何文華 張悅 呂農(nóng)華
NADPH氧化酶(NADPH oxidase,NOX)是多亞基復(fù)合體,它被激活后產(chǎn)生活性氧(reactive oxygen species,ROS),參與信號轉(zhuǎn)導(dǎo)等多種生理活動,且與疾病的發(fā)生密切相關(guān)。在炎癥反應(yīng)中,NOX產(chǎn)生ROS調(diào)控多種炎癥信號通路的活化,導(dǎo)致炎癥級聯(lián)反應(yīng)。NOX還通過產(chǎn)生ROS以“信號通路放大器”的角色參與細(xì)胞增殖、血管生成和纖維化,在各種組織器官纖維化發(fā)病中起關(guān)鍵作用[1]。近10年來研究發(fā)現(xiàn),NOX在急性胰腺炎(AP)和慢性胰腺炎(CP)的發(fā)病中起重要作用。
最初發(fā)現(xiàn)的吞噬細(xì)胞型NOX(包括中性粒細(xì)胞、單核-巨噬細(xì)胞)由胞膜上的催化亞基NOX2、調(diào)節(jié)亞基p22Phox和胞質(zhì)的調(diào)節(jié)亞基p47Phox、p40Phox、p67Phox、Rac1組成,它被細(xì)胞因子等激活后產(chǎn)生超氧化物(O2-),隨后被代謝為過氧化氫(H2O2)[2]。非吞噬細(xì)胞型NOX的催化亞基由不同的同源蛋白構(gòu)成(如NOX1[3]),它們被激活后產(chǎn)生ROS(主要是O2-、H2O2)參與信號轉(zhuǎn)導(dǎo)等許多生理活動,也與疾病的發(fā)生密切相關(guān)[2-3]。在炎癥反應(yīng)中,NOX產(chǎn)生ROS氧化修飾蛋白磷酸酶,調(diào)控NF-κB、MAPKs等多種炎癥信號通路的活化,而 NF-κB等調(diào)控產(chǎn)生的細(xì)胞因子又可激活NOX產(chǎn)生ROS[2],形成的交互調(diào)控導(dǎo)致炎癥級聯(lián)反應(yīng)失控和組織損傷[3-4]。
NOX在AP發(fā)病中也起促進(jìn)炎癥信號通路活化的作用。已有研究證實(shí)NOX參與調(diào)控胰腺腺泡細(xì)胞NF-кB、Jak2/STAT3和MAPKs信號通路的活化[5-7]。Yu等[5]發(fā)現(xiàn)AR42J細(xì)胞表達(dá)NOX的亞基NOX1、p22Phox、p67Phox和p47Phox,雨蛙肽刺激AR42J細(xì)胞能增加NOX的活性,導(dǎo)致NF-κB激活和IL-6的表達(dá)上調(diào)。給予NOX抑制劑二苯基磺鎓(DPI)或轉(zhuǎn)染反義寡核苷酸能抑制雨蛙肽誘導(dǎo)的NF-κB激活和IL-6的表達(dá)。Chan和Leung[6]采用大鼠膽總管結(jié)扎誘導(dǎo)梗阻性AP模型,發(fā)現(xiàn)血管緊張素Ⅱ(AngⅡ)通過與抗血管緊張素受體1(AT1)結(jié)合激活NOX,導(dǎo)致NF-κB的活化從而促進(jìn)炎癥反應(yīng)。AT1受體阻滯劑氯沙坦能抑制NF-κB p65蛋白的磷酸化,改善胰腺組織損傷,降低髓過氧化物酶活性及血清IL-6水平。Yu等[5]研究發(fā)現(xiàn),雨蛙肽刺激AR42J細(xì)胞后激活了JAK2/STAT3和MAPKs信號通路,上調(diào)TGF-β1的表達(dá),而DPI、JAK2抑制劑AG490、 p22Phox和p47Phox寡核苷酸均抑制JAK2/STAT3和MAPKs的活化及TGF-β1的表達(dá),表明NOX產(chǎn)生的ROS在AP的炎癥級聯(lián)反應(yīng)中起重要作用。此外,蛋白磷酸酶、組蛋白去乙?;敢彩荖OX調(diào)控的主要目標(biāo),并參與內(nèi)質(zhì)網(wǎng)應(yīng)激和細(xì)胞自噬[4]。何文華等[8]報(bào)道,NOX的抑制劑夾竹桃麻素能抑制牛磺膽酸鈉誘導(dǎo)的出血壞死性胰腺炎(ANP)大鼠胰腺組織NF-κB的活化及TNF-α、IL-6的表達(dá),從而減輕胰腺炎嚴(yán)重程度。Deng等[9]研究發(fā)現(xiàn),夾竹桃麻素通過抑制p38 MAPKs和NF-κB信號通路的激活減輕ANP大鼠腸屏障損傷。然而,也有報(bào)道中性粒細(xì)胞的NOX2參與緩解全身炎癥反應(yīng)綜合征,阻止肺損傷的發(fā)生[10-11]。因此,中性粒細(xì)胞的NOX在重癥AP發(fā)生中的作用還有爭議,值得進(jìn)一步研究。
在CP發(fā)病過程中,乙醇、乙醛、脂多糖等致病因素?fù)p傷胰腺腺泡細(xì)胞,釋放的炎癥遞質(zhì)可誘導(dǎo)胰腺星狀細(xì)胞(PSCs) 活化[12-14],活化的PSCs通過自體分泌TGF-β1 、血小板衍生生長因子(PDGF)等細(xì)胞因子進(jìn)一步激活PSCs內(nèi)的MAPK、NF-κB、Smad等信路通路,使PSC呈持續(xù)活化狀態(tài),促進(jìn)胰腺纖維化的發(fā)生。Hu等[15]研究發(fā)現(xiàn)PSCs表達(dá)NOX的亞基gp91phox、p22Phox、p47Phox和p67Phox。PDGF誘導(dǎo)能顯著增加PSCs的NOX活性,乙醇處理后可進(jìn)一步增強(qiáng)NOX活性和PDGF誘導(dǎo)的DNA合成,但這一作用能被抗氧化劑N-乙酰-L-半胱氨酸、ROS清除劑Tiron和NOX抑制劑DPI所阻斷。敲除p47Phox基因也能阻斷PDGF誘導(dǎo)的NOX的活性增強(qiáng)和DNA合成,表明NOX在乙醇和PDGF刺激引起的PSCs增殖中起重要作用。Masamune等[16]研究也發(fā)現(xiàn)PSCs表達(dá)NOX的亞基gp91phox/NOX2、p22Phox、p47Phox、NOX1、NOX4。PDGF-BB、IL-1β和AngⅡ可誘導(dǎo)PSCs產(chǎn)生ROS。NOX抑制劑DPI和夾竹桃麻素能阻斷PSCs產(chǎn)生ROS,并抑制PDGF誘導(dǎo)的增殖和IL-1β誘導(dǎo)的趨化因子,阻止PSCs活化和細(xì)胞外基質(zhì)(ECM)的生成。體外實(shí)驗(yàn)發(fā)現(xiàn),DPI能抑制DBTC誘導(dǎo)的CP大鼠的胰腺纖維化。Sakurai等[17]研究發(fā)現(xiàn),給予AngⅡ受體拮抗劑和血管緊張素轉(zhuǎn)化酶抑制劑(ACEI)能阻止大鼠CP纖維化的發(fā)展,其機(jī)制是通過抑制NOX產(chǎn)生ROS, 阻斷p38MAPKs信號通路,從而抑制Ⅰ型膠原的產(chǎn)生和α-SMA表達(dá)。國內(nèi)動物實(shí)驗(yàn)報(bào)道也發(fā)現(xiàn)PDTC等抗氧化劑可抑制PSCs的活化,減少ECM的產(chǎn)生[18]。此外,CP時(shí)NOX產(chǎn)生的ROS還增加了胰腺癌的風(fēng)險(xiǎn)。最近有證據(jù)顯示,ROS誘導(dǎo)產(chǎn)生的細(xì)胞因子可能分別導(dǎo)致炎癥性腸病患者和CP患者發(fā)展為結(jié)腸癌和胰腺癌[19]。
綜上所述,NOX及其產(chǎn)生的ROS在AP和CP的發(fā)病機(jī)制中起著重要的作用。在AP的發(fā)病機(jī)制中,NOX產(chǎn)生ROS調(diào)控胰腺腺泡細(xì)胞NF-κB、MAPKs等多種炎癥信號通路的活化,導(dǎo)致炎癥級聯(lián)反應(yīng)和胰腺組織損傷。它還可能參與調(diào)控中性粒細(xì)胞內(nèi)的NF-κB活化,調(diào)控炎癥遞質(zhì)的釋放,導(dǎo)致局部組織損傷和全身炎癥反應(yīng);在CP的發(fā)病機(jī)制中,NOX介導(dǎo)了乙醇、生長因子等誘導(dǎo)的PSCs增殖、活化和ECM生成。雖然基礎(chǔ)研究結(jié)果發(fā)現(xiàn)抗氧化劑對AP和CP有益,但臨床研究仍未發(fā)現(xiàn)任何抗氧化劑能改善AP的病情嚴(yán)重程度或縮短病程[20],抗氧化劑也不能減輕CP患者的疼痛或改善生活質(zhì)量[21]。因此現(xiàn)有的抗氧化劑不能選擇性地清除NOX產(chǎn)生的ROS,未來的研究應(yīng)針對胰腺腺泡細(xì)胞和PSCs的NOX,開發(fā)安全、有效的選擇性NOX抑制劑以抑制它們細(xì)胞內(nèi)ROS的產(chǎn)生和信號轉(zhuǎn)導(dǎo),從而阻斷AP的炎癥級聯(lián)反應(yīng)和CP的胰腺纖維化。
[1] Chan EC, Jiang F, Peshavariya HM, et al. Regulation of cell proliferation by NADPH oxidase-mediated signaling: potential roles in tissue repair, regenerative medicine and tissue engineering[J]. Pharmacol Ther, 2009, 122(2): 97-108. DOI: S0163-7258(09)00034-5 [pii]10.1016/j.pharmthera.2009.02.005.
[2] Brandes RP, Weissmann N, Schroder K. Nox family NADPH oxidases: molecular mechanisms of activation[J]. Free Radic Biol Med, 2014, 76: 208-226. DOI: 10.1016/j.freeradbiomed.2014.07.046.
[3] Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology[J]. Physiol Rev, 2007, 87(1): 245-313.DOI: 87/1/245 [pii]10.1152/physrev.00044.2005.
[4] Escobar J, Pereda J, Lopez-Rodas G, et al. Redox signaling and histone acetylation in acute pancreatitis[J]. Free Radic Biol Med, 2012, 52(5): 819-837.DOI: 10.1016/j.freeradbiomed.2011.11.009.
[5] Yu JH, Lim JW, Kim H, et al. NADPH oxidase mediates interleukin-6 expression in cerulein-stimulated pancreatic acinar cells[J]. Int J Cell Biol, 2005, 37(7): 1458-1469. DOI: 10.1016/j.biocel.2005.02.004.
[6] Chan YC, Leung PS. Angiotensin II type 1 receptor-dependent nuclear factor-kappaB activation-mediated proinflammatory actions in a rat model of obstructive acute pancreatitis[J]. J Pharmacol Exp Ther, 2007, 323(1): 10-18. DOI: 10.1124/jpet.107.124891.
[7] Ju KD, Lim JW, Kim KH, et al. Potential role of NADPH oxidase-mediated activation of Jak2/Stat3 and mitogen-activated protein kinases and expression of TGF-beta1 in the pathophysiology of acute pancreatitis[J]. Inflamm Res, 2011, 60(8): 791-800. DOI: 10.1007/s00011-011-0335-4.
[8] 何文華, 夏亮, 謝川, 等. 夾竹桃麻素治療大鼠急性壞死性胰腺炎的療效. 中華胰腺病學(xué)雜志, 2016, 16(4): 217-221.DOI: 10.3760/cma.j.issn.1674-1935.2016.04.009.
[9] Deng W, Abliz A, Xu S, et al. Severity of pancreatitisassociated intestinal mucosal barrier injury is reduced following treatment with the NADPH oxidase inhibitor apocynin[J]. Mol Med Rep, 2016, 14(4): 3525-3534. DOI: 10.3892/mmr.2016.5678.
[10] Whitmore LC, Hilkin BM, Goss KL, et al. NOX2 protects against prolonged inflammation, lung injury, and mortality following systemic insults[J]. J Innate Immun, 2013, 5(6): 565-580. DOI: 10.1159/000347212.
[11] Whitmore LC, Goss KL, Newell EA, et al. NOX2 protects against progressive lung injury and multiple organ dysfunction syndrome. Am J Physiol Lung Cell Mol Physiol, 2014, 307(1): L71-L82. DOI: 10.1152/ajplung.00054.2014.
[12] Masamune A, Kikuta K, Watanabe T, et al. Pancreatic stellate cells express Toll-like receptors[J]. J Gastroenterol, 2008, 43(5): 352-362. DOI: 10.1007/s00535-008-2162-0.
[13] Marrache F, Tu SP, Bhagat G, et al. Overexpression of interleukin-1beta in the murine pancreas results in chronic pancreatitis[J]. Gastroenterology, 2008, 135(4): 1277-1287. DOI: 10.1053/j.gastro.2008.06.078.
[14] Mews P, Phillips P, Fahmy R, et al. Pancreatic stellate cells respond to inflammatory cytokines: potential role in chronic pancreatitis[J]. Gut, 2002, 50(4): 535-541.
[15] Hu R, Wang YL, Edderkaoui M, et al. Ethanol augments PDGF-induced NADPH oxidase activity and proliferation in rat pancreatic stellate cells[J]. Pancreatology, 2007, 7(4): 332-340. DOI: 10.1159/000105499.
[16] Masamune A, Watanabe T, Kikuta K, et al. NADPH oxidase plays a crucial role in the activation of pancreatic stellate cells. Am J Physiol Gastrointest Liver Physiol, 2008, 294(1): G99-G108. DOI: 10.1152/ajpgi.00272.2007.
[17] Sakurai T, Kudo M, Fukuta N, et al. Involvement of angiotensin II and reactive oxygen species in pancreatic fibrosis[J]. Pancreatology, 2011, 11 Suppl 2: 7-13. DOI: 10.1159/000323478.
[18] 朱穎, 孫蘊(yùn)偉, 章永平, 等. 抗氧化劑對慢性胰腺炎大鼠胰腺纖維化的影響[J]. 中華胰腺病學(xué)雜志, 2015, 15(6): 394-399.DOI:10.3760/cma.j.issn.1674-1935.2015.06.008.
[19] Roy K, Wu Y, Meitzler JL, et al. NADPH oxidases and cancer[J]. Clin Sci, 2015, 128(12): 863-875. DOI: 10.1042/CS20140542.
[20] Hackert T, Werner J. Antioxidant therapy in acute pancreatitis: experimental and clinical evidence[J]. Antioxid Redox Signal, 2011, 15(10): 2767-2777.DOI: 10.1089/ars.2011.4076.
[21] Siriwardena AK, Mason JM, Sheen AJ, et al. Antioxidant therapy does not reduce pain in patients with chronic pancreatitis: the ANTICIPATE study[J]. Gastroenterology, 2012, 143(3): 655-663 e651. DOI: 10.1053/j.gastro.2012.05.046.