姚曉潔, 秦發(fā)金
(廣西科技師范學(xué)院數(shù)學(xué)與計算機科學(xué)學(xué)院,來賓 546199)
具有收獲率的擴散捕食系統(tǒng)的8個正概周期解
姚曉潔*, 秦發(fā)金
(廣西科技師范學(xué)院數(shù)學(xué)與計算機科學(xué)學(xué)院,來賓 546199)
提出了一類具有收獲率和Hassell-Varley功能反應(yīng)的擴散捕食系統(tǒng),通過利用重合度理論中的延拓定理和不等式分析技巧,細致分析了該系統(tǒng)解的先驗界的8種可能存在情形,從而獲得了其至少存在8個正概周期解的充分條件.
收獲率; Hassell-Varley功能反應(yīng);擴散捕食系統(tǒng); 8個正概周期解; 重合度
近年來,關(guān)于具有時滯的生物種群系統(tǒng)具有多個周期解的研究引起了學(xué)者們的廣泛興趣,并取得一些有意義的結(jié)果[1-6]. 眾所周知,自然界中生物種群很多不是周期現(xiàn)象,而是概周期現(xiàn)象,因此,研究生物種群系統(tǒng)的概周期解更具現(xiàn)實意義. 最近,ZHANG和WEI[7]討論了如下具有收獲率和Hassell-Varley功能反應(yīng)的捕食系統(tǒng)
(1)
的概周期解問題,利用重合度理論獲得了系統(tǒng)(1)至少存在2個正概周期解的充分條件. 除了時滯的影響外,擴散現(xiàn)象也經(jīng)常在生物種群系統(tǒng)中發(fā)生[8-12]. 然而,對擴散的生物種群系統(tǒng)具有多個正概周期解卻很少有人研究. 因此,本文在文獻[7]的基礎(chǔ)上討論如下具有收獲率和Hassell-Varley功能反應(yīng)的時滯擴散捕食系統(tǒng)
(2)
的概周期解的存在性,其中Ni(t)(i=1,2)分別表示種群A在斑塊1和斑塊2中的種群密度,N3(t)表示種群B在斑塊1的種群密度;種群A可在斑塊1和斑塊2中擴散,Dj(j=1,2)為擴散系數(shù),hi>0 (i=1,2,3)為收獲率;ai(t)、bi(t)、hi(t)、Dj(t)、cj(t)、(t) (i=1,2,3;j=1,2)均為非負的連續(xù)概周期函數(shù);γ(0,1),θi(i=1,2,3)為正常數(shù).
定義1稱函數(shù)x(t)C()=C(,)在是概周期解,如果對?ε>0,集合
T(x,ε)={:|x(t+)-x(t)|<ε,?t}
是相對稠密的,即對?ε>0,存在一個實數(shù)l=l(ε),使得在每個長度為l的區(qū)間內(nèi)至少有一個=(ε)T(x,ε),使得|x(t+)-x(t)|<ε(?t)成立. 集合T(x,ε)叫做x(t)的ε-概周期集,叫做x(t)的ε-概周期,l(ε)為T(x,ε)的包含區(qū)間長度.
記
AP()={p(t):p(t)是上實值概周期函數(shù)},
AP(,n)={(x1,x2,…,xn)T:xiAP(),i=1,2,…,n,n+}.
引理1[13]如果f(t)AP(),則f(t)在有界.
引理2[14]如果f(t)AP(),則存在t0使得f(t0)=m(f).
引理3[7]假設(shè)x(t)AP()∩C1()且x′(t)C(),記則對?ε>0,下列結(jié)論成立:
(i)存在點ξε[0,+),使得x(ξε)[x*-ε,x*]和x′(ξε)=0.
(ii)存在點ηε[0,+),使得x(ηε)[x*,x*+ε]和x′(ηε)=0.
設(shè)X和Z是Banach空間,L:DomL?X→Z為線性映射,N:X×[0,1]→Z為連續(xù)映射,若dim KerL=codim ImL<+,且ImL在Z中是閉的,則稱映射L是零指標(biāo)的Fredholm映射. 如果L是零指標(biāo)的Fredholm映射,且存在連續(xù)投影P:X→X及Q:Z→Z使得ImP=KerL,ImL=KerQ=Im(I-Q),及X=KerL⊕KerP,Z=ImL⊕ImQ,則L|Dom L∩Ker P:(I-P)X→ImL可逆,并設(shè)其逆映射為KP. 設(shè)Ω為X中有界開集,若有界且KP(I-Q)N:×[0,1]→X是緊的,則稱N在×[0,1]上是L-緊的. 由于ImQ與KerL同構(gòu),因而存在同構(gòu)映射J:ImQ→KerL.
(ii)QN(x,0)≠0,?x?Ω∩KerL;
(iii) deg{JQN(x,0),Ω∩KerL}≠0,
作變換Ni(t)=eui(t)(i=1,2,3),則系統(tǒng)(2)變?yōu)?/p>
(3)
對xAP(),定義
V1={z=(u1,u2,u3)TAP(,3),mod(u1)?mod(Lu1),
mod(u2)?mod(Lu2),mod(u3)?mod(Lu3),
?μΛ(u1)∪Λ(u2)∪Λ(u3),|μ|≥α},
V2={z(t)≡(c1,c2,c3)T3},
其中
且φiC([-σ,0],是給定的正常數(shù). 定義范數(shù)
類似文獻[5]的證明,容易得到:
引理5范數(shù)定義中的X和Z是Banach空間.
引理7定義N:X×[0,1]→Z,N(z(t),)=(N1(z(t),),N2(z(t),),N3(z(t),))T,這里
N1(z(t),)=a1(t)-b1(t)eθ1u1(t)-
N2(z(t),)=a2(t)-b2(t)eθ2u2(t)+
N3(z(t),)=a3(t)-b3(t)eθ3u3(t)+
及
P:X→X,Px=m(x);Q:Z→Z,Qz=m(z),
為了得到本文結(jié)果,考慮下面輔助方程
h(x-)=h(x+)=0;h(x)>0,x(x-,x+);
h(x)<0,x(0,x-)∪(x+,+);h′(x-)>0,h′(x+)<0.
作如下假設(shè):
再記
由引理8,類似文獻[5]中引理3.3的證明,易得:
引理9假設(shè)(A1)滿足,則下列結(jié)論成立:
定理1假設(shè)條件(A1)、(A2)滿足,則系統(tǒng)(2)至少存在8個不同的正概周期解.
證明為了應(yīng)用引理4來證明系統(tǒng)(2)至少存在8個正概周期解,只需在X中找到8個有界開集即可. 考慮方程Lz=N(z,),(0,1),即
(4)
假設(shè)(u1(t),u2(t),u3(t))TDomL?X是方程(4)對某個(0,1)的概周期解,其中DomL={(u1,u2,u3)TX:u1,u2,u3C1(),,,C()}. 則由引理3可知,對任意ε(0,1),存在ξi=ξi(ε),ηi=ηi(ε)[0,+) (i=1,2,3),使得
(5)
這里
結(jié)合方程(4)有
(6)
a2(ξ2)-b2(ξ2)eθ2u2(ξ2)+D2(ξ2)-=0,
(7)
a3(ξ3)-b3(ξ3)eθ3u3(ξ3)+
(8)
(9)
a2(η2)-b2(η2)eθ2u2(η2)+
(10)
a3(η3)-b3(η3)eθ3u3(η3)+
(11)
由式(5)、(6)可得
(12)
類似地,由式(5)、(7)可得
(13)
下面分2種情形討論.
(14)
(15)
由式(14)、(15)可得
(16)
由式(5)、(8)可得
并令ε→ 0,有
(17)
由式(6)、(17)可得
綜上所述,必有
u1(t)(ln,ln)∪(ln,max{ln,lnN1}),
u2(t)(ln,ln)∪(ln,max{ln,lnN1}),
u3(t)(ln,ln)∪(ln,max{ln,lnN2}).
Ω1={u=(u1,u2,u3)TX|u1(ln,max{ln,lnN1}),
u2
u3(ln,max{ln,lnN2})},
Ω2={u=(u1,u2,u3)TX|u1(ln,max{ln,lnN1}),
u2
u3(ln,max{ln,lnN2})},
Ω3={u=(u1,u2,u3)T
u2
u3(ln,max{ln,lnN2})},
Ω4={u=(u1,u2,u3)T
u2
u3(ln,max{ln,lnN2})},
Ω5={u=(u1,u2,u3)TX|u1(ln,max{ln,lnN1}),
u2
u3
Ω6={u=(u1,u2,u3)TX|u1(ln,max{ln,lnN1}),
u2(ln,ln),u3(ln,ln)},
Ω7={u=(u1,u2,u3)T
u2
u3
Ω8={u=(u1,u2,u3)T
u2(ln,ln),u3(ln,ln)}.
顯然,Ωi(i=1,2,…,8)是X上的開集,且Ωi∩Ωj=?(i,j=1,2,…,8,i≠j),從而Ωi(i=1,2,…,8)滿足引理1的條件(i).
現(xiàn)在證明引理4的條件(ii)也成立,即證若u?Ωi∩KerL=?Ωi∩3時有QN(u,0)≠0(i=1,2,…,8). 假設(shè)QN(u,0)=0,由引理2知,存在t0使得
(18)
由引理9(ii)容易得到式(18)有8個不同的解:
由于KerL=ImQ,取J=I,根據(jù)引理9 (ii)直接計算可得
deg{JQN(u,0),Ω1∩KerL,0}=-1,
deg{JQN(u,0),Ω2∩KerL,0}=1,
deg{JQN(u,0),Ω3∩KerL,0}=1,
deg{JQN(u,0),Ω4∩KerL,0}=-1,
deg{JQN(u,0),Ω5∩KerL,0}=1,
deg{JQN(u,0),Ω6∩KerL,0}=-1,
deg{JQN(u,0),Ω7∩KerL,0}=-1,
deg{JQN(u,0),Ω8∩KerL,0}=1.
這說明引理4的條件(iii)成立. 故根據(jù)引理4知,系統(tǒng)(2)至少存在8個不同的概周期解.
由定理1和引理10立即可得:
推論1如果條件(A2)成立,且下面條件滿足:
則系統(tǒng)(2)至少存在8個不同的正概周期解.
[1] WEI F Y. Existence of multiple positive periodic solutions to a periodic-prey system with harvesting terms and Holling Ⅲ type functional response[J]. Communications in Nonlinear Science and Numerical Simulation,2011,16(4):2130-2138.
[2] ZHANG Z Q,HOU Z T. Existence of four positive periodic solutions for a ratio-dependent predator-prey system with multiple exploited (or harvesting) terms[J]. Nonlinear Analysis Real World Applications,2010,11(3):1560-1571.
[3] HU D W,ZHANG Z Q. Four positive periodic solutions to a Lotka-Volterra cooperative system with harvesting terms[J]. Nonlinear Analysis:Real World Applications,2010,11(2):1115-1121.
[4] FAN Y H,WANG L L. Multiplicity of periodic solutions for a delayed ratio-dependent predator-prey model with Holling Ⅲ type functional response and harvesting terms[J]. Journal of Mathematical Analysis & Applications,2010,365(2):524-540.
[5] FAN H. Multiple positive periodic solutions for a food-limited two-species Gilpin-Ayala competition patch system with periodic harvesting terms[J]. Journal of Inequalities & Applications,2012,291(1):1-17.
[6] 劉子珍,劉秀湘. 具有遷移效應(yīng)和收獲率的Hassell-Varley-Holling捕食者-食餌系統(tǒng)的周期解[J]. 華南師范大學(xué)學(xué)報(自然科學(xué)版),2014,46(2):10-16.
LIU Z Z,LIU X X. Periodic solutions in a Hassell-Varley-Holling predator-prey system with dispersal and harvest[J]. Journal of South China Normal University(Natural Science Edition),2014,46(2):10-16.
[7] ZHANG T,WEI T. Multiplicity of positive almost periodic solutions in a delayed Hassell-Varley-type-predator-prey model with harvesting on prey[J]. Mathematical Methods in the Applied Sciences,2014,37(5):686-697.
[8] MENG X Z,CHEN L S. Almost periodic solution of non-autonomous Lotka-Volterra predator-prey dispersal system with delays[J]. Journal of Theoretical Biology,2006,243(4):562-574.
[9] ZHU H G,WANG K,LI X J. Existence and global stability of positive periodic solutions for predator-prey system with infinite delay and diffusion[J]. Nonlinear Analysis:Real World Applications,2007,8(3):872-886.
[10] LIU X X,HUANG L H. Permanence and periodic solutions for a diffusive ratio-dependent predator-prey system[J]. Applied Mathematical Modelling,2009,33(2):683-691.
[11] XU C J,ZHANG Q M. Dynamical behavior of a delayed diffusive predator-prey model with competition and type III functional response[J]. Journal of the Egyptian Mathe-matical Society,2014,22(3):379-385.
[12] SHI H B,LI Y. Global asymptotic stability of a diffusive predator-prey model with ratio-dependent functional response[J]. Applied Mathematics and Computation,2015,250:71-77.
[13] 何崇佑. 概周期微分方程[M]. 北京:高等教育出版社,1992.
[14] LI Y K,YE Y. Multiple positive almost periodic solutions to an impulsive non-autonomous Lotka-Volterra predator-prey system with harvesting terms[J]. Communications in Nonlinear Science and Numerical Simulation,2013,18(11):3190-3201.
[15] GAINES R E,MAHWIN J L. Coincidence degree and nonlinear differential equations[M]. Berlin:Springer,1977.
[16] 劉玉璉,傅沛仁,林玎,等. 數(shù)學(xué)分析講義[M]. 5版. 北京:高等教育出版社,2008.
Eight Positive Almost Periodic Solutions for Diffusive Predator-Prey System with Harvesting Terms
YAO Xiaojie*, QIN Fajin
(College of Mathematics and Computer Science, Guangxi Science & Technology Normal University, Laibin 546199, China)
A kind of diffusion predator-prey systems with Hassell-Varley functional responses and harvesting terms is proposed. By using a continuation theorem based on coincidence degree theory and inequality analysis, eight possible cases of the prior boundary of the solution of the system are analyzed in detail, and the sufficient conditions of least eight positive almost periodic solutions of the system are established.
harvesting terms; Hassell-Varley functional responses; diffusive predator-prey system; eight positive almost periodic solutions; coincidence degree
2016-03-25 《華南師范大學(xué)學(xué)報(自然科學(xué)版)》網(wǎng)址:http://journal.scnu.edu.cn/n
廣西壯族自治區(qū)自然科學(xué)基金項目(2013GXNSFAA019022);廣西壯族自治區(qū)高??茖W(xué)技術(shù)研究項目(2013YB282,YB2014468)
*通訊作者:姚曉潔,副教授,Email:yaoxiaojie1970@163.com.
O175.7
A
1000-5463(2017)06-0107-06
【中文責(zé)編:莊曉瓊 英文審校:葉頎】