趙春蓮 張艷 韓亮 周媛 李杰
因幽門螺桿菌(H.pylori)與胃癌的密切相關(guān)性,1994年世界衛(wèi)生組織將其劃歸為I類致癌原。這種革蘭陰性、微需氧菌持續(xù)寄生于胃粘膜,并成為其中的優(yōu)勢(shì)種群。雖然感染H.pylori通常是無癥狀的,但其與胃炎、消化道潰瘍相關(guān),嚴(yán)重時(shí)還會(huì)導(dǎo)致胃癌。近年來,胃癌已成為發(fā)生率位居世界第五的癌癥,其死亡率高達(dá)75﹪,相關(guān)統(tǒng)計(jì)數(shù)據(jù)表明胃癌已成為癌癥死亡第三位的原因[1]。國際癌癥研究中心(IARC)的報(bào)告表明,78﹪的胃癌與H.pylori感染相關(guān)[2]。H.pylori導(dǎo)致胃相關(guān)疾病的分子機(jī)制非常復(fù)雜,近期研究探討了H.pylori誘導(dǎo)DNA損傷和異常甲基化,從而影響下游宿主細(xì)胞信號(hào)轉(zhuǎn)導(dǎo),以及H.pylori如何引發(fā)上皮間質(zhì)轉(zhuǎn)化(EMT)、促細(xì)胞生存和增殖。部分H.pylori相關(guān)作用途徑在其他不同類型的癌癥中也有體現(xiàn)?,F(xiàn)將幽門螺桿菌與胃癌相關(guān)分子機(jī)制研究綜述如下。
基因組不穩(wěn)定性和突變是癌癥發(fā)展的新興標(biāo)志。這些基因組變化是由于DNA直接損傷、DNA修復(fù)失敗或通過DNA甲基化等表觀遺傳修飾引起的。H.pylori作用的途徑有:異常甲基化,降低錯(cuò)配修復(fù)基因表達(dá),增加激活誘導(dǎo)胞嘧啶脫氨酶(activation-induced cytidine deaminase,AID)的表達(dá),以及誘導(dǎo)DNA雙鏈斷裂(double strand DNA breaks,DSBs)。
雖然H.pylori誘導(dǎo)DNA損傷的作用早已提出,但導(dǎo)致這一過程的相關(guān)機(jī)制仍未明確。CagA是H.pylori重要的毒力因子,Chaturvedi等[3]證實(shí)CagA+菌株能通過精胺氧化酶(spermine oxidase,SMO)作用引起細(xì)胞凋亡及胃上皮細(xì)胞DNA 損傷增加,導(dǎo)致發(fā)生胃惡性腫瘤風(fēng)險(xiǎn)增高。在H.pylori感染后會(huì)出現(xiàn)活躍轉(zhuǎn)錄區(qū)和近端粒區(qū)DSBs的積累,導(dǎo)致DNA損傷[4]。此外,H.pylori引起的損傷模式類似于胃癌時(shí)發(fā)生的結(jié)構(gòu)變異。缺乏Cag致病島(Cag pathogenicityisland,cag-PAI)的菌株誘導(dǎo) DSBs能力受損[4],提示Ⅳ 型分泌系統(tǒng)(T4SS)在這一過程中發(fā)揮了作用。DSBs發(fā)生在NF-κB依賴的方式,也支持了上述觀點(diǎn)。分子模型的建立表明,將T4SS末端結(jié)與β1整合素結(jié)合能引起細(xì)胞核NF-κB的激活和易位,NF-κB常作為RelA,NER內(nèi)切酶XPG和XPF以及補(bǔ)充因子XPA的染色質(zhì)結(jié)合區(qū)域[5]。XPA和XPF然后誘導(dǎo)DSBs,增強(qiáng)NF-κB的表達(dá),致抗凋亡基因表達(dá)增加,促進(jìn)細(xì)胞存活[5]。因此,H.pylori誘導(dǎo)DSBs具有獨(dú)特性,并且可能由該病原體直接引起。
H.pylori導(dǎo)致基因組不穩(wěn)定性的另一種機(jī)制是通過操縱宿主基因甲基化過程實(shí)現(xiàn)的。與未感染者相比,H.pylori感染者胃竇細(xì)胞內(nèi)的DNA去甲基化增加。在病變周圍的正常組織中DNA去甲基化也增加。DNA異常甲基化在不良疾病預(yù)后中的作用得到了16年隊(duì)列研究的支持,該研究表明特定基因甲基化的變化可以作為胃癌進(jìn)展的預(yù)測(cè)因子[6]。此外,一些研究對(duì)基因甲基化改變的下游影響進(jìn)行描述,如H.pylori對(duì)N-Myc下游調(diào)節(jié)基因2(N-Myc downstream-regulated gene 2,NDRG2)啟動(dòng)子的甲基化有極大的影響,在54﹪的原發(fā)性胃癌標(biāo)本中都可以見到甲基化[7]。NDRG2是一種潛在的抑癌基因,有助于同源性磷酸酶-張力蛋白(phosphatase and tensin homolog,PTEN)的脫磷酸作用[8]。由于C-末端磷酸化水平增加,PTEN失活常發(fā)生于胃癌。PTEN脫去磷酸PIP3成為活化的去磷酸結(jié)構(gòu),由此降低了PI3K/Akt活性[8]。因此,隨著甲基化增加,NDRG2的表達(dá)降低,PTEN C端的磷酸化增加,并對(duì)PI3K/Akt通路的抑制作用隨之減輕[7]。目前認(rèn)為DNA甲基轉(zhuǎn)移酶3b(DNMT3b)上調(diào)與H.pylori感染相關(guān),增加NDRG2啟動(dòng)子甲基化[7]。
DNA甲基化也會(huì)對(duì)慢性炎癥性疾病和癌癥時(shí)micro-RNA(miRNA)的調(diào)控產(chǎn)生影響[9,10]。H.pylori陽性胃病患者中出現(xiàn)了miR-210啟動(dòng)子的CpG島異常甲基化,從而造成miR-210的減少,導(dǎo)致 miR-210增殖指標(biāo)如 Stathmin1(STMN1)和dimethyladenosine 轉(zhuǎn)移酶 1(DIMT1)表達(dá)增加[9]。H.pylori也通過環(huán)氧化酶-2 /前列腺素E2(COX-2/PGE2)激活刺激miRNA啟動(dòng)子甲基化[10]。PGE2促進(jìn)腫瘤細(xì)胞的甲基化,在H.pylori感染的情況下,miR-149是PGE2誘導(dǎo)DNA甲基化的調(diào)控靶點(diǎn)。miR-149調(diào)控并抑制IL-6和PGE2受體基因。因此,miR-149 的甲基化會(huì)導(dǎo)致miR-149的減少和IL-6的增加。IL-6誘導(dǎo)的下游后果包括EMT、干細(xì)胞特征和侵襲性[10]。H.pylori調(diào)控DNA損傷和DNA甲基化的方式,通過增加基因組不穩(wěn)定性和促進(jìn)細(xì)胞增殖、EMT及多能性,并通過激活細(xì)胞信號(hào)通路,促進(jìn)腫瘤的發(fā)生。
EMT在癌癥病因?qū)W研究中扮演著重要角色,是其發(fā)展過程中的關(guān)鍵。在EMT過程中,上皮細(xì)胞失去了維持健康細(xì)胞屏障的特性,并且獲得了間質(zhì)細(xì)胞的特性:細(xì)胞間相互作用減少、極化喪失和移動(dòng)性增加。研究表明,H.pylori感染與胃粘膜上皮細(xì)胞的EMT樣改變相關(guān)。H.pylori陽性胃癌患者組織活檢標(biāo)本中,上皮細(xì)胞標(biāo)記物E-cadherin的表達(dá)減少,間質(zhì)細(xì)胞標(biāo)記物SNAIL、TWIST、SLUG和vimentin的表達(dá)增加[11]。根除H.pylori導(dǎo)致標(biāo)記物表達(dá)逆轉(zhuǎn),E-cadherin表達(dá)增加,而SNAIL、TWIST、SLUG和vimentin的表達(dá)減少[11]。CD44與H.pylori引起的EMT之間的關(guān)系已經(jīng)得知,CD44的升高與間質(zhì)標(biāo)記物相應(yīng)增加有關(guān)[11,12]。雖然這些研究沒有表明H.pylori和CD44之間直接的相互作用,H.pylori可能影響通過抑制miR-328這種已知的CD44負(fù)調(diào)節(jié)因子來影響其表達(dá)[13],可能進(jìn)一步促進(jìn)EMT。
CagA這種多重毒力因子也直接與H.pylori誘導(dǎo)EMT和通過CD44 的細(xì)胞增殖作用相關(guān)[14,15]。體內(nèi)和體外模型均表明,CD44,c-Met和CagA蛋白構(gòu)成了一種復(fù)合物,導(dǎo)致細(xì)胞增殖增加,間質(zhì)細(xì)胞標(biāo)記物(α-SMA、SNAIL2、TWIST1、N-cadherin和ZEB1)表達(dá)增加,并破壞細(xì)胞膜相關(guān)E-cadherin[14]。間質(zhì)標(biāo)志物、CD44和基質(zhì)金屬蛋白酶的增加發(fā)生在CagA磷酸化依賴的方式中[15]。同樣,CagA的轉(zhuǎn)染會(huì)導(dǎo)致E-cadherin 相應(yīng)減少和TWIST以及vimentin的增加[12]。這種隨即出現(xiàn)的E-cadherin的減少似乎與程序性細(xì)胞死亡因子4(PDCD4)的負(fù)調(diào)節(jié)有關(guān),這表明CagA通過多種途徑影響EMT[12]。
TNF-α誘導(dǎo)蛋白(TNF-α-inducing protein,Tip-α)被認(rèn)為是胃癌發(fā)展相關(guān)的新的致癌因子[16]。Tipα也被認(rèn)為與EMT相關(guān),體外細(xì)胞研究證實(shí)它能誘導(dǎo)MKN-1細(xì)胞表達(dá)波形蛋白及偽足形成[17],這與絲裂原活化蛋白激酶(Mitogen-activated protein kinase,MAPK)信號(hào)轉(zhuǎn)導(dǎo)系統(tǒng)的經(jīng)典途徑Ras-Raf-MEK1/2-ERK1/2有關(guān)。Chen等[18]體外細(xì)胞實(shí)驗(yàn)認(rèn)為,Tipα通過 IL-6/STAT3信號(hào)通路引起E-cadherin表達(dá)下調(diào),N-cadherin和vimentin表達(dá)上調(diào),導(dǎo)致EMT形成,可能與胃癌侵襲、轉(zhuǎn)移相關(guān)。
這些常用的間質(zhì)細(xì)胞或上皮細(xì)胞標(biāo)記物在EMT過程中有不同的作用機(jī)理,如E-cadherin的減少和破壞會(huì)導(dǎo)致細(xì)胞與細(xì)胞連接減弱,這是EMT的一個(gè)重要標(biāo)志。結(jié)合素-43(Cx43)為一種縫隙鏈接蛋白,在H.pylori感染時(shí)受到影響[19]。H.pylori誘導(dǎo)Cx43的GATA3依賴性降低,從而導(dǎo)致胃上皮細(xì)胞完整性減弱。Cx43的表達(dá)比空泡毒素A(VacA)更容易引起細(xì)胞死亡。H.pylori通過降低Cx43水平從而減少細(xì)胞數(shù)量的決定性機(jī)制,引起Cx43下調(diào),而VacA在任何表達(dá)Cx43的細(xì)胞中誘導(dǎo)細(xì)胞死亡,最終會(huì)導(dǎo)致胃上皮細(xì)胞修復(fù)程序缺失,可能增加了EMT的傾向。
CagA與β-catenin之間的相互作用,在破壞細(xì)胞之間連接時(shí)起到了重要作用。這表明β-catenin直接或間接導(dǎo)致EMT。更多的證據(jù)支持CagA的依賴性,β-catenin的核積累會(huì)導(dǎo)致促增殖基因表達(dá)增加。這個(gè)結(jié)果的產(chǎn)生有幾種機(jī)制共同參與。近來,聚乙二醇-磷蛋白、骨橋蛋白(osteopontin,OPN)被發(fā)現(xiàn)是CagA依賴性活化β-catenin的另一中介[20]。H.pylori感染后,以CagA和T4SS依賴性方式致細(xì)胞內(nèi)OPN增加[21]。OPN增加的下游效應(yīng)和隨后β-catenin的核定位會(huì)導(dǎo)致c-Myc和cyclin D1(CCDN1)這兩種已知細(xì)胞增殖基因的表達(dá)增加。小鼠模型研究顯示,OPN的丟失抑制了炎癥、上皮細(xì)胞增殖等癌性變化,并減少了凋亡[22]。
在H.pylori感染過程中激活的另一個(gè)主要細(xì)胞增殖途徑是PI3K/Akt。H.pylori感染通過PI3K/Akt促進(jìn)細(xì)胞增殖,并能減少抑制PI3K/Akt激活的蛋白表達(dá)。抑制Ndrg2后,PTEN以無活性狀態(tài)存在[7,8]。作為一種額外的調(diào)控機(jī)制,H.pylori感染也會(huì)導(dǎo)致miR-221/222表達(dá)增加。這兩種miRNA同抑癌基因RECK一樣,靶目標(biāo)都是PTEN[23]。在PI3K/Akt通路中另一個(gè)變化的組件是PDK-1。在感染早期,H.pylori使PDK-1脫磷酸,導(dǎo)致Akt脫磷酸化并誘導(dǎo)細(xì)胞凋亡。其次是存活細(xì)胞增殖的增加。最后,CagA通過Akt 誘導(dǎo)PI3K/Akt信號(hào)通路的下游蛋白SP1活化[24]。SP1作為RBP2的轉(zhuǎn)錄因子,RBP2與CCDN1的啟動(dòng)子相結(jié)合,導(dǎo)致cyclin D1上調(diào)[24]。因此,RBP2具有雙重作用,RBP2誘導(dǎo)EMT和干細(xì)胞化,以及誘導(dǎo)細(xì)胞增殖。
H.pylori利用多種方式營造有利于細(xì)胞增殖和生存的環(huán)境。除了激活促進(jìn)這些過程的通路外,H.pylori還抑制了阻止這些通路的機(jī)制。例如,H.pylori可調(diào)節(jié)多種miRNA來影響細(xì)胞增殖。其中,miR-203在H.pylori陽性組織標(biāo)本中下調(diào),這一下降導(dǎo)致PIK3CA和CASK靶點(diǎn)也相應(yīng)增加,從而增強(qiáng)細(xì)胞的增殖和侵襲[25]。同樣,miR-101在H.pylori感染胃癌組織中也下調(diào)。miR-101水平的降低導(dǎo)致SOCS2上調(diào),影響細(xì)胞周期,促進(jìn)腫瘤的發(fā)生[26]。其他miRNA,包括miR-375和mir101b在H.pylori感染時(shí)下調(diào),進(jìn)一步增強(qiáng)了致癌信號(hào)[27]。因此,H.pylori通過miRNA靶點(diǎn)的改變作為一種促進(jìn)細(xì)胞存活和增殖的機(jī)制。
研究表明,長鏈非編碼RNA(lncRNA)的表達(dá)在胃癌中發(fā)揮著重要作用。在H.pylori感染的細(xì)胞模型研究中,303個(gè)lncRNA和565個(gè)mRNA存在異常表達(dá),并且4個(gè)下調(diào)的lncRNA(n345630、xloc_004787、n378726和 linc00473)在 H.pylori陽性胃標(biāo)本中得到了驗(yàn)證[28]。lncRNA af147447作為抑癌基因,可直接結(jié)合或上調(diào)miR-34c抑制癌基因MUC2的表達(dá),在H.pylori感染的體內(nèi)外實(shí)驗(yàn)中都出現(xiàn)了下調(diào)[29]。H.pylori感染可上調(diào)SGK1的表達(dá)進(jìn)而通過JunB活化增強(qiáng)表達(dá)lnc-sgk1。lnc-sgk1可以誘導(dǎo)Th2和Th17通過SGK1/JunB信號(hào)降低Th1細(xì)胞的分化,其表達(dá)與胃癌患者的預(yù)后密切相關(guān)[30]。因此,H.pylori感染會(huì)引起lncRNA的差異表達(dá),與胃癌的增殖和侵襲相關(guān)。
H.pylori也對(duì)大量抑癌因子有負(fù)向調(diào)控作用。例如,胃動(dòng)蛋白1(GKN1)具有直接結(jié)合CagA從而抑制CagA誘導(dǎo)細(xì)胞增殖和EMT的能力,這阻止了SHP2和E-cadherin相互作用[31]。然而,H.pylori通過下調(diào)胃癌組織中GKN1阻止這一作用。CagA的這種調(diào)節(jié)作用和GKN1水平的下降會(huì)導(dǎo)致NF-κB和PI3K/Akt的激活[31]。另一抑癌因子TFF1通過Akt/GSK-3負(fù)調(diào)控從而抑制β-catenin和NF-κB-p65核易位,反過來又阻止H.pylori引起的炎癥和促增殖信號(hào)的增加,雖然TFF1可以起到保護(hù)作用,但其會(huì)在幾乎50﹪的腺癌中減少或消失[32]。因此,TFF1抑癌活性的喪失,會(huì)通過激活c-Myc和cyclin D1導(dǎo)致β-catenin和細(xì)胞增殖不可遏制的活化。總之,H.pylori采用了多種方法誘導(dǎo)宿主細(xì)胞增殖。
雖然20多年前H.pylori就被認(rèn)定為是一種致癌物質(zhì),但研究者至今仍致力于闡明這一病原體的新型致癌機(jī)制。盡管這些機(jī)制目前尚不十分明確,但有證據(jù)表明,H.pylori感染時(shí),隨后的宿主反應(yīng)創(chuàng)造了有利于腫瘤發(fā)生的環(huán)境。值得注意的是,H.pylori感染引起的宿主細(xì)胞變化涉及了傳統(tǒng)癌癥進(jìn)展的幾個(gè)特征,其中包括DNA損傷和甲基化、激活EMT通路、激活促增殖/抗凋亡效應(yīng)物、抑制腫瘤抑制因子。越來越多的證據(jù)表明H.pylori通過多重手段調(diào)控促進(jìn)胃癌的發(fā)展。深入研究H.pylori與胃癌發(fā)生發(fā)展相關(guān)的分子機(jī)制,將為胃癌的治療提供新的靶點(diǎn),也有助于對(duì)其他癌癥的了解。
1 Ferlay J,Soerjomataram I,Ervik M,et al.GLOBOCAN 2012 v1.0,cancer incidence and mortality worldwide:IARC cancer base no. 11 Internet. International Agency for Research on Cancer[J].International Journal of Cancer Journal International Du Cancer,2008,136(5):359-386
2 IARC Helicobacter pylori Working Group.Helicobacter pylori Eradication as a Strategy for Preventing Gastric Cancer[R].IARC Working Group Reports(No.8),2014:174-180
3 Chaturvedi R,Asim M,Romero-Gallo J,et al.Spermine oxidase mediates the gastric cancer risk associated with Helicobacter pylori CagA[J].Gastroenterology,2011,141(5):1696-1708
4 Koeppel M,Garcia-Alcalde F,Glowinski F,et al.Helicobacter pylori Infection Causes Characteristic DNA Damage Patterns in Human Cells[J].Cell Rep,2015,11(11):1703-1713
5 Hartung ML,Gruber DC,Koch KN,et al.H.pylori-Induced DNA Strand Breaks Are Introduced by Nucleotide Excision Repair Endonucleases and Promote NF-kappaB Target Gene Expression[J].Cell Rep,2015,13(1):70-79
6 Schneider BG,Mera R,Piazuelo MB,et al.DNA Methylation Predicts Progression of Human Gastric Lesions[J].Cancer Epidemiol Biomarkers Prev,2015,24(10):1607-1613
7 Ling ZQ,Ge MH,Lu XX,et al.Ndrg2 promoter hypermethylation triggered by helicobacter pylori infection correlates with poor patients survival in human gastric carcinoma[J].Oncotarget,2015,6(10):8210-8225
8 Nakahata S,Ichikawa T,Maneesaay P,et al.Loss of NDRG2 expression activates PI3K-AKT signalling via PTEN phosphorylation in ATLL and other cancers[J].Nat Commun,2014,5:3393
9 Kiga K,Mimuro H,Suzuki M,et al.Epigenetic silencing of miR-210 increases the proliferation of gastric epithelium during chronic Helicobacter pylori infection[J].Nat Commun,2014,5:4497
10 Li P,Shan JX,Chen XH,et al.Epigenetic silencing of microRNA-149 in cancer-associated fibroblasts mediates prostaglandin E2/interleukin-6 signaling in the tumor microenvironment[J].Cell Res,2015,25(5):588-603
11 Choi YJ,Kim N,Chang H,et al.Helicobacter pyloriinduced epithelial-mesenchymal transition, a potential role of gastric cancer initiation and an emergence of stem cells[J].Carcinogenesis,2015,36(5):553-563
12 Yu H,Zeng J,Liang X,et al.Helicobacter pylori promotes epithelial-mesenchymal transition in gastric cancer by downregulating programmed cell death protein 4 (PDCD4)[J].LoS One,2014,9(8):e105306
13 Ishimoto T,Izumi D,Watanabe M,et al.Chronic inflammation with Helicobacter pylori infection is implicated in CD44 overexpression through miR-328 suppression in the gastric mucosa[J].J Gastroenterol,2015,50(7):751-757
14 Bertaux-Skeirik N,F(xiàn)eng R,Schumacher MA,et al.CD44 plays a functional role in Helicobacter pylori-induced epithelial cell proliferation[J].PLoS Pathog,2015,11(2):e1004663
15 Sougleri IS,Papadakos KS,Zadik MP,et al.Helicobacter pylori CagA protein induces factors involved in the epithelial to mesenchymal transition (EMT) in infected gastric epithelial cells in an EPIYA-phosphorylation-dependent manner[J].FEBS J,2016,283(2):206-220
16 Suganuma M,Watanabe T,Yamaguchi K,et al.Human gastric cancer development with TNF-alpha-inducing protein secreted from Helicobacter pylori[J].Cancer Lett,2012,322(2):133-138
17 Watanabe T,Takahashi A,Suzuki,et al.Epithelial-mesenchymal transition in human gastric cancer cell lines induced by TNF-alpha-inducing protein of Helicobacter pylori[J].Int J Cancer,2014,134(10):2373-2382
18 Chen G,Tang N,Wang C,et al.TNF-alpha-inducing protein of Helicobacter pylori induces epithelial-mesenchymal transition(EMT) in gastric cancer cells through activation of IL-6/STAT3 signaling pathway[J].Biochem Biophys Res Commun,2017,484(2):311-317
19 Liu X,Cao K,Xu C,et al.GATA-3 augmentation downregulates Connexin43 in Helicobacter pylori associated gastric carcinogenesis[J].Cancer Biol Ther,2015,16(6):987-996
20 Murata-Kamiya N,Kurashima Y,Teishikata Y,et al.Helicobacter pylori CagA interacts with E-cadherin and deregulates the betacatenin signal that promotes intestinal transdifferentiation in gastric epithelial cells[J].Oncogene,2007,26(32):4617-4626
21 Chang WL,Yang HB,Cheng HC,et al.Intracellular Osteopontin Induced by CagA-positive Helicobacter pylori Promotes Betacatenin Accumulation and Interleukin-8 Secretion in Gastric Epithelial cells[J].Helicobacter,2015,20(6):476-484
22 Lee SH,Park JW,Go DM,et al.Ablation of osteopontin suppresses N-methyl-N-nitrosourea and Helicobacter pyloriinduced gastric cancer development in mice[J].Carcinogenesis,2015,36(12):1550-1560
23 Liu W,Song N,Yao H,et al.miR-221 and miR-222 Simultaneously Target RECK and Regulate Growth and Invasion of Gastric Cancer Cells[J].Med Sci Monit,2015,21:2718-2725
24 Liang X,Zeng J,Wang L,et al.Histone demethylase RBP2 induced by Helicobactor Pylori CagA participates in the malignant transformation of gastric epithelial cells[J].Oncotarget,2014,5(14):5798-5807
25 Zhou X,Xu G,Yin C,et al.Down-regulation of miR-203 induced by Helicobacter pylori infection promotes the proliferation and invasion of gastric cancer by targeting CASK[J].Oncotarget,2014,5(22):11631-11640
26 Zhou X,Xia Y,Li L,et al.MiR-101 inhibits cell growth and tumorigenesis of Helicobacter pylori related gastric cancer by repression of SOCS2[J].Cancer Biol Ther,2015,16(1):160-169
27 Ye F,Tang C,Shi W,et al.A MDM2-dependent positive-feedback loop is involved in inhibition of miR-375 and miR-106b induced by Helicobacter pylori lipopolysaccharide[J].Int J Cancer,2015,136(9):2120-2131
28 Zhu H,Wang Q,Yao Y,et al.Microarray analysis of Long noncoding RNA expression profiles in human gastric cells and tissues with Helicobacter pylori Infection[J].BMC Med Genomics,2015,8:84
29 Zhou X,Chen H,Zhu L,et al.Helicobacter pylori infection related long noncoding RNA (lncRNA) AF147447 inhibits gastric cancer proliferation and invasion by targeting MUC2 and up-regulating miR-34c[J].Oncotarget,2016,7(50):82770-82782
30 Yao Y,Jang Q,Jang L,et al.Lnc-SGK1 induced by Helicobacter pylori infection and highsalt diet promote Th2 and Th17 differentiation in human gastric cancer by SGK1/Jun B signaling[J].Oncotarget,2016,7(15):20549-20560
31 Yoon JH,Seo HS,Choi SS,et al.Gastrokine 1 inhibits the carcinogenic potentials of Helicobacter pylori CagA[J].Carcinogenesis,2014,35(11):2619-2629
32 Soutto M,Chen Z,Katsha AM,et al.Trefoil factor 1 expression suppresses Helicobacter pylori-induced inflammation in gastric carcinogenesis[J].Cancer,2015,121(24):4348-4358