徐欣,徐運(yùn)
腦小血管病是一種常見(jiàn)的衰老現(xiàn)象,其神經(jīng)影像學(xué)的特征包括小的皮層下梗死、腔隙、腦白質(zhì)高信號(hào)、血管周圍間隙、腦微出血和腦萎縮。其中腦微出血病灶在磁共振成像上的磁敏感序列呈現(xiàn)出低信號(hào)。腦微出血通常位于皮層下、灰質(zhì)、白質(zhì)、腦干或小腦結(jié)構(gòu)中[1]。為更好地了解腦微出血患者影像學(xué)特征及臨床特征,本文將就腦微出血在磁共振磁敏感序列的影像學(xué)特點(diǎn)及診斷標(biāo)準(zhǔn)進(jìn)行綜述。
腦微出血(cerebral microbleeds,CMBs)是由腦內(nèi)微小血管病變時(shí)血液通過(guò)血管壁漏出所致,形成以血管周圍巨噬細(xì)胞中含鐵血黃素沉積為主要特征的亞臨床損害[2]。它與腔隙、腔隙性梗死、腦白質(zhì)病變、血管周圍間隙擴(kuò)大同屬于腦小血管病。神經(jīng)影像學(xué)血管改變報(bào)道標(biāo)準(zhǔn)組織(Standards for Reporting Vascular Changes on Neuroimaging,STRIVE)在2013年提出了CMBs的影像學(xué)標(biāo)準(zhǔn)[1],定義為在T2加權(quán)梯度回波序列、磁敏感加權(quán)成像序列或其他磁敏感序列上可見(jiàn)的較?。ㄖ睆郊s2~5 mm,可多達(dá)10 mm)的無(wú)信號(hào)區(qū)域,而在計(jì)算機(jī)斷層掃描(computed tomography,C T)、液體衰減反轉(zhuǎn)恢復(fù)序列(f l u i dattenuated inversion recovery,F(xiàn)LAIR)、T1加權(quán)像(T1-weighted imaging,T1WI)或T2加權(quán)像(T2-weighted imaging,T2WI)上不能看到。
CMBs在普通人群中的發(fā)生率為5%~21%[3-4],在缺血性卒中患者中CMBs的發(fā)生率為30%~40%,在腦出血(intracerebral hemorrhage,ICH)患者中CMBs的發(fā)生率較高,為60%~68%[5],在阿爾茲海默病患者中發(fā)生率較低,接近20%[6]。CMBs的發(fā)生率隨著年齡增長(zhǎng)有逐漸增高的趨勢(shì),運(yùn)用高磁敏感性磁共振(magnetic resonance,MR)序列檢測(cè)出60~69歲的人群中CMBs的發(fā)生率為18%,>80歲的人群中CMBs的發(fā)生率為38%[7]。
CMBs最常見(jiàn)于皮質(zhì)-皮質(zhì)下交界處、大腦半球深部灰質(zhì)或白質(zhì)、腦干及小腦等小血管及側(cè)支循環(huán)豐富區(qū)域,其中分布于皮質(zhì)-皮質(zhì)下交界處的CMBs稱為腦葉CMBs,與腦淀粉樣血管?。╟erebral amyloid angiopathy,CAA)相關(guān);分布于基底節(jié)、丘腦、腦干及小腦的CMBs稱為深部CMBs,與高血壓病相關(guān)(圖1)[8]。
年齡和高血壓是CMBs的危險(xiǎn)因素,其中腦葉CMBs還與淀粉樣腦血管病相關(guān)[9]。男性CMBs的發(fā)生率(14.4%)明顯高于女性(8.8%),且無(wú)論男女均隨年齡增長(zhǎng),其發(fā)生率呈增高趨勢(shì)[10]。此外,血糖水平、體重指數(shù)等也被認(rèn)為是微出血的危險(xiǎn)因素,慢性腎病、頸動(dòng)脈支架術(shù)會(huì)增加CMBs的發(fā)病率[10-11]。存在CMBs的健康人群未來(lái)腦出血和缺血性卒中的風(fēng)險(xiǎn)同時(shí)升高,CMBs還增加ICH復(fù)發(fā)風(fēng)險(xiǎn)[12-13]。CMBs也是認(rèn)知障礙的獨(dú)立危險(xiǎn)因素,對(duì)認(rèn)知障礙的影響與CMBs的部位和數(shù)量有關(guān)[4]。對(duì)于卒中患者CMBs還可提高抑郁的發(fā)生率[14]。
圖1 腦微出血
3.1 梯度回波序列(gradient-recalled echo,GRE)檢測(cè) 常規(guī)MRI檢測(cè)技術(shù)中,T2加權(quán)像梯度回波序列被認(rèn)為是檢測(cè)CMBs的特異性序列。由于紅細(xì)胞破裂出血后引起血紅蛋白緩慢分解,這些分解產(chǎn)物在不同時(shí)期的變化過(guò)程表現(xiàn)為不同的磁敏感性,其中氧合血紅蛋白具有反磁性,脫氧血紅蛋白呈順磁性,高鐵血紅蛋白僅有很弱的磁敏感效應(yīng),而含鐵血黃素為高順磁性。無(wú)論是順磁性還是反磁性物質(zhì)均可造成局部出血部位的磁場(chǎng)信號(hào)強(qiáng)度不均勻,GRE-WI序列對(duì)此非常敏感,表現(xiàn)為低信號(hào)或者信號(hào)缺失[15]。含鐵血黃素在GRE-WI序列上表現(xiàn)為圓形或卵圓形、質(zhì)地均一、邊緣清楚、直徑2~5 mm(最大不超過(guò)10 mm)的局灶性信號(hào)缺失區(qū),且周圍無(wú)水腫。此外,由于對(duì)信號(hào)的放大作用,GRE-WI檢測(cè)的低信號(hào)比實(shí)際的病灶要大,這種現(xiàn)象稱為“輝散效應(yīng)(blooming effcet)”(圖2)[1,16]。盡管如此,由于早期病變的病灶較小,含鐵血黃素沉積物體積小,且未引起明顯周圍腦組織水腫,不足以引起磁場(chǎng)信號(hào)的改變,造成常規(guī)磁共振成像(magnetic resonance imaging,MRI)很難檢測(cè)出微出血灶的早期病變,因此很難做出早期診斷。
3.2 磁敏感加權(quán)成像(susceptibilityweighted imaging,SWI)序列檢測(cè) 不同于普通的MRI序列,SWI以GRE-WI序列作為基礎(chǔ),采用了高分辨率三維梯度回波序列及相位蒙片加權(quán)的圖像后處理技術(shù),根據(jù)不同組織間的磁敏感性的差異提供圖像對(duì)比增強(qiáng),明顯提高了CMBs與周圍正常腦組織的對(duì)比度,從而對(duì)于顯示微出血較GRE-T2*WI序列更加敏感。尤其是當(dāng)CMBs病灶較小或局部含鐵血黃素沉積較少,引起的磁場(chǎng)不均勻程度較輕,運(yùn)用GRE-T2*WI序列不容易檢測(cè)辨別CMBs病灶的信號(hào)時(shí),SWI序列能更好地顯示微量出血、靜脈血管和血管畸形(圖3)。NANDIGAM等[17]研究表明,SWI序列可以檢測(cè)到67%以上的CMBs。AYAZ等[18]研究表明SWI序列可檢測(cè)到最小直徑1 mm的病灶。AKTER等[19]研究表明,SWI序列檢測(cè)CMBs的敏感性是GRE-T2*WI序列的3~6倍。而理論上估計(jì)SWI序列檢測(cè)含鐵量的敏感性約是GRE-T2*WI的8倍[20]。GUO等[21]和CHENG等[22]證實(shí)SWI序列可檢測(cè)出比GRE-WI序列更多、更小的微出血病灶。然而,由于SWI的高磁敏感性,同樣也顯示了其他含鐵的結(jié)構(gòu),包括動(dòng)脈、靜脈和基底節(jié),這些黑色的結(jié)構(gòu)在視覺(jué)上可能與微出血混淆,從而降低了微出血檢出的可靠性[22]??傊?,與GRE-T2*WI序列相比,SWI序列提高了CMBs的檢出率,但一定程度降低了微出血檢出的可靠性,但兩者相較SWI序列還是具有絕對(duì)的優(yōu)勢(shì),故目前推薦SWI序列作為CMBs標(biāo)準(zhǔn)檢測(cè)序列。
圖2 輝散效應(yīng)(blooming effect)
3.3 三維增強(qiáng)多梯度回波T2*加權(quán)血管成像(enhanced 3D multi-echo GRE T2*-weighted angiography,ESWAN)序列檢測(cè)ESWAN序列是一種全新的SWI序列,它建立在SWI序列的基礎(chǔ)上,采用特有的多回波采集方式使一次掃描可獲得多個(gè)回波的相位圖和幅度圖,同時(shí)擁有動(dòng)脈流入增強(qiáng)效應(yīng)和磁敏感加權(quán)效應(yīng),且在后處理技術(shù)上與SWI序列有所不同,采用多回波幅度平均的方法,提高了圖像的信噪比,使得磁敏感效應(yīng)有差異的產(chǎn)物得以在同一次掃描顯影,可以明顯提高CMBs的對(duì)比度,對(duì)CMBs的檢出率更高[17]。ESWAN序列不僅延續(xù)了SWI序列在顯示微量出血、顱內(nèi)靜脈的優(yōu)勢(shì),還能通過(guò)同時(shí)顯示的相位圖和幅度圖更好的區(qū)分出血和鈣化[23],因?yàn)殁}化在相位圖中有相反的信號(hào)強(qiáng)度,從而表現(xiàn)為高信號(hào)。也有研究表明,ESWAN序列在檢測(cè)CMBs的敏感性并不優(yōu)于SWI的序列,但這兩者都優(yōu)于GRE-WI序列[21]。但因ESWAN序列對(duì)技術(shù)和設(shè)備的要求更高,這為CMBs的常規(guī)檢測(cè)造成了一定困難,故目前仍推薦SWI作為CMBs的標(biāo)準(zhǔn)檢測(cè)序列。有些病變或結(jié)構(gòu)可類似于CMBs,如鈣化、正常血管的橫截面、其他原因?qū)е碌蔫F沉積、出血性轉(zhuǎn)移(如黑色素瘤)及彌漫性軸索損傷(如腦外傷后),應(yīng)避免混淆。
圖3 腦微出血在GRE-T2*WI序列上和SWI序列上的比較
基于STRIVE在2013年提出的CMBs的影像學(xué)標(biāo)準(zhǔn)[1,15],我們總結(jié)CMBs的神經(jīng)影像學(xué)診斷標(biāo)準(zhǔn):①在SWI、GRE-T2WI或其他磁敏感序列上圓形或橢圓形的低信號(hào)影,可見(jiàn)輝散效應(yīng);②在CT、FLAIR、T1WI或T2WI序列上不能看到;③至少有一半病灶被腦組織圍繞;④排除鈣化、正常血管的橫截面、其他原因?qū)е碌蔫F沉積、出血性轉(zhuǎn)移(如黑色素瘤)及彌漫性軸索損傷(如腦外傷后)。
常見(jiàn)血管預(yù)防措施包括抗血小板、抗凝、降壓和降脂等,適用于大動(dòng)脈疾病和心源性栓塞,然而對(duì)于腦小血管病變卻不一定有效。針對(duì)CMBs建議采取以下治療和預(yù)防措施:①控制血壓:高血壓是CMBs明確的危險(xiǎn)因素,控制血壓能夠有效降低CMBs的發(fā)生率[21]。②降脂:近年來(lái)降脂藥物被越來(lái)越多地應(yīng)用于臨床治療。但HAUSSEN等[24]研究表明,他汀類藥物與CMBs的發(fā)生獨(dú)立相關(guān)。因此對(duì)于CMBs患者應(yīng)該慎用他汀類藥物。③抗血小板治療:還存在一定爭(zhēng)議。由于腦出血風(fēng)險(xiǎn)和病死率均隨著CMBs數(shù)量增加而升高,當(dāng)CMBs數(shù)量超過(guò)5個(gè),腦出血帶來(lái)的風(fēng)險(xiǎn)將超過(guò)抗血小板治療帶來(lái)的收益[25]。荷蘭鹿特丹研究(Rotterdam Scan Study)顯示,接受抗血小板治療的缺血性卒中或短暫性腦缺血發(fā)作(transient ischemic attack,TIA)患者中CMBs患病率為18%~68%,而無(wú)卒中史群體的CMBs發(fā)生率僅為5%[26-27]。與未應(yīng)用阿司匹林者相比,應(yīng)用阿司匹林的CMBs患者顱內(nèi)出血風(fēng)險(xiǎn)增高[28]。近年來(lái)YAMASHIRO等[29]發(fā)現(xiàn)應(yīng)用阿司匹林并不增加CMBs發(fā)生率,且長(zhǎng)期服用也不增加出血風(fēng)險(xiǎn)。因此,針對(duì)CMBs與抗血小板治療相關(guān)性還需要進(jìn)一步探究。④抗凝治療:抗凝治療的主要風(fēng)險(xiǎn)同樣是顱內(nèi)出血。CMBs可能導(dǎo)致華法林抗凝治療后腦出血風(fēng)險(xiǎn)增加[30],然而沒(méi)有足夠證據(jù)顯示滿足抗凝指征的微出血患者因未來(lái)出現(xiàn)顱內(nèi)出血風(fēng)險(xiǎn)增加而不能進(jìn)行抗凝治療。⑤針對(duì)微血管內(nèi)皮、血腦屏障和神經(jīng)炎癥等環(huán)節(jié)的藥物可能具有潛在預(yù)防CMBs的價(jià)值[31]。
目前臨床研究已證實(shí)CMBs與出血性或缺血性卒中以及認(rèn)知障礙等疾病密切相關(guān),因此CMBs的精準(zhǔn)診療有助于檢測(cè)這些潛在疾病的嚴(yán)重程度,并提供個(gè)體化的治療決策。隨著磁共振新技術(shù)的發(fā)展和應(yīng)用,磁敏感技術(shù)診斷CMBs的優(yōu)勢(shì)與特點(diǎn)逐漸被人們認(rèn)識(shí),與GRE-T2*WI序列相比,SWI和ESWAN序列對(duì)CMBs病灶的診斷更加精確,目前推薦SWI作為CMBs的標(biāo)準(zhǔn)檢測(cè)序列。但是目前由于CMBs的發(fā)病機(jī)制仍不是十分清楚,對(duì)其動(dòng)態(tài)變化和定量評(píng)估以及對(duì)CMBs更加敏感的磁共振技術(shù)有待于進(jìn)一步研究,以期為CMBs的治療、預(yù)防和預(yù)后等提供更加高效的診斷標(biāo)準(zhǔn)。
[1] WARDLAW J M,SMITH E E,BIESSELS G J,et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration[J]. Lancet Neurol,2013,12(8):822-838.
[2] WERRING D J. Cerebral microbleeds:clinical and pathophysiological signi fi cance[J]. J Neuroimaging,2007,17(3):193-203.
[3] POELS M M,IKRAM M A,VAN DER LUGT A,et al. Incidence of cerebral microbleeds in the general population:the Rotterdam Scan Study[J]. Stroke,2011,42(3):656-661.
[4] ROMERO J R,PREIS S R,BEISER A,et al. Risk factors,stroke prevention treatments,and prevalence of cerebral microbleeds in the Framingham Heart Study[J]. Stroke,2014,45(5):1492-1494.
[5] KOENNECKE H C. Cerebral microbleeds on MRI:prevalence,associations,and potential clinical implications[J]. Neurology,2006,66(2):165-171.
[6] CORDONNIER C,AL-SHAHI SALMAN R,WARDLAW J. Spontaneous brain microbleeds:systematic review,subgroup analyses and standards for study design and reporting[J]. Brain,2007,130(Pt 8):1988-2003.
[7] SVEINBJORNSDOTTIR S,SIGURDSSON S,ASPELUND T,et al. Cerebral microbleeds in the population based AGES-Reykjavik study:prevalence and location[J]. J Neurol Neurosurg Psychiatry,2008,79(9):1002-1006.
[8] FAZEKAS F,KLEINERT R,ROOB G,et al.Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage:evidence of microangiopathy-related microbleeds[J]. AJNR Am J Neuroradiol,1999,20(4):637-642.
[9] PASI M,BOULOUIS G,F(xiàn)OTIADIS P,et al.Distribution of lacunes in cerebral amyloid angiopathy and hypertensive small vessel disease[J]. Neurology,2017,88(23):2162-2168.
[10] VERNOOIJ M W,VAN DER LUGT A,IKRAM M A,et al. Prevalence and risk factors of cerebral microbleeds:in the Rotterdam Scan Study[J]. Neurology,2008,70(14):1208-1214.
[11] KIM B J,LEE S H. Cerebral microbleeds:their associated factors,radiologic fi ndings,and clinical implications[J]. J Stroke,2013,15(3):153-163.
[12] RYU W S,LEE S H,KIM C K,et al. The relation between chronic kidney disease and cerebral microbleeds:difference between patients with and without diabetes[J]. Int J Stroke,2012,7(7):551-557.
[13] SHIMA H,ISHIMURA E,NAGANUMA T,et al. Cerebral microbleeds in predialysis patients with chronic kidney disease[J]. Nephrol Dial Transplant,2010,25(5):1554-1559.
[14] MESKER D J,POELS M M,IKRAM M A,et al. Lobar distribution of cerebral microbleeds:the Rotterdam Scan Study[J]. Arch Neurol,2011,68(5):656-659.
[15] GREENBERG S M,VERNOOIJ M W,CORDONNIER C,et al. Cerebral microbleeds:a guide to detection and interpretation[J]. Lancet Neurol,2009,8(2):165-174.
[16] CHARIDIMOU A,J?GER H R,WERRING D J.Cerebral microbleed detection and mapping:principles,methodological aspects and rationale in vascular dementia[J]. Exp Gerontol,2012,47(11):843-852.
[17] NANDIGAM R N,VISWANATHAN A,DELGADO P,et al. MR imaging detection of cerebral microbleeds:effect of susceptibility-weighted imaging,section thickness,and fi eld strength[J]. AJNR Am J Neuroradiol,2009,30(2):338-343.
[18] AYAZ M,BOIKOV A S,HAACKE E M,et al. Imaging cerebral microbleeds using susceptibility weighted imaging:one step toward detecting vascular dementia[J].J Magn Reson Imaging,2010,31(1):142-148.
[19] AKTER M,HIRAI T,HIAI Y,et al. Detection of Hemorrhagic hypointense foci in the brain on susceptibility-weighted imaging clinical and phantom studies[J]. Acad Radiol,2007,14(9):1011-1019.
[20] HAACKE E M,AYAZ M,KHAN A,et al.Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs. abnormal iron content in the brain[J]. J Magn Reson Imaging,2007,26(2):256-264.
[21] GUO L F,WANG G,ZHU X Y,et al. Comparison of ESWAN,SWI-SPGR,and 2D T2*-weighted GRE sequence for depicting cerebral microbleeds[J]. Clin Neuroradiol,2013,23(2):121-127.
[22] CHENG A L,BATOOL S,MCCREARY C R,et al.Susceptibility-weighted imaging is more reliable than-weighted gradient-recalled echo MRI for detecting microbleeds[J]. Stroke,2013,44(10):2782-2786.
[23] HAUTVAST G L,CHIRIBIRI A,LOCKIE T,et al. Quantitative analysis of transmural gradients in myocardial perfusion magnetic resonance images[J].Magn Reson Med,2011,66(5):1477-1487.
[24] HAUSSEN D C,HENNINGER N,KUMAR S,et al.Statin use and microbleeds in patients with spontaneous intracerebral hemorrhage[J]. Stroke,2012,43(10):2677-2681.
[25] SOO Y O,YANG S R,LAM W W,et al. Risk vs bene fi t of anti-thrombotic therapy in ischaemic stroke patients with cerebral microbleeds[J]. J Neurol,2008,255(11):1679-1686.
[26] VERNOOIJ M W,HAAG M D,VAN DER LUGT A,et al. Use of antithrombotic drugs and the presence of cerebral microbleeds:the Rotterdam Scan Study[J].Arch Neurol,2009,66(6):714-720.
[27] DARWEESH S K,LEENING M J,AKOUDAD S,et al. Clopidogrel use is associated with an increased prevalence of cerebral microbleeds in a stroke-free population:the Rotterdam study[J]. J Am Heart Assoc,2013,2(5):e000359.
[28] VISWANATHAN A,CHABRIAT H. Cerebral microhemorrhage[J]. Stroke,2006,37(2):550-555.
[29] YAMASHIRO K,TANAKA R,OKUMA Y,et al. Associations of durations of antiplatelet use and vascular risk factors with the presence of cerebral microbleeds[J]. J Stroke Cerebrovasc Dis,2014,23(3):433-440.
[30] LOVELOCK C E,CORDONNIER C,NAKA H,et al. Antithrombotic drug use,cerebral microbleeds,and intracerebral hemorrhage:a systematic review of published and unpublished studies[J]. Stroke,2010,41(6):1222-1228.
[31] BATH P M,WARDLAW J M. Pharmacological treatment and prevention of cerebral small vessel disease:a review of potential interventions[J]. Int J Stroke,2015,10(4):469-478.