dimensional speckle-tracking echocardiography in healthy volunteers. Eur J Echocardiogr, 2011,12(1):76-79.
[23] Pai T, Chien SW, Yc K, et al. Decreased left ventricular rotation and torsion in hemodialysis patients studied by three-dimensional speckle tracking imaging. Acta Nephrologica, 2012,26(1):14-20.
[24] Stankovic I, Aarones M, Smith HJ, et al. Dynamic relationship of left-ventricular dyssynchrony and contractile reserve in patients undergoing cardiac resynchronization therapy. Eur Heart J, 2014,35(1):48-55.
[25] Hage FG.Left ventricular mechanical dyssynchrony by phase analysis as a prognostic indicator in heart failure. J Nucl Cardiol, 2014,21(1):67-70.
[26] Murata T, Dohi K, Onishi K, et al. Role of haemodialytic therapy on left ventricular mechanical dyssynchrony in patients with end-stage renal disease quantified by speckle-tracking strain imaging. Nephrol Dial Transplant, 2011,26(5):1655-1661.
[27] Kobayashi D, Patel SR, Mattoo TK, et al. The impact of change in volume and left-ventricular hypertrophy on left-ventricular mechanical dyssynchrony in children with end-stage renal disease. Pediatr Cardiol, 2012,33(7):1124-1130.
[28] Khan SG, Klettas D, Kapetanakis S, et al. Clinical utility of speckle-tracking echocardiography in cardiac resynchronisation therapy. Echo Res Pract, 2016,3(1):1-11.
[29] Tatsumi K, Tanaka H, Tsuji T, et al. Strain dyssynchrony index determined by three-dimensional speckle area tracking can predict response to cardiac resynchronizationtherapy. Cardiovasc Ultrasound, 2011,9(1):1-9.
[30] Thebault C, Donal E, Bernard A, et al. Real-time three-dimensional speckle tracking echocardiography: A novel technique to quantify global left ventricular mechanical dyssynchrony. Eur J Echocardiogr,2011,12(1):26-32.
[31] Kovács A, Tapolyai M, Celeng C, et al. Impact of hemodialysis, left ventricular mass and FGF-23 on myocardial mechanics in end-stage renal disease: A three-dimensional speckle tracking study. Int J Cardiovasc Imaging, 2014,30(7):1331-1337.
[32] Wu BT, Tsai-Pai MA, Hsu HY, et al. Effect of preload reduction by hemodialysis on left ventricular mechanical parameters by three-dimensional speckle tracking echocardiography. Acta Cardiologica Sinica, 2012,28(1):25-33.
[33] 胡科丹,鄒懿,宋萍,等.三維整體面積應(yīng)變評價血液透析患者左心功能的研究.臨床超聲醫(yī)學(xué)雜志,2016,18(7):448-451.
[34] Nesser HJ, Mor-Avi V, Gorissen W, et al. Quantification of left ventricular volumes using three-dimensional echocardiographic speckle tracking: Comparison with MRI. Eur Heart J, 2009,30(13):1565-1573.
[35] Reant P, Barbot L, Touche C, et al. Evaluation of global left ventricular systolic function using three-dimensional echocardiography speckle-tracking strain parameters. J Am Soc Echocardiogr, 2012,25(1):68-79.