趙常紅++李世昌++孫朋++徐帥++方幸++季瀏
摘 要:骨骼是一種由肌肉和重力共同作用的生物力學(xué)組織。年齡的增加、疾病的產(chǎn)生、神經(jīng)肌肉營養(yǎng)不良、內(nèi)分泌不足等會(huì)導(dǎo)致骨骼和肌肉同時(shí)出現(xiàn)質(zhì)量衰減及功能障礙。通過肌肉組織和骨組織代謝的相互作用,提出運(yùn)動(dòng)可能是骨和肌肉共調(diào)解的有效方式。方法:采用文獻(xiàn)資料法回顧近年來有關(guān)骨骼和肌肉相互作用共調(diào)節(jié)的研究成果。結(jié)果:發(fā)現(xiàn)骨骼和肌肉是一個(gè)關(guān)系緊密的整體,通過共享機(jī)制,在細(xì)胞和分子水平相互作用,達(dá)到共調(diào)控的平衡發(fā)展?fàn)顟B(tài)。結(jié)論:運(yùn)動(dòng)鍛煉是實(shí)現(xiàn)共調(diào)節(jié)作用的一種有效方式,在增加肌肉質(zhì)量和肌肉力量的同時(shí),阻止骨量流失。
關(guān)鍵詞:骨骼;肌肉;共調(diào)節(jié);運(yùn)動(dòng)
中圖分類號(hào):G 804.7 文章編號(hào):1009-783X(2017)06-0565-06 文獻(xiàn)標(biāo)識(shí)碼:A
Abstract: Bone is a kind of biomechanics which is composed of muscle and gravity. The increase of age, the generation of disease, the muscular dystrophy, the endocrine insufficiency and so on can result in simultaneous mass attenuation and the dysfunction of the bone and the muscle. Through the interaction between muscle tissue and bone metabolism, it is suggested that exercise may be an effective way to mediate bone and muscle. Methods: literature review on the regulation of bone and muscle interactions in recent years was reviewed. Results: through the review of the literature in recent years, it is found that the skeleton and muscle are closely related to each other, and they can interact with each other at the cellular and molecular level through the sharing mechanism to achieve the balance. Conclusion: exercise training is an effective way to achieve inter-regulation, which can prevent bone loss while increasing muscle mass and muscle strength.
Keywords: skeleton; muscle; interaction; movement
近年研究發(fā)現(xiàn),在生長過程中,骨骼和肌肉都可以作為與內(nèi)分泌共同發(fā)揮作用的器官[1-3]。隨著機(jī)體的不斷衰老和疾病引起的肌肉衰減,肌肉力量或運(yùn)動(dòng)能力也會(huì)大受損失[4]。此外,缺乏運(yùn)動(dòng)或神經(jīng)肌肉功能障礙,例如慢性阻塞性肺疾病、心臟衰竭、中風(fēng)、癌癥、帕金森病或糖皮質(zhì)激素治療等引起的肌肉廢用會(huì)導(dǎo)致骨量流失,繼發(fā)骨質(zhì)疏松癥。近年來發(fā)現(xiàn),骨質(zhì)疏松癥同樣也會(huì)伴有肌肉減少癥,而且會(huì)增加跌倒的風(fēng)險(xiǎn)[5],二者同屬衰減性疾病;因此,得名為骨骼-肌肉衰減綜合癥,即骨質(zhì)疏松癥和肌肉衰減癥[6]。對(duì)此,可以通過加強(qiáng)骨骼與肌肉的相互作用實(shí)現(xiàn)共同治療。藥物治療無法降低肌肉衰減帶來的虛弱,但是通過體育鍛煉可以將骨骼-肌肉作為一個(gè)整體單位予以加強(qiáng),可以提高肌肉力量和身體平衡性。骨的質(zhì)量和強(qiáng)度與肌肉是相匹配的,由遺傳因素和環(huán)境因素共同決定,也通過共享調(diào)控機(jī)制(如內(nèi)分泌、神經(jīng)系統(tǒng)調(diào)節(jié))在肌肉、骨器官水平(生物力學(xué)導(dǎo)致的生理活動(dòng)信號(hào))、細(xì)胞水平(細(xì)胞間通信)或分子水平(肌肉因子、細(xì)胞因子或生長因子)等層面進(jìn)行交流。肌肉和骨骼作為獨(dú)立的運(yùn)動(dòng)器官,在運(yùn)動(dòng)對(duì)其單獨(dú)的代謝及功能的影響方面,運(yùn)動(dòng)科學(xué)領(lǐng)域已有很多研究;但把二者作為一個(gè)整體來研究,還較為少見。運(yùn)動(dòng)對(duì)骨骼和肌肉的質(zhì)量、功能方面的生物學(xué)整合作用,主要體現(xiàn)在:1)生物力學(xué)的作用,不僅直接作用于骨骼和肌肉,而且肌肉收縮的力也間接作用于骨骼;2)內(nèi)分泌調(diào)節(jié)作用,例如生長激素(growth hormone,GH)、胰島素樣生長因子(insulin-like growth factors,IGFs)、結(jié)合蛋白、糖皮質(zhì)激素、性激素及維生素D和營養(yǎng)信號(hào)的共享;3)中樞神經(jīng)系統(tǒng),對(duì)肌肉和骨代謝產(chǎn)生共調(diào)控;4)局部激素,生長因子和細(xì)胞因子可能通過旁分泌共同作用于骨骼和肌肉;5)骨骼與肌肉細(xì)胞間的通訊。
1 生物力學(xué)的作用
力學(xué)刺激對(duì)骨骼和肌肉的代謝平衡非常重要。有研究發(fā)現(xiàn)懸吊小鼠尾巴,后肢的地面反作用力被完全去除,3周骨量丟失達(dá)30%[7]。
骨骼是一種生物力學(xué)組織,用最少材料經(jīng)受住盡可能大的應(yīng)變力[8]。研究發(fā)現(xiàn),動(dòng)態(tài)負(fù)載相對(duì)于靜態(tài)負(fù)載(例如跳躍相對(duì)于站立)更能有效提高骨代謝,在間歇時(shí)間里,使骨代謝逐漸達(dá)到一個(gè)新的應(yīng)變平衡[9]。力有肌肉產(chǎn)生的力和重力2種,普遍認(rèn)為,運(yùn)動(dòng)的力學(xué)刺激仍是一個(gè)局部現(xiàn)象,主要是由肌肉產(chǎn)生,這決定了骨與肌肉相依相存,不可分割[10]。
1.1 肌肉收縮和重力的重要性
骨骼的受力一方面來自肌肉收縮,另一方面來自克服重力產(chǎn)生的反作用力。從理論上講,骨骼的最大受力來自于肌肉收縮,這可能是因?yàn)楦軛U作用使力放大,例如單腿跳躍,小腿肌肉會(huì)對(duì)足骨產(chǎn)生3倍于地面的反作用力,以及14倍于體重的負(fù)荷[11];同樣,在3 km/h走和12 km/h跑時(shí),髖關(guān)節(jié)接觸峰值力增加1~2.5倍的地面反作用力和4.4~10倍的體重負(fù)荷[12]。相比之下,騎自行車和游泳的運(yùn)動(dòng)員也有巨大的肌肉收縮力,但骨量不增加,這說明肌肉力量對(duì)骨骼的影響主要通過克服重力起作用,在低重力環(huán)境中這種影響作用很小[13-14]。endprint
實(shí)驗(yàn)發(fā)現(xiàn),肉毒素注射引起肌肉萎縮,導(dǎo)致持續(xù)性骨丟失,同時(shí)再結(jié)合后肢懸吊導(dǎo)致失重,兩者共同作用,使得骨量丟失最為顯著,表明肌肉收縮和重力加載對(duì)于維持骨量的重要性[15],但造成以上現(xiàn)象的原因還不清楚,有待進(jìn)一步研究。
1.2 骨骼與肌肉在衰老過程中機(jī)械響應(yīng)的變化
肌肉衛(wèi)星細(xì)胞數(shù)量和密度的降低是肌肉衰老的標(biāo)志[16],同時(shí)還伴隨著關(guān)鍵的肌肉細(xì)胞信號(hào)通路(AKT/mTOR)、細(xì)胞外信號(hào)調(diào)節(jié)激酶(extracellular regulated kinase1/2,ERK1/2)和IGF-1減少,氧化應(yīng)激增加,Notch信號(hào)通路也可能同時(shí)發(fā)揮作用[17-18]。運(yùn)動(dòng)鍛煉后,有效減緩因機(jī)體衰老而導(dǎo)致的蛋白質(zhì)合成和骨骼肌肥大的下降速率,因此,運(yùn)動(dòng)鍛煉對(duì)中老年人抗衰老效果明顯[19-20]。
目前,人類衰老使骨骼對(duì)機(jī)械性刺激不敏感的機(jī)制還不是很清楚,但能明確的是,在細(xì)胞水平上,細(xì)胞凋亡是一種老化的重要標(biāo)志[21];在分子水平上,衰老可能涉及內(nèi)質(zhì)網(wǎng)應(yīng)激機(jī)制。隨著人的衰老,骨細(xì)胞內(nèi)質(zhì)網(wǎng)應(yīng)激增加,使原發(fā)性骨細(xì)胞環(huán)氧化酶(cyclooxygenase-2,COX-2)的反應(yīng)減少[22]。機(jī)械負(fù)荷無論在體內(nèi)或體外,COX-2均迅速上調(diào),確認(rèn)了前列腺素在體內(nèi)骨骼機(jī)械響應(yīng)中的重要性[23]。研究發(fā)現(xiàn),老齡鼠中肌肉和骨骼合成反應(yīng)的閾值都有所提高,但生物力學(xué)對(duì)其的刺激仍然非常有效[24]。
1.3 運(yùn)動(dòng)防止骨骼、肌肉衰減
越來越多的研究表明,運(yùn)動(dòng)治療骨質(zhì)疏松癥和肌肉衰減癥,但運(yùn)動(dòng)對(duì)骨骼和肌肉的刺激效果不盡相同。運(yùn)動(dòng)作為一種安全簡便的防治肌肉萎縮的手段,能夠提高肌肉力量,改善身體平衡,同時(shí)研究發(fā)現(xiàn)肌肉力量的提高還能降低肌肉和骨量下降的風(fēng)險(xiǎn)[25]。
運(yùn)動(dòng)使骨骼和肌肉質(zhì)量獲得的峰值,其影響能一直持續(xù)到老年[26]。低骨峰值(peak bone mass,PBM)會(huì)增加骨質(zhì)疏松癥風(fēng)險(xiǎn),因此,增加PBM可以推遲骨質(zhì)疏松的發(fā)生。有實(shí)驗(yàn)證明,在兒童期的運(yùn)動(dòng)(如跳躍)可能會(huì)增加骨密度及皮質(zhì)骨的面積和厚度,持續(xù)的體育鍛煉具有長期的效果,能防止老年期肌肉衰減,避免骨質(zhì)疏松癥發(fā)生[27]。
同樣有研究報(bào)道,人年輕的時(shí)候,跑步鍛煉增加的骨密度或皮質(zhì)骨厚度容易消失[28],而外部負(fù)重鍛煉增加的皮質(zhì)骨橫截面面積,更能抵制衰老過程中激素下降導(dǎo)致的骨量下降。畢竟,骨膜擴(kuò)張是不可逆轉(zhuǎn)的[29]。棒球運(yùn)動(dòng)員訓(xùn)練表現(xiàn)出的高皮質(zhì)骨骨量,在退役后,仍能保持很長時(shí)間。這些結(jié)果都表明,高強(qiáng)度負(fù)重運(yùn)動(dòng)獲得的皮質(zhì)骨PBM增強(qiáng)可以延續(xù)到老年,但低強(qiáng)度、非負(fù)重運(yùn)動(dòng)的影響可隨時(shí)間的延長而消失[30]。研究發(fā)現(xiàn)體育鍛煉對(duì)60歲及以上健康受試者的肌肉質(zhì)量和肌肉功能影響比單獨(dú)飲食補(bǔ)充效果更好[31]。
2 骨骼—肌肉的共享內(nèi)分泌調(diào)節(jié)機(jī)制
骨骼和肌肉有各自的內(nèi)分泌、旁分泌和自分泌信號(hào)途徑,同時(shí)還共享許多內(nèi)分泌、旁分泌和自分泌信號(hào)途徑。本文主要介紹生長激素/胰島素樣生長因子(GH/IGF)、維生素D受體(vitamin D receptor,VDR)、糖皮質(zhì)激素受體(glucocorticoid receptor,GR)和性激素信號(hào),這些內(nèi)分泌調(diào)節(jié)器與骨質(zhì)疏松癥及肌肉減少癥相關(guān)[4]。運(yùn)動(dòng)可調(diào)控這些內(nèi)分泌機(jī)制調(diào)節(jié)肌肉和骨代謝。
2.1 生長激素/胰島素樣生長因子信號(hào)
生長激素不敏感的人類疾?。↙aron綜合征)及被破壞GH/IGF轉(zhuǎn)基因的小鼠均顯示出骨骼和肌肉的獲得性受損[32]。近年研究發(fā)現(xiàn),肝臟IGF-1缺乏模型顯示出肌肉的氧化應(yīng)激增加及老化小鼠的骨丟失加速[33]。
研究還發(fā)現(xiàn),條件敲除小鼠IGF-1受體對(duì)于運(yùn)動(dòng)性肌肉肥大并非必需[34],相反,IGF-1抵抗可能參與了廢用性骨質(zhì)疏松的形成。無創(chuàng)性脛骨負(fù)荷模型表明,IGF-1在成骨細(xì)胞中的表達(dá)增加[35,]。非負(fù)荷大鼠一方面是在IGF-1作用下阻礙骨形成[36],另一方面,局部IGF-1的表達(dá)造成骨骼和肌肉的損失[37]。在大鼠動(dòng)物模型中,GH治療增加IGF-1,減輕了肌肉和骨膜的損失[38]。總的來說,這些研究表明,GH和IGF-1的缺乏參與肌肉萎縮和廢用性骨質(zhì)的丟失。
2.2 骨骼和肌肉的鈣調(diào)節(jié)軸
維生素D信號(hào)通過增加腸鈣吸收有益于骨骼健康[39]。許多研究已經(jīng)證明,維生素D缺乏與骨質(zhì)疏松癥和肌肉衰減癥相關(guān),如佝僂病或骨軟化癥會(huì)出現(xiàn)嚴(yán)重的肌無力,這可能是由于維生素D和鈣缺乏,或甲狀旁腺激素(parathyroid hormone,PTH)水平增加[40]。有研究表明,高PTH和低1,25-(OH)2 -維生素D會(huì)加速中老年男性的肌肉損失[41]。薈萃分析表明,鈣和維生素D補(bǔ)充一般不會(huì)增加骨密度和降低骨折風(fēng)險(xiǎn)[42]。也有分析顯示維生素D增加老年人肌肉力量,但不會(huì)增加肌肉質(zhì)量[43]。對(duì)社區(qū)老年婦女2×2析因試驗(yàn)表明,缺乏維生素D和鈣不會(huì)增加跌倒的風(fēng)險(xiǎn),運(yùn)動(dòng)和平衡訓(xùn)練會(huì)減少跌傷風(fēng)險(xiǎn)[44]。也有研究發(fā)現(xiàn),補(bǔ)充高劑量的維生素D與跌倒風(fēng)險(xiǎn)的增加呈正相關(guān)[45],所以我們推測,體育鍛煉結(jié)合適量維生素D和鈣補(bǔ)充可能有益于骨骼與肌肉的健康,但有待進(jìn)一步驗(yàn)證。
2.3 糖皮質(zhì)激素受體信號(hào)
衰老使內(nèi)源性糖皮質(zhì)激素亢進(jìn),增加了肌肉與骨骼對(duì)糖皮質(zhì)激素的敏感性,包括對(duì)成骨細(xì)胞、骨細(xì)胞、破骨細(xì)胞和肌細(xì)胞產(chǎn)生直接作用,對(duì)腸鈣吸收和性激素產(chǎn)生間接作用[46]。肌肉GR特異性基因敲除(GRKO)小鼠顯示出肌肉質(zhì)量增加以及良好的代謝改變[47],防止外源性和內(nèi)源性糖皮質(zhì)激素過量誘導(dǎo)的肌肉萎縮[48];然而,這些特定GRKO小鼠通過肌肉骨骼相互作用能否抵制糖皮質(zhì)激素誘導(dǎo)的骨質(zhì)疏松,目前尚無定論。
2.4 雄激素和雌激素受體信號(hào)
雄激素不僅影響肌肉的合成代謝,而且會(huì)通過雄激素受體芳構(gòu)化成雌激素,刺激雌激素受體(estrogen receptor,ERa和ERb)來調(diào)節(jié)骨代謝[49]。endprint
研究發(fā)現(xiàn):雄激素受體(androgen receptor,AR)基因敲除小鼠不僅肌肉質(zhì)量減少,而且運(yùn)動(dòng)能力也降低;但肌肉中缺失雄激素沒有影響骨峰值[50]。這表明AR條件敲除小鼠模型中,雄激素對(duì)骨骼的影響不完全歸因于肌肉質(zhì)量。雄性雄激素受體-雌激素受體雙敲小鼠ARKO-ERaKO的肌肉損失比單敲ARKO高, ERaKO小鼠骨骼機(jī)械響應(yīng)減少[51]。在最近的成骨細(xì)胞和骨細(xì)胞特異性EraKO研究中,雌性小鼠表現(xiàn)出加載響應(yīng)的增強(qiáng)[52]。相反,ERaKO DMP1 Cre雌性小鼠骨小梁的敏感性增加,卻阻止了懸吊后肢皮質(zhì)骨骨密度(bone mass density,BMD)的損失[53]。睪酮可以阻止肌肉萎縮,增加瘦體重和年輕男性的力量,因此,運(yùn)動(dòng)訓(xùn)練后兩者能夠協(xié)同增加;但在老年男性訓(xùn)練中沒有出現(xiàn)協(xié)同性的增加,可能是因?yàn)樵囼?yàn)中虛弱的老年男性出現(xiàn)心血管安全問題,無法進(jìn)行高體能訓(xùn)練[54]。
研究發(fā)現(xiàn),AR和ER對(duì)肌肉和骨骼單獨(dú)發(fā)揮作用,雄激素缺乏可能會(huì)減弱訓(xùn)練后肌肉的響應(yīng);但研究發(fā)現(xiàn)性激素基因剔除小鼠中,運(yùn)動(dòng)仍是防止性激素缺乏引起肌肉與骨骼退化的有效方法。雌激素直接作用于骨骼,而雄激素通過影響肌肉來作用于骨骼[50]。目前,關(guān)于性激素受體與運(yùn)動(dòng)調(diào)節(jié)骨骼和肌肉代謝相互作用有待進(jìn)一步研究。
綜上所述,骨骼和肌肉緊密相連,兩者共享內(nèi)分泌調(diào)節(jié)機(jī)制,在老年人低GH/IGF-1、維生素D或性激素水平下,運(yùn)動(dòng)是有效的刺激方式。以前單獨(dú)論述運(yùn)動(dòng)與肌肉,運(yùn)動(dòng)與骨骼的關(guān)系,但近年來研究發(fā)現(xiàn):骨骼和肌肉存在共享機(jī)制,運(yùn)動(dòng)作為一種有效的調(diào)節(jié)方式能對(duì)他們共同調(diào)節(jié)[8]。
3 骨骼與肌肉間的神經(jīng)調(diào)節(jié)
在哺乳動(dòng)物自然廢用模型中,如熊的冬眠,在長達(dá)4~5個(gè)月的時(shí)間里,骨量卻沒有發(fā)生顯著性損失,其原因可能是熊會(huì)通過自主神經(jīng)系統(tǒng)或循環(huán)同化激素來減少骨轉(zhuǎn)換,保持骨形成和骨吸收的平衡[55]。神經(jīng)不僅調(diào)控肌肉代謝,而且調(diào)節(jié)骨代謝。肌肉的功能依賴運(yùn)動(dòng)神經(jīng)的輸入,去神經(jīng)、脊髓損傷、神經(jīng)肌肉疾?。òㄖ酗L(fēng)、帕金森病等)必然會(huì)導(dǎo)致肌肉衰減和骨量丟失。注射肉毒桿菌毒素,干擾突觸前囊泡結(jié)合神經(jīng)遞質(zhì)乙酰膽堿的釋放,在大鼠、小鼠和斑馬魚體內(nèi)產(chǎn)生快速的骨丟失[56]。這種對(duì)肌肉神經(jīng)的封鎖最終會(huì)影響破骨細(xì)胞的活性[57]。 這為運(yùn)動(dòng)調(diào)節(jié)骨代謝和肌肉代謝相互作用提供理論依據(jù)。
腎上腺素受體(adrenergic receptor,ADRP)可以間接調(diào)節(jié)骨量,交感神經(jīng)系統(tǒng)通過成骨細(xì)胞的腎上腺素受體減少骨形成,增加骨吸收[58]。ADRP激動(dòng)劑克倫特羅(興奮劑)能導(dǎo)致骨骼肌肥大,對(duì)骨骼非常有害,這可能是由于減少了脂肪,降低了瘦素水平而導(dǎo)致的[59-60]。
感覺神經(jīng)的抑制會(huì)導(dǎo)致小鼠骨小梁丟失,但這是否是由于加載模式或改變局部介質(zhì),如降鈣素基因相關(guān)肽(calcitonin gene related peptide,CGRP)導(dǎo)致的,仍不清楚。最近發(fā)現(xiàn),腦信號(hào)蛋白3A神經(jīng)元特異性缺失能解釋感覺神經(jīng)支配的低骨形成[61],而感覺神經(jīng)參與的骨骼載荷自適應(yīng)響應(yīng)還需要進(jìn)一步確認(rèn)[62]。由上可見,骨骼和肌肉可能部分依賴于共同的中樞神經(jīng)調(diào)節(jié)系統(tǒng)。兩者作為運(yùn)動(dòng)器官,其相互作用的緊密性是必然的。
4 肌肉因子和胞間通信
運(yùn)動(dòng)有利于肌肉能量代謝,促進(jìn)葡萄糖吸收[2],同時(shí)各種運(yùn)動(dòng)信號(hào)和功能的執(zhí)行要求組織之間的緊密結(jié)合。研究表明,在營養(yǎng)(特別是葡萄糖)缺乏的情況下,白介素-6(interleukin-6,IL-6)水平的升高會(huì)促進(jìn)破骨細(xì)胞生成,刺激骨吸收,IL-6的長期升高可導(dǎo)致全身骨丟失[63]。雖然,肌肉肥大和肌肉萎縮的恢復(fù)也需要IL-6,但長期IL-6升高會(huì)導(dǎo)致肌肉萎縮[64]。研究還確認(rèn)肌源性IL-15也能夠調(diào)節(jié)骨骼和脂肪質(zhì)量。周期性肌管緊張也增加了其他細(xì)胞因子如IL-8、趨化因子配體1(CXCL1)和CCL7的表達(dá),這些都會(huì)吸引破骨細(xì)胞前體細(xì)胞和成骨中其他炎癥細(xì)胞的細(xì)胞因子[65]。重要的是,肌肉細(xì)胞表達(dá)核因子κB受體活化因子配體(receptor activator for nuclear factor-κB ligand,RANKL)的誘餌受體骨保護(hù)素(osteoprotegerin,OPG),被認(rèn)為是原始的骨吸收調(diào)節(jié)器[66]。此外,負(fù)載訓(xùn)練在C2C12肌管中迅速降低RANKL/OPG mRNA比值,這提示運(yùn)動(dòng)對(duì)抗RANKL,對(duì)于防治骨質(zhì)疏松有一定指導(dǎo)意義[67]。有研究還發(fā)現(xiàn),鳶尾素作為一種運(yùn)動(dòng)性肌肉因子誘導(dǎo)白色脂肪向褐色脂肪轉(zhuǎn)化,調(diào)節(jié)能量消耗[68]。雖然小鼠鳶尾素能夠調(diào)節(jié)成骨細(xì)胞的分化,但在人身上還缺乏研究[69]。肌肉是肌肉因子增長的源泉,如IGF-1和成纖維細(xì)胞生長因子-2(fibroblast growth factor-2,F(xiàn)GF-2)2種肌源性生長因子,在骨中也有其受體,說明IGF和FGF可能是最豐富的肌源性生長因子,可以調(diào)節(jié)骨骼—肌肉間通信[70]。蛋白質(zhì)組學(xué)研究已經(jīng)確定了肌肉衍生的肽包括IGF-1、IGF-2和幾種胰島素樣生長因子結(jié)合蛋白及其他生長因子(如轉(zhuǎn)化生長因子)能夠影響骨代謝,同時(shí)明確了幾種基質(zhì)蛋白(骨粘連蛋白、蛋白聚糖、膠原蛋白、基質(zhì)蛋白)、鈣等[71]在肌肉和骨骼中的共表達(dá)。研究發(fā)現(xiàn),自主轉(zhuǎn)輪運(yùn)動(dòng)訓(xùn)練能夠提高老年小鼠血液中IGF-1的水平并誘導(dǎo)肌肉肥大,但未增加骨骼強(qiáng)度,說明肌肉與骨骼雖然有著密切的胞間交流,但運(yùn)動(dòng)方式對(duì)骨骼的影響更為重要[70]。
5 骨骼與肌肉間的交流
研究表明,骨骼也可以作為一種內(nèi)分泌器官影響肌肉生成。小鼠或小雞敲除印度刺猬蛋白(indian hedgehog,Ihh)?發(fā)現(xiàn),其不僅在軟骨中表達(dá),并參與軟骨細(xì)胞的分化和長骨發(fā)育,還會(huì)會(huì)影響肌肉的生長[72]。最近的一項(xiàng)研究發(fā)現(xiàn),在受損骨骼-肌肉成骨細(xì)胞/骨細(xì)胞特定的Cx43基因敲除小鼠中,骨鈣素的羧基化證明了骨骼-肌肉間的交流[73]。體外研究發(fā)現(xiàn),成骨細(xì)胞樣細(xì)胞系(如MLO-Y4)表達(dá)的肌肉合成和分解代謝的因子如IL-6、前列腺素E2(prostaglandin E2,PGE2)、血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)、肝細(xì)胞生長因子(hepatocyte growth factor,HGF)、IGF-1和機(jī)械生長因子(mechanical growth factor,MGF)等,都說明骨骼和肌肉間存在著千絲萬縷的聯(lián)系和交流[74]。最近研究發(fā)現(xiàn),骨骼肌也產(chǎn)生瘦素,且受體在骨骼肌和骨間充質(zhì)干細(xì)胞表達(dá)豐富。這些結(jié)果表明,瘦素在肌肉和骨骼中發(fā)揮重要作用。老化導(dǎo)致的瘦素抵抗可隨年齡增長而增加,低水平的瘦素使得骨髓干細(xì)胞向脂肪細(xì)胞分化,從而導(dǎo)致骨量降低,最終導(dǎo)致骨質(zhì)流失和肌肉萎縮,促進(jìn)骨脆性和跌倒的發(fā)生。蛋白質(zhì)和氨基酸補(bǔ)充,可以增加肌肉質(zhì)量和肌肉來源的瘦素,降低老人跌倒和骨折的發(fā)生率[75],科學(xué)運(yùn)動(dòng)能促進(jìn)肌肉和骨量的增加,能夠預(yù)防骨質(zhì)疏松癥,相反骨衍生的因子也會(huì)影響肌肉功能[76],他們之間的內(nèi)在聯(lián)系,有待研究進(jìn)行進(jìn)一步的研究。endprint
6 結(jié)論與展望
骨骼和肌肉不可分割,相互調(diào)節(jié)。骨骼、肌肉和脂肪細(xì)胞都來源于間充質(zhì)干細(xì)胞,骨質(zhì)疏松癥和肌肉衰減癥的部分原因是由于細(xì)胞機(jī)制涉及脂肪分化的過量和成肌、成骨分化的不足。運(yùn)動(dòng)可影響睪酮涉及這種機(jī)制,增加骨骼和肌肉質(zhì)量,減少脂肪量,運(yùn)動(dòng)鍛煉可導(dǎo)致肌肉肥大,肌腱和結(jié)締組織強(qiáng)度增加,以及肌肉神經(jīng)功能增強(qiáng),同時(shí)增加骨形成、減少骨吸收,預(yù)防骨質(zhì)疏松。研究發(fā)現(xiàn),骨質(zhì)疏松癥會(huì)減少肌肉力量,增加跌倒和骨折的風(fēng)險(xiǎn)。運(yùn)動(dòng)作為兩者有效的刺激方式,如何增加肌肉含量,提高骨密度與骨強(qiáng)度,促進(jìn)肌肉和骨骼的相互作用勢必成為運(yùn)動(dòng)科學(xué)下一個(gè)研究的熱點(diǎn)。由于骨骼和肌肉關(guān)系緊密,二者相輔相成,科學(xué)運(yùn)動(dòng)會(huì)起到雙重效果,且運(yùn)動(dòng)方式對(duì)二者的刺激非常重要,骨質(zhì)疏松癥和肌肉衰減癥就像一對(duì)連體的孿生兄弟,在運(yùn)動(dòng)防治過程中必將引起運(yùn)動(dòng)科學(xué)領(lǐng)域的共同重視。
參考文獻(xiàn):
[1] KARSENTY G, FERRON M.The contribution of bone to whole-organism physiology[J]. Nature,2012,481(7381):314.
[2] PEDERSEN B K, FEBBRAIO M A.Muscles, exercise and obesity: skeletal muscle as a secretory organ[J].Nature Reviews Endocrinology, 2012, 8(8):457.
[3] MOSIALOU I, SHIKHEL S, LIU J M, et al. MC4R-dependent suppression of appetite by bone-derived lipocalin 2[J].Nature, 2017, 543(7645):385.
[4] GIELEN E, VERSCHUEREN S, O'NEILL T W, et al.Musculoskeletal frailty: a geriatric syndrome at the core of fracture occurrence in older age[J].Calcified Tissue International, 2012, 91(3):161.
[5] VERSCHUEREN S, GIELEN E, ONEILL T W, et al.Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men[J].Osteoporosis International, 2013, 24(1):87.
[6] HUO Y R, SURIYAARACHCHI P, GOMEZ F, et al.Phenotype of Osteosarcopenia in Older Individuals With a History of Falling[J].Journal of the American Medical Directors Association, 2014, 16(4):290.
[7] ELLMAN R, SPATZ J, CLOUTIER A, et al.Partial Reductions in Mechanical Loading Yield Proportional Changes in Bone Density, Bone Architecture, and Muscle Mass[J].Journal of Bone & Mineral Research, 2013, 28(4):875.
[8] FROST H M.Bone's mechanostat: a 2003 update[J].Anatomical Record Part A Discoveries in Molecular Cellular & Evolutionary Biology, 2003, 275(2):1081.
[9] LAM H, HU M, QIN Y X.Alteration of contraction-to-rest ratio to optimize trabecular bone adaptation induced by dynamic muscle stimulation[J].Bone, 2011, 48(2):399.
[10] MCBRIDE S H, SILVA M J.Adaptive and Injury Response of Bone to Mechanical Loading[J].Bonekey Osteovision, 2012(1):192.
[11] RITTWEGER J, GUNGA H C, FELSENBERG D, et al.Muscle and bone-aging and space[J]. Journal of Gravitational Physiology A Journal of the International Society for Gravitational Physiology,1999,6(1):133.
[12] GIARMATZIS G, JONKERS I, WESSELING M, et al.Loading of Hip Measured by Hip Contact Forces at Different Speeds of Walking and Running[J].Journal of Bone & Mineral Research, 2015, 30(8):1431.endprint
[13] GóMEZBRUTON A, GóMEZCABELLO A, CASAJúS J A, et al.Is Bone Tissue Really Affected by Swimming? A Systematic Review[J].Plos One, 2013, 8(8):70119.
[14] OLMEDILLAS H, MORENO L A, CASAJUS J A, et al.Cycling and bone health: a systematic review[J].BMC Medicine, 2012, 10(1):1.
[15] WARDEN S J, GALLEY M R, RICHARD J S, et al.Reduced gravitational loading does not account for the skeletal effect of botulinum toxin-induced muscle inhibition suggesting a direct effect of muscle on bone[J].Bone, 2013, 54(1):98.
[16] BALLAK S B, JASPERS R T, DELDICQUE L, et al.Blunted hypertrophic response in old mouse muscle is associated with a lower satellite cell density and is not alleviated by resveratrol[J].Experimental Gerontology, 2015(62):23.
[17] RIVAS D A, LESSARD S J, RICE N P, et al.Diminished skeletal muscle microRNA expression with aging is associated with attenuated muscle plasticity and inhibition of IGF-1 signaling[J].Faseb Journal Official Publication of the Federation of American Societies for Experimental Biology,2014,28(9):4133.
[18] KOVACHEVA E L, HIKIM A P, SHEN R, et al.Testosterone supplementation reverses sarcopenia in aging through regulation of myostatin, c-Jun NH2-terminal kinase, Notch, and Akt signaling pathways[J].Endocrinology,2010,151(2):628.
[19] HARBER M P, KONOPKA A R, UNDEM M K, et al.Aerobic exercise training induces skeletal muscle hypertrophy and age-dependent adaptations in myofiber function in young and older men[J].Journal of Applied Physiology,2012,113(9):1495.
[20] LEENDERS M, VERDIJK L B, VAN D H L, et al. Elderly men and women benefit equally from prolonged resistance-type exercise training[J]. Journals of Gerontology, 2013, 68(7):769.
[21] JILKA R L, WEINSTEIN R S, PARFITT A M, et al. Quantifying osteoblast and osteocyte apoptosis: challenges and rewards[J].Journal of Bone & Mineral Research the Official Journal of the American Society for Bone & Mineral Research, 2007, 22(10):1492.
[22] CHALIL S, JASPERS R T, MANDERS R J, et al. Increased Endoplasmic Reticulum Stress in Mouse Osteocytes with Aging Alters Cox-2 Response to Mechanical Stimuli[J]. Calcified Tissue International, 2015, 96(2):123.
[23] BAKKER A D, KLEINNULEND J, BURGER E H. Mechanotransduction in bone cells proceeds via activation of COX-2, but not COX-1[J].Biochemical & Biophysical Research Communications, 2003, 305(3):677.
[24] WORTON L E, KWON R Y, GARDINER E M, et al. Enhancement of Flow-Induced AP-1 Gene Expression by Cyclosporin A Requires NFAT-Independent Signaling in Bone Cells[J]. Cellular & Molecular Bioengineering, 2014, 7(2):254.endprint
[25] VERSCHUEREN S M, ROELANTS M, DELECLUSE C, et al.Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study[J]. Journal of Bone & Mineral Research the Official Journal of the American Society for Bone & Mineral Research, 2004, 19(3):352.
[26] GAFNI R I, BARON J. Childhood bone mass acquisition and peak bone mass may not be important determinants of bone mass in late adulthood[J].Pediatrics, 2007, 2(3):131.
[27] MEYER U, ERNST D, ZAHNER L, et al. 3-Year follow-up results of bone mineral content and density after a school-based physical activity randomized intervention trial[J]. Bone, 2013, 55(1):16.
[28] PAJAM■KI I, KANNUS P, VUOHELAINEN T, et al. The bone gain induced by exercise in puberty is not preserved through a virtually life-long deconditioning: a randomized controlled experimental study in male rats[J]. Journal of Bone & Mineral Research, 2003, 18(3):544.
[29] WARDEN S J, FUCHS R K, CASTILLO A B, et al. Exercise when young provides lifelong benefits to bone structure and strength[J]. Journal of Bone & Mineral Research the Official Journal of the American Society for Bone & Mineral Research, 2007, 22(2):251.
[30] WARDEN S J, GALLEY M R, HURD A L, et al. Cortical and trabecular bone benefits of mechanical loading are maintained long-term in mice independent of ovariectomy[J]. Journal of Bone & Mineral Research the Official Journal of the American Society for Bone & Mineral Research, 2014, 29(5):1131.
[31] BEAUDART C, DAWSON A, SHAW S C, et al.Nutrition and physical activity in the prevention and treatment of sarcopenia: systematic review[J].Osteoporosis international: 2017, 28(6):1817.
[32] VENKEN K, MOVéRARE-SKRTIC S, KOPCHICK J J, et al.Impact of androgens, growth hormone, and IGF-I on bone and muscle in male mice during puberty[J].Journal of Bone & Mineral Research the Official Journal of the American Society for Bone & Mineral Research, 2007, 22(1):72.
[33] GONG Z, KENNEDY O, SUN H, et al.Reductions in serum IGF-1 during aging impair health span[J].Aging Cell, 2014, 13(3):408.
[34] SPANGENBURG E E, LE R D, WARD C W, et al.A functional insulin-like growth factor receptor is not necessary for load-induced skeletal muscle hypertrophy[J].Journal of Physiology, 2008, 586(1):283.
[35] GROSS T S, SRINIVASAN S, LIU C C, et al. Noninvasive loading of the murine tibia: an in vivo model for the study of mechanotransduction[J]. Journal of Bone & Mineral Research the Official Journal of the American Society for Bone & Mineral Research, 2002, 17(3):493.endprint
[36] SUNTERS A, ARMSTRONG V J, ZAMAN G, et al. Mechano-transduction in osteoblastic cells involves strain regulated estrogen receptor alpha-mediated control of insulin-like growth factor (IGF) I receptor sensitivity to ambient IGF, leading to phosphatidylinositol 3-kinase/AKT-dependent Wnt/LRP5 receptor-independent activation of beta catenin signaling[J].Biol Chem, 2010(285):8743.
[37] ALZGHOUL M B, GERRARD D, WATKINS B A, et al.Ectopic expression of IGF-I and Shh by skeletal muscle inhibits disuse-mediated skeletal muscle atrophy and bone osteopenia in vivo[J]. Faseb Journal Official Publication of the Federation of American Societies for Experimental Biology,2004,18(1):221.
[38] GRUBBE M C, THOMSEN J S, NYENGAARD J R, et al.Growth hormone mitigates loss of periosteal bone formation and muscle mass in disuse osteopenic rats[J]. J Musculoskelet Neuronal Interact, 2014, 14(4):473.
[39] LIEBEN L, CARMELIET G.The delicate balance between vitamin D, calcium and bone homeostasis: lessons learned from intestinal- and osteocyte-specific VDR null mice[J].Journal of Steroid Biochemistry & Molecular Biology, 2013, 136(1):102.
[40] SIKJAER T, ROLIGHED L, HESS A, et al. Effects of PTH(1-84) therapy on muscle function and quality of life in hypoparathyroidism: results from a randomized controlled trial[J].Osteoporosis International, 2014, 25(6):1717.
[41] RENOUD A, ECOCHARD R, MARCHAND F, et al. Predictive parameters of accelerated muscle loss in men-MINOS study[J].American Journal of Medicine,2014,127(6):554.
[42] REID I R, BOLLAND M J, GREY A.Effects of vitamin D supplements on bone mineral density: a systematic review and meta-analysis[J]. Lancet, 2014, 383(9912):146.
[43] BEAUDART C, BUCKINX F, RABENDA V, et al.The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: a systematic review and meta-analysis of randomized controlled trials[J]. Journal of Clinical Endocrinology & Metabolism, 2014, 99(11):4336.
[44] BOLLAND M J, GREY A, GAMBLE G D, et al. Vitamin D supplementation and falls: a trial sequential meta-analysis[J].Lancet Diabetes & Endocrinology, 2014, 2(7):573.
[45] SANDERS K M, STUART A L, WILLIAMSON E J, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial[J]. Jama, 2010, 303(18):1815.
[46] MANOLAGAS S C. From Estrogen-Centric to Aging and Oxidative Stress: A Revised Perspective of the Pathogenesis of Osteoporosis[J].Endocrine Reviews, 2010, 31(3):266.endprint
[47] SHIMIZU N, MARUYAMA T, YOSHIKAWA N, et al. A muscle-liver-fat signalling axis is essential for central control of adaptive adipose remodelling[J]. Nature Communications, 2015(6):6693.
[48] HU Z, WANG H, LEE I H, et al. Endogenous glucocorticoids and impaired insulin signaling are both required to stimulate muscle wasting under pathophysiological conditions in mice[J]. Journal of Clinical Investigation, 2009, 119(10):3059.
[49] VANDERSCHUEREN D, LAURENT M R, CLAESSENS F, et al. Sex steroid actions in male bone[J]. Endocrine Reviews, 2014, 35(6):906.
[50] OPHOFF J, CALLEWAERT F K, DE-GENDT K, et al. Physical activity in the androgen receptor knockout mouse: evidence for reversal of androgen deficiency on cancellous bone[J]. Biochemical & Biophysical Research Communications, 2009, 378(1):139.
[51] WINDAHL S H, SAXON L, B?魻RJESSON A E, et al.Estrogen receptor-α is required for the osteogenic response to mechanical loading in a ligand-independent manner involving its activation function 1 but not 2[J].Bone,2013,28(2):291.
[52] MELVILLE K M, KELLY N H, SURITA G, et al.Effects of Deletion of ERα in Osteoblast-Lineage Cells on Bone Mass and Adaptation to Mechanical Loading Differ in Female and Male Mice[J]. Journal of Bone & Mineral Research the Official Journal of the American Society for Bone & Mineral Research, 2015, 30(8):1468.
[53] KONDOH S, INOUE K, IGARASHI K, et al.Estrogen receptor α in osteocytes regulates trabecular bone formation in female mice[J].Bone, 2014(60):68.
[54] KVORNING T, ANDERSEN M, BRIXEN K, et al. Suppression of endogenous testosterone production attenuates the response to strength training: a randomized, placebo-controlled, and blinded intervention study[J].Am J Physiol Endocrinol Metab, 2006, 291(6):1325.
[55] SEGER R L, CROSS R A, ROSEN C J, et al.Investigating the mechanism for maintaining eucalcemia despite immobility and anuria in the hibernating American black bear (Ursus americanus)[J].Bone, 2011, 49(6):1205.
[56] POLIACHIK S L, BAIN S D, THREET D, et al.Transient muscle paralysis disrupts bone homeostasis by rapid degradation of bone morphology[J].Bone, 2010, 46(1):18.
[57] ALIPRANTIS A O.Transient muscle paralysis degrades bone via rapid osteoclastogenesis[J].Faseb Journal Official Publication of the Federation of American Societies for Experimental Biology, 2012, 26(3):1110.
[58] TAKEDA S, ELEFTERIOU F, LEVASSEUR R, et al.Leptin regulates bone formation via the sympathetic nervous system[J].Cell, 2002, 111(3):305.endprint
[59] BONNET N, BENHAMOU C L, BRUNET-IMBAULT B, et al.Severe bone alterations under beta2 agonist treatments: bone mass, microarchitecture and strength analyses in female rats[J].Bone, 2005, 37(5):622.
[60] CAVALI■H, LAC G, LEBECQUE P, et al. Influence of clenbuterol on bone metabolism in exercised or sedentary rats[J]. Journal of Applied Physiology, 2002, 93(6):2034.
[61] FUKUDA T, TAKEDA S, XU R, et al.Sema3A regulates bone-mass accrual through sensory innervations[J].Nature, 2013, 497(7450):490.
[62] RUBIN J, RUBIN C. Functional adaptation to loading of a single bone is neuronally regulated and involves multiple bones[J].Journal of Bone & Mineral Research, 2008, 23(9):1372.
[63] RUFO A, DEL F A, CAPULLI M, et al.Mechanisms Inducing Low Bone Density in Duchenne Muscular Dystrophy in Mice and Humans[J].Journal of Bone & Mineral Research the Official Journal of the American Society for Bone & Mineral Research, 2011, 26(8):1891.
[64] HADDAD F, ZALDIVAR F, COOPER D M, et al.IL-6-induced skeletal muscle atrophy[J]. Journal of Applied Physiology, 2005, 98(3):911.
[65] ONAN D, ALLAN E H, QUINN J M, et al.The chemokine Cxcl1 is a novel target gene of parathyroid hormone (PTH)/PTH-related protein in committed osteoblasts[J]. Endocrinology, 2009, 150(5):2244.
[66] XIONG J, ONAL M, JILKA R L, et al.Matrix-embedded cells control osteoclast formation[J]. Nature Medicine, 2011, 17(10):1235.
[67] JUFFER P, JASPERS R T, KLEIN-NULEND J, et al. Mechanically Loaded Myotubes Affect Osteoclast Formation[J].Calcified Tissue International, 2014, 94(3):319.
[68] BOSTR?魻M P, WU J, JEDRYCHOWSKI M P, et al. A PGC1α-dependent myokine that drives browning of white fat and thermogenesis[J].Nature, 2012, 481(7382):463.
[69] COLAIANNI G, CUSCITO C, MONGELLI T, et al. Irisin Enhances Osteoblast Differentiation In Vitro[J].International Journal of Endocrinology, 2014, 2014(2014):902186.
[70] HAMRICK M W, MCNEIL P L, PATTERSON S L. Role of muscle-derived growth factors in bone formation[J].Journal of Musculoskeletal & Neuronal Interactions, 2010, 10(1):64.
[71] HENNINGSEN J, RIGBOLT K T, BLAGOEV B, et al. Dynamics of the skeletal muscle secretome during myoblast differentiation[J]. Molecular & Cellular Proteomics Mcp, 2010, 9(11):2482.
[72] BREN-MATTISON Y, HAUSBURG M, OLWIN B B. Growth of limb muscle is dependent on skeletal-derived Indian hedgehog[J].Developmental Biology, 2011, 356(2):486.
[73] SHEN H, GRIMSTON S, CIVITELLI R, et al. Deletion of Connexin43 in Osteoblasts/Osteocytes Leads to Impaired Muscle Formation in Mice[J]. Journal of Bone & Mineral Research, 2015, 30(4):596.
[74] MO C, ROMERO-SUAREZ S, BONEWALD L, et al. Prostaglandin E2: from clinical applications to its potential role in bone- muscle crosstalk and myogenic differentiation[J].Recent Patents on Biotechnology, 2012, 6(3):223.
[75] HAMRICK M W. Role of the Cytokine-like Hormone Leptin in Muscle-bone Crosstalk with Aging[J].J Bone Metab, 2017, 24(1):1-8.
[76] BORST S E, YARROW J F, CONOVER C F, et al. Musculoskeletal and prostate effects of combined testosterone and finasteride administration in older hypogonadal men: a randomized, controlled trial[J]. American Journal of Physiology Endocrinology & Metabolism, 2014, 306(4):433.endprint