国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

中國沉積學(xué)發(fā)展戰(zhàn)略:沉積地球化學(xué)研究現(xiàn)狀與展望

2018-01-04 09:09周錫強(qiáng)陳代釗劉牧胡建芳
沉積學(xué)報(bào) 2017年6期
關(guān)鍵詞:同位素沉積研究

周錫強(qiáng),陳代釗,劉牧,胡建芳

1.中國科學(xué)院地質(zhì)與地球物理研究所, 中國科學(xué)院油氣資源研究重點(diǎn)實(shí)驗(yàn)室,北京 100029 2.中國科學(xué)院地球科學(xué)研究院,北京 100029 3.中國科學(xué)院大學(xué),北京 100049 4.中國科學(xué)院廣州地球化學(xué)研究所, 有機(jī)地球化學(xué)國家重點(diǎn)實(shí)驗(yàn)室,廣州 510640

中國沉積學(xué)發(fā)展戰(zhàn)略:沉積地球化學(xué)研究現(xiàn)狀與展望

周錫強(qiáng)1,2,3,陳代釗1,2,3,劉牧1,2,3,胡建芳4

1.中國科學(xué)院地質(zhì)與地球物理研究所, 中國科學(xué)院油氣資源研究重點(diǎn)實(shí)驗(yàn)室,北京 100029 2.中國科學(xué)院地球科學(xué)研究院,北京 100029 3.中國科學(xué)院大學(xué),北京 100049 4.中國科學(xué)院廣州地球化學(xué)研究所, 有機(jī)地球化學(xué)國家重點(diǎn)實(shí)驗(yàn)室,廣州 510640

沉積地球化學(xué)是沉積學(xué)的重要研究內(nèi)容和手段,在認(rèn)識(shí)地球表層系統(tǒng)圈層相互作用和資源環(huán)境效應(yīng)方面發(fā)揮著不可替代作用。隨著國家科研經(jīng)費(fèi)投入的增加,以及地球化學(xué)分析測試的平臺(tái)建設(shè)和技術(shù)進(jìn)步,中國沉積地球化學(xué)進(jìn)入快速發(fā)展期,在國際上的學(xué)術(shù)影響力逐漸增強(qiáng),但是在技術(shù)方法與理論的創(chuàng)新、及高質(zhì)量成果產(chǎn)出等方面,仍有待改進(jìn)。因此,中國沉積地球化學(xué)應(yīng)加強(qiáng)統(tǒng)籌規(guī)劃和布局,在戰(zhàn)術(shù)上重視理論、方法和技術(shù)的發(fā)展與創(chuàng)新,提升沉積—成巖過程年代的約束能力,重視對(duì)地球化學(xué)數(shù)據(jù)的精細(xì)提取和模型定量分析;在戰(zhàn)略上加強(qiáng)沉積地球化學(xué)在大時(shí)空尺度的應(yīng)用與探索,深化對(duì)關(guān)鍵地質(zhì)時(shí)期地球環(huán)境—生物協(xié)同演化,以及沉積礦產(chǎn)和化石能源的形成與演化等重大科學(xué)問題的研究。在此基礎(chǔ)上,中國沉積地球化學(xué)將進(jìn)一步提升研究水平和國際地位,并有望實(shí)現(xiàn)跨越式發(fā)展。

沉積學(xué);沉積地球化學(xué);主量元素;微量元素;同位素;生物標(biāo)志物

0 引言

沉積地球化學(xué)是沉積學(xué)與地球化學(xué)相互滲透、并結(jié)合了環(huán)境地球化學(xué)、生物地球化學(xué)、海洋地球化學(xué)等研究內(nèi)容的交叉學(xué)科,通過元素地球化學(xué)、同位素地球化學(xué)、有機(jī)地球化學(xué)等研究手段、方法與理論,分析地球表層沉積巖(物)的化學(xué)作用、化學(xué)組成及化學(xué)演化,揭示沉積物質(zhì)的來源、分布、轉(zhuǎn)化和循環(huán)過程,并解析相關(guān)的資源環(huán)境效應(yīng)及表層系統(tǒng)圈層相互作用。目前,沉積地球化學(xué)已成為沉積學(xué)的重要研究內(nèi)容和關(guān)鍵技術(shù)手段,并在重大地質(zhì)歷史時(shí)期環(huán)境與生物的演化過程,以及沉積礦產(chǎn)資源和化石能源的形成規(guī)律等研究方面,發(fā)揮著不可替代的作用。隨著地球化學(xué)分析技術(shù)的快速發(fā)展,以及國家經(jīng)濟(jì)發(fā)展和科研經(jīng)費(fèi)投入的增加,我國沉積地球化學(xué)研究正在經(jīng)歷快速成長期。此報(bào)告通過文獻(xiàn)調(diào)研和期刊數(shù)據(jù)庫資料的挖掘,揭示國內(nèi)外沉積地球化學(xué)研究現(xiàn)狀,并結(jié)合國情分析我國的機(jī)遇與挑戰(zhàn),為學(xué)科發(fā)展戰(zhàn)略提供有益的參考和建議。

1 沉積地球化學(xué)發(fā)展現(xiàn)狀

1.1 沉積地球化學(xué)分析測試技術(shù)

沉積地球化學(xué)發(fā)展基礎(chǔ)依賴于對(duì)沉積巖(物)及相關(guān)流體的元素、同位素及有機(jī)化合物的精確分析。近30年來,地球化學(xué)分析測試技術(shù)在經(jīng)濟(jì)、高效、高精準(zhǔn)度、高時(shí)空分辨率等方面取得了巨大進(jìn)步,極大地促進(jìn)了沉積地球化學(xué)方法、理論及應(yīng)用的發(fā)展。目前,各類質(zhì)譜儀、光譜儀、色譜儀、電子探針和掃描電鏡等儀器,可對(duì)多種元素、同位素及有機(jī)化合物進(jìn)行高精度測試分析,已經(jīng)廣泛應(yīng)用于沉積地球化學(xué)研究(表1)。其中,質(zhì)譜儀結(jié)合激光剝蝕或二次離子技術(shù)、掃描電鏡結(jié)合能譜儀、原位微區(qū)X射線熒光光譜儀、場發(fā)射電子探針、及激光拉曼儀等,可對(duì)沉積巖(物)固體樣品進(jìn)行原位微區(qū)成分分析與掃描成像,具有廣闊的應(yīng)用前景。同時(shí),樣品預(yù)處理平臺(tái)可為沉積地球化學(xué)分析提供必要的支持。

目前,中國已擁有多套國際一流的地球化學(xué)分析測試儀器,主要配置于中國科學(xué)院下屬的研究所(如地質(zhì)與地球物理、地球化學(xué)、廣州地球化學(xué)、地球環(huán)境、南京地質(zhì)古生物等研究所),中國地質(zhì)科學(xué)院,教育部直屬高校(如北京大學(xué)、南京大學(xué)、中國地質(zhì)大學(xué)、中國石油大學(xué)等),以及企業(yè)的研究院所(如中國石油勘探開發(fā)研究院、核工業(yè)北京地質(zhì)研究院等)相關(guān)實(shí)驗(yàn)室均可為沉積地球化學(xué)研究提供必要的公共分析測試平臺(tái)支持。然而,中國沉積地球化學(xué)的測試分析仍面臨實(shí)驗(yàn)室機(jī)時(shí)緊張、測試費(fèi)用較高、測試方法和適用對(duì)象有限等不利條件,制約著該學(xué)科在技術(shù)方法和理論方面的發(fā)展與創(chuàng)新,以及相關(guān)研究應(yīng)用的深化和推廣。

表1 沉積地球化學(xué)分析測試的主要儀器類別及用途

1.2 地球化學(xué)在沉積學(xué)研究中的應(yīng)用

沉積巖(物)經(jīng)歷了風(fēng)化、搬運(yùn)、沉積和成巖作用等一系列過程,是陸源物質(zhì)、生物物質(zhì)、水柱自生礦物及成巖礦物的組合。沉積巖(物)的化學(xué)組分不同程度的響應(yīng)了物源輸入,氣候背景(大氣組分特征及風(fēng)化作用),沉積水體(氧化還原性質(zhì)、特征化學(xué)組分及含量、生物生產(chǎn)力、溫度、pH值、鹽度等),生物類別(如高等植物、藻類、細(xì)菌等),地球化學(xué)循環(huán)與特征過程(如物源—?dú)夂颉h(huán)境—生物等變化、及火山—構(gòu)造—熱液等事件),以及成巖作用(構(gòu)造—流體事件及年代學(xué)、成巖流體的化學(xué)特征與溫度)。因此,沉積巖(物)是地球表層系統(tǒng)圈層相互作用的記錄者,通過元素、同位素的地球化學(xué)行為及有機(jī)化合物特征,可以示蹤相關(guān)的地質(zhì)過程(表2,3,4)。近年來,地球化學(xué)理論、方法和技術(shù)取得了長足進(jìn)步,極大的提升了對(duì)沉積巖(物)的分析能力,豐富了沉積學(xué)與沉積地球化學(xué)的研究內(nèi)容,拓展了對(duì)地球表層系統(tǒng)演化及資源環(huán)境效應(yīng)的研究廣度和深度。

主量元素(Si、K、Na、Ca、Mg、Al、Ti、Fe、Mn、P)含量高、易測試,常用于物源分析、風(fēng)化作用、水體化學(xué)組分特征、元素循環(huán)及特征地質(zhì)過程識(shí)別等方面的研究(表2)。其中,F(xiàn)e、Mn元素廣泛用于示蹤水體氧化還原性質(zhì),K、Na、Ca、Mg等元素可用于重建水體鹽度特征。此外,TOC(總有機(jī)碳含量)、P、及Si(硅藻類生源組分)也常用于生物生產(chǎn)力研究。

微量元素含量較低,但類型豐富,資源及環(huán)境意義顯著,是沉積地球化學(xué)的重要研究對(duì)象(表2)。其中,Mo、V、Cr、Co、Se、Cu、Ni、Zn、Cd、U等元素的富集—虧損情況可較好示蹤沉積環(huán)境,尤其是水體氧化還原性質(zhì)或生物生產(chǎn)力的變化,并有助于識(shí)別特征地質(zhì)過程。另一方面,Ba元素則常作為生產(chǎn)力相關(guān)的指標(biāo)。B、I、Tl、Hg、Ge、As等元素的沉積地球化學(xué)循環(huán)及其環(huán)境效應(yīng)也受到廣泛關(guān)注。此外,Rb、Zr、Nb、Th、Sc等元素一定程度上可用于解析物源和風(fēng)化作用??傊?,微量元素的地球化學(xué)循環(huán)過程及時(shí)空演化特征有助于揭示沉積環(huán)境性質(zhì)和特征地質(zhì)過程,具有廣闊的應(yīng)用前景。

稀土元素(REE+Y)的離子半徑相近、化學(xué)性質(zhì)相似,但在一定地質(zhì)條件下,可產(chǎn)生顯著的分異。在沉積地球化學(xué)研究中,REE+Y的含量特征,以及經(jīng)標(biāo)準(zhǔn)化的分異特征,可用于揭示物源類型、風(fēng)化作用、水體氧化還原性質(zhì)(如Ce異常)、特征地質(zhì)過程(如Eu異常)、及成巖流體示蹤等,是常用的研究方法(表2)。

近年來,同位素地球化學(xué)快速發(fā)展,極大的豐富和拓展了沉積地球化學(xué)的研究手段與內(nèi)容(表3)。其中,δ13C、δD、δ18O、δ15N、δ34S、87Sr/86Sr等同位素在古氣候、古海洋、古環(huán)境、及成巖作用等研究方面應(yīng)用廣泛,也是建立化學(xué)地層的常用手段。另一方面,各種傳統(tǒng)或非傳統(tǒng)同位素研究方興未艾,具有廣闊的開發(fā)及應(yīng)用前景。其中,δ98Mo、δ56Fe、δ53Cr、238U/235U、δ142Ce、ε205Tl、δ82Se等同位素可用于示蹤海洋氧化還原狀態(tài),87Sr/86Sr、143Nd/144Nd、δ26Mg、δ44Ca、δ7Li、δ53Cr、δ60Ni、187Os/188Os、206Pb/207Pb等同位素可用于評(píng)估陸地風(fēng)化作用(如風(fēng)化程度、類型和陸源輸入通量等),δ15N、δ82Se、δ66Zn等同位素可用于指示海洋生物生產(chǎn)力變化。此外,上述以及其他同位素(如δ30Si、88Sr/86Sr、δ137Ba、δ202Hg,Δ199Hg、δ114Cd、δ74Ge、3He)的元素循環(huán)過程,以及對(duì)特征地質(zhì)過程的識(shí)別,也是目前沉積地球化學(xué)的重要研究內(nèi)容與方法。值得注意的是,近年來,δ18O可作為古高度計(jì)或溫度計(jì),Δ47(團(tuán)簇同位素)可約束流體溫度,Δ33S可約束早期大氣組分特征,δ11B可約束水體pH值和大氣pCO2,具有特殊的應(yīng)用效力和廣闊的發(fā)展前景。此外,14C、U-Pb、U-Th、Re-Os、40Ar/39Ar、K-Ar等同位素可對(duì)不同材料進(jìn)行不同時(shí)間尺度和精度的年代學(xué)分析,是約束沉積地層年代的關(guān)鍵方法。同時(shí),(U-Th)/He、Sm-Nd、Rb-Sr等同位素可用于約束成巖作用階段的構(gòu)造—流體事件及年代,得到一定的應(yīng)用。此外,碎屑鋯石U-Pb、碎屑磷灰石Sm-Nd同位素也是物源分析的重要手段。

表2沉積地球化學(xué)里主量、微量及稀土元素的主要應(yīng)用

Table2Mainapplicationsofmajor,traceandrareearthelementsinsedimentarygeochemistry

表3 沉積地球化學(xué)中同位素的主要應(yīng)用領(lǐng)域

表4沉積地球化學(xué)中生物標(biāo)志物的主要應(yīng)用領(lǐng)域

Table4Mainapplicationsofbiomarkersinsedimentarygeochemistry

1.3 沉積地球化學(xué)的國內(nèi)研究現(xiàn)狀

為了解沉積地球化學(xué)在國內(nèi)的研究現(xiàn)狀,我們基于中國知網(wǎng)(CNKI)的中國期刊全文數(shù)據(jù)庫,對(duì)核心期刊里相關(guān)論文的發(fā)表情況進(jìn)行了統(tǒng)計(jì)分析(截止時(shí)間為2017年9月25日)。在CNKI期刊數(shù)據(jù)庫里,限定在“地質(zhì)學(xué)、海洋學(xué)、資源科學(xué)、石油勘探與開采工程、環(huán)境科學(xué)”研究學(xué)科,以“沉積”(并不含“火山巖”)為主題,以“地球化學(xué)”為關(guān)鍵詞(并分別以“稀土元素”、“微量元素”、“生物標(biāo)志物”、“元素地球化學(xué)”、“有機(jī)地球化學(xué)”、“同位素”、“常量元素”等關(guān)鍵詞進(jìn)行搜索優(yōu)化),檢索獲得SCI來源、EI來源和核心期刊論文3 230篇。通過CNKI數(shù)據(jù)庫的“計(jì)量可視化分析”功能對(duì)全部檢索結(jié)果進(jìn)行了提取,并采用人工分析對(duì)檢索結(jié)果進(jìn)行了優(yōu)化(如關(guān)鍵詞的分組與合并等),獲得論文“發(fā)表年度趨勢”(圖1)和“關(guān)鍵詞分布”(圖2),以追蹤近25年來(1992年至2017年9月25日)沉積地球化學(xué)學(xué)科的發(fā)展歷程。

在論文發(fā)表數(shù)量方面,該研究領(lǐng)域在90年代總體處于平穩(wěn)發(fā)展階段,但自2000年以來呈現(xiàn)明顯的快速增長特征(圖1),表明隨著國家經(jīng)濟(jì)發(fā)展和科技研發(fā)經(jīng)費(fèi)投入的增加,沉積地球化學(xué)作為研究方法或?qū)ο?,在地質(zhì)學(xué)、海洋科學(xué)、環(huán)境科學(xué)及油氣礦產(chǎn)資源等領(lǐng)域發(fā)揮日益重要的作用。在研究方法方面(圖2),沉積地球化學(xué)多采用穩(wěn)定同位素、微量及稀土元素、生物標(biāo)志物等常規(guī)或成熟手段。在研究對(duì)象方面(圖2),主要關(guān)注烴源巖(及油頁巖、黑色頁巖),硅質(zhì)巖和碳酸鹽巖(如白云巖)等,同時(shí)兼顧沉積物和原油等對(duì)象。在研究區(qū)域方面(圖2),主要集中于鄂爾多斯盆地、塔里木盆地、四川盆地、柴達(dá)木盆地、東營凹陷、松遼盆地等含油氣盆地,同時(shí)南海和貴州也是重要研究區(qū)域。在研究層位方面(圖2),二疊系、奧陶系、下寒武統(tǒng)(及牛蹄塘組)等是主力層段,延長組近5年也吸引了較多關(guān)注。在研究內(nèi)容方面(圖2),沉積環(huán)境、物源分析、古氣候及古環(huán)境等是傳統(tǒng)的重要研究內(nèi)容,同時(shí)熱水沉積及構(gòu)造背景也具有較高的關(guān)注度;另一方面,頁巖氣、油源對(duì)比、生烴潛力和成藏條件等已在近5年里快速攀升為重要研究主題。

因此,通過對(duì)1992—2011年和2012—2017年期間中國沉積地球化學(xué)在研究方法、對(duì)象、區(qū)域、時(shí)代和內(nèi)容的追蹤可見,相關(guān)研究工作一方面緊密圍繞物源分析、古環(huán)境和古氣候重建等科學(xué)問題而開展,另一方面對(duì)含油氣盆地及油頁巖層段、及油氣生儲(chǔ)等方面保持了高度的關(guān)注,積極響應(yīng)國家油氣資源勘探開發(fā)的需求。

圖1 國內(nèi)核心期刊(基于CNKI中國學(xué)術(shù)期刊全文數(shù)據(jù)庫)1992—2017年期間(截至9月25日)發(fā)表沉積地球化學(xué)相關(guān)論文的年度數(shù)量趨勢Fig.1 Annual variation of the numbers of papers on sedimentary geochemistry published in Chinese core journals from China Academic Journal Network Publishing Database of CNKI during 1992-2017 year period (by September 25)

1.4 沉積地球化學(xué)的國際研究現(xiàn)狀

為綜合了解中國以及國際沉積地球化學(xué)的研究現(xiàn)狀,我們對(duì)ISI Web of Science(ISI WOS)核心合集數(shù)據(jù)庫里的相關(guān)論文發(fā)表情況進(jìn)行了統(tǒng)計(jì)分析(截止時(shí)間均為2017年9月25日)。檢索時(shí),以“sedimentary geochemistry”為“Topic”選項(xiàng)的檢索詞,同時(shí)以“l(fā)avas”、“granites”、“mantle”、“granitoid”等為“Title”選項(xiàng)的非檢索詞進(jìn)行篩除,得到1997—2017年(截至9月25日)期間發(fā)表的沉積地球化學(xué)相關(guān)論文。為進(jìn)一步優(yōu)化檢索結(jié)果,對(duì)不相關(guān)論文進(jìn)行了人工篩選,最終獲得4 423篇期刊論文(其中2012—2017年共1 743篇)。在此基礎(chǔ)上,獲得了主要國家在本研究領(lǐng)域的期刊論文“年度數(shù)量趨勢”(圖3)及綜合表現(xiàn)(表5)。同時(shí),論文標(biāo)題和摘要里的高頻學(xué)術(shù)詞語(熱詞)一定程度上可追蹤研究熱度和趨勢。我們將檢索論文分別以國際(含中國)和中國,以及1992—2011和2012—2017(截至9月25日)時(shí)間段進(jìn)行分組,通過Bibexcel軟件對(duì)其高頻熱詞進(jìn)行了統(tǒng)計(jì),然后以國際上1992—2011年高頻熱詞(降序)為基準(zhǔn)序列,對(duì)比分析國內(nèi)外沉積地球化學(xué)的研究進(jìn)展與動(dòng)態(tài)(圖4)。

在文章數(shù)量方面(圖3),發(fā)表沉積地球化學(xué)論文最多的前6個(gè)國家依次是:美國、中國、德國、法國、英國和加拿大。美國論文年度發(fā)表數(shù)量常年占據(jù)領(lǐng)先地位,德國、法國、英國和加拿大則相對(duì)保持穩(wěn)定。值得注意的是,中國在2004年之前的論文數(shù)量規(guī)模較小,但之后總體呈現(xiàn)顯著增長態(tài)勢(2010年和2015年略有起伏),并在2012年超越美國之后,成為本領(lǐng)域論文數(shù)量最大的國家,展現(xiàn)出強(qiáng)勁的發(fā)展勢能。

圖2 國內(nèi)核心期刊(基于CNKI中國學(xué)術(shù)期刊全文數(shù)據(jù)庫)1992—2017年期間(截至9月25日)沉積地球化學(xué)相關(guān)論文的關(guān)鍵詞分布情況Fig.2 The distribution of keyword frequency in articles on sedimentary geochemistry published in Chinese core journals from China Academic Journal Network Publishing Database of CNKI during 1992-2017 year period (by september 25)

圖3 主要國家1992—2017年期間(截至9月25日)在SCIE(Web of Science核心合集)期刊里發(fā)表沉積地球化學(xué)相關(guān)論文的年度數(shù)量趨勢Fig.3 Annual variation of the numbers of papers on sedimentary geochemistry of leading countries published in journals of SCIE (Web of Science Core Collection) during 1992-2017 year period (by september 25)

為衡量近五年(2012年至2017年9月25日)論文數(shù)量最多的前10個(gè)國家在沉積地球化學(xué)方向的研究實(shí)力,進(jìn)一步對(duì)論文的綜合表現(xiàn)進(jìn)行了分析(表5)。中國作為論文總數(shù)最多的國家,在總被引用次數(shù)、被引頻次≥10的論文數(shù)方面均遜于論文總數(shù)第二位的美國,但相對(duì)于其他國家則具有一定的優(yōu)勢。在篇均被引頻次方面,中國(5.74次)與加拿大(13.14次)、法國(10.26次)、英國(9.60)、美國(9.57次)、澳大利亞(9.07次)、德國(7.55次)和意大利(6.98次)有較大差距,僅超越了印度(5.22次)和巴西(4.18次)。此外,中國在“被引頻次≥30的論文”數(shù)量方面與美國的差距也比較明顯,與法國、加拿大和英國比較接近,與其他國家相比則有一定的優(yōu)勢。總體而言,中國在“發(fā)文量”、“總被引次數(shù)”和高被引論文數(shù)這些指標(biāo)上已呈現(xiàn)比較明顯的優(yōu)勢,但在“篇均被引頻次”這個(gè)指標(biāo)上與發(fā)達(dá)國家相比仍存在較大的差距。

表5 主要國家近五年(2012—2017.9.25)在SCIE期刊(Web ofScience核心合集)里發(fā)表沉積地球化學(xué)相關(guān)論文的綜合表現(xiàn)

在研究方法方面(圖4A),國際上對(duì)元素和同位素等地球化學(xué)指標(biāo)有廣泛的使用。碳、氧、氫、硫元素在沉積水體及成巖流體里分布較廣,其同位素分析方法成熟、測試費(fèi)用經(jīng)濟(jì)、適用對(duì)象分布普遍,因此在沉積地球化學(xué)研究中應(yīng)用極其廣泛。稀土元素和微量金屬也是常用的地球化學(xué)研究方法,大量應(yīng)用于物源分析、沉積環(huán)境重建及成巖流體示蹤等研究。有機(jī)碳、氮、磷等組分與生物生產(chǎn)力密切相關(guān),是研究海洋環(huán)境特征、有機(jī)質(zhì)富集及烴源巖成因等內(nèi)容的必要手段。隨著相關(guān)分析儀器(如LA-ICP-MS)的進(jìn)步,U-Pb同位素作為同位素年代學(xué)研究的核心方法,近年來得到大量的應(yīng)用。Sr-Nd同位素可以示蹤沉積水體或成巖流體特征,也是化學(xué)地層研究的傳統(tǒng)方法,因此保持較高的關(guān)注度。沉積型鈾礦是戰(zhàn)略性礦產(chǎn)資源,因此是重要的研究對(duì)象。此外,元素鈾和鉬(及同位素)可以有效約束沉積水體氧化還原狀態(tài),日益成為古海洋環(huán)境研究的常用手段。值得注意的是,砷及氟(化物)是常見的毒害元素,國際上對(duì)它們的地球化學(xué)循環(huán)過程及沉積響應(yīng)也保持較高關(guān)注度。中國在研究方法上也普遍使用碳、氧、氫、硫等同位素,以及常有的稀土元素和微量金屬元素,并對(duì)生物生產(chǎn)力相關(guān)的化學(xué)組分(如有機(jī)碳、氮、磷等)開展了大量工作(圖4B)。同時(shí),U-Pb同位素方法在中國沉積地球化學(xué)研究中同樣占有十分重要的地位。此外,中國對(duì)毒害元素砷也有一定量的研究,但是對(duì)氟化物的關(guān)注較少。

在研究對(duì)象方面(圖4C),國際上沉積地球化學(xué)研究主要圍繞各類沉積物、沉積巖(如碳酸鹽巖、白云巖、黑色頁巖、砂巖),以及地下水、煤和土壤等開展工作,充分體現(xiàn)了沉積地球化學(xué)是地球表層物質(zhì)循環(huán)及沉積響應(yīng)的重要研究手段。同時(shí),硅藻、黏土礦物、重礦物、碎屑鋯石等特定沉積物是揭示物源、風(fēng)化作用、海洋環(huán)境等內(nèi)容的重要載體,因此也是主要的研究對(duì)象。此外,烴源巖、甲烷、頁巖氣、條帶狀鐵建造等研究對(duì)象也占有很大份額,表明沉積地球化學(xué)積極面向能源和礦產(chǎn)勘探開發(fā)需求,發(fā)揮重要作用。中國的研究對(duì)象類別與國際相似(圖4D),但在碳酸鹽巖、硅藻、甲烷、地下水、土壤等方面熱度相對(duì)較弱。中國近五年對(duì)湖泊沉積物、黏土礦物、砂巖、白云巖、碎屑鋯石、和頁巖氣等方面的研究熱情增長顯著。其中,國際和中國關(guān)于碎屑鋯石和頁巖氣的研究均呈現(xiàn)快速增長特征,前者可能響應(yīng)了技術(shù)(如LA-ICP-MS)的推廣,后者可能響應(yīng)了目前能源勘探開發(fā)新趨勢。

圖4 國際及中國1992—2017年(截至9月25日)期間沉積地球化學(xué)的研究現(xiàn)狀及對(duì)比,基于國際SCIE期刊 (Web of Science核心合集)相關(guān)論文的熱詞詞頻分布(A)國際和(B)中國的研究方法;(C)國際和(D)中國的研究時(shí)代;(E)國際和(F)中國的研究對(duì)象;(G)國際和(H)中國的研究內(nèi)容。注:國際數(shù)據(jù)包含中國。橫坐標(biāo)按照國際上1992—2011年期間熱詞頻次降序排列。圖C、G、H的縱坐標(biāo)有部分省略Fig.4 The state of sedimentary geochemistry studies of the world and China during 1992-2017 year period (by september 25), based on the distribution of hot word frequency in articles on sedimentary geochemistry published in journals of SCIE (Web of Science Core Collection) Sedimentary geochemical methods in related articles of the world (A) and China (B). Research materials in related articles of the world (C) and China (D). Geological periods in related articles of the world (E) and China (F). Research topics in related articles of the world (G) and China (H). Data of the World include the portion of China. The horizontal coordinates are arranged in descending order for hot word frequency of the World during 1992-2001 year period. Note the scale change of vertical coordinate in Figs C, G and H

在研究時(shí)代方面(圖4E),國際上沉積地球化學(xué)研究涉及新元古代、古元古代、元古宙、太古宙等前寒武紀(jì)時(shí)代較多。這一方面體現(xiàn)了前寒武紀(jì)時(shí)間跨度大、地質(zhì)事件豐富、相關(guān)研究成果較多的特點(diǎn),另一方面可能反映了前寒武紀(jì)相關(guān)時(shí)代貢獻(xiàn)了較多的沉積物質(zhì)(如碎屑鋯石等)。同時(shí),國際上對(duì)全新世、中新世、始新世等新生代關(guān)注密切,體現(xiàn)了沉積地球化學(xué)將今論古的特點(diǎn)以及對(duì)近現(xiàn)代全球氣候變化的關(guān)注。此外,國際上對(duì)白堊紀(jì)、二疊紀(jì)、三疊紀(jì)、侏羅紀(jì)、寒武紀(jì)、奧陶紀(jì)、石炭紀(jì)、志留紀(jì)等時(shí)代也具有較高的熱度,可能響應(yīng)了相關(guān)時(shí)代具有重大地質(zhì)環(huán)境—生物演化事件、以及發(fā)育富有機(jī)質(zhì)烴源巖等特征。中國對(duì)于上述時(shí)代(尤其是新元古代、古元古代、白堊紀(jì)、二疊紀(jì)、三疊紀(jì)、寒武紀(jì)、奧陶紀(jì)等)同樣保持較高熱度,并且近5年總體呈現(xiàn)快速增長特征,體現(xiàn)了中國沉積學(xué)研究傳統(tǒng)及地層分布特色(圖4F)。

在研究內(nèi)容方面(圖4G),國際上對(duì)沉積物源的研究熱度最高,與研究對(duì)象里的砂巖和碎屑鋯石、研究方法里的U-Pb同位素等高頻熱詞相呼應(yīng)。成巖作用和風(fēng)化作用是影響沉積巖化學(xué)特征的重要過程,也得到較高關(guān)注度。同時(shí),古氣候(及氣候變化)、古環(huán)境(沉積環(huán)境及環(huán)境變化)、古海洋(古生產(chǎn)力、氧化還原環(huán)境、缺氧)等內(nèi)容是沉積地球化學(xué)的傳統(tǒng)研究主題,因此歷來保持著較高的研究熱度。地層年代格架及區(qū)域?qū)Ρ仁浅练e學(xué)研究的基礎(chǔ),因此隨著同位素地層學(xué)和年代學(xué)方法的發(fā)展,地質(zhì)年代及化學(xué)地層研究呈現(xiàn)較高熱度。另一方面,熱成熟度、生烴潛力、有機(jī)相等研究內(nèi)容一定程度上服務(wù)于烴源巖評(píng)價(jià)工作,響應(yīng)了油氣勘探開發(fā)這一重大應(yīng)用需求。此外,反硝化作用是重要的生物地球化學(xué)過程,與海洋氮循環(huán)及生物生產(chǎn)力密切相關(guān),也呼應(yīng)了古海洋這一研究熱點(diǎn)。大氧化事件對(duì)地球表層環(huán)境及生物演化產(chǎn)生了深刻影響,在近5年里逐漸產(chǎn)出了較多的成果。與國際研究趨勢相比,中國的研究內(nèi)容同樣集中于物源分析、構(gòu)造背景、地質(zhì)年代、古氣候、古環(huán)境、古海洋和成巖作用等方面(圖4H)。然而,中國近年在熱成熟度、生烴潛力、有機(jī)相等研究內(nèi)容的增速較快,體現(xiàn)了我國沉積地球化學(xué)對(duì)國家油氣資源需求及相關(guān)勘探開發(fā)工作的積極支持與響應(yīng)。

2 中國沉積地球化學(xué)發(fā)展機(jī)遇與展望

目前,中國已裝備了一些國際一流的地球化學(xué)分析測試儀器,為沉積地球化學(xué)的發(fā)展奠定了較好的公共分析測試平臺(tái)。中國沉積學(xué)研究者也積極應(yīng)用各類地球化學(xué)手段與方法,豐富了研究內(nèi)容、增強(qiáng)了研究能力、拓展了研究深度和廣度。近年來,中國沉積地球化學(xué)快速發(fā)展,在SCI論文總量方面已具有明顯優(yōu)勢。然而,目前中國沉積地球化學(xué)研究“拿來主義”色彩明顯,在技術(shù)方法和理論方面重應(yīng)用、少機(jī)理,重定性、少定量,處于被引領(lǐng)的狀態(tài)。同時(shí),中國沉積地球化學(xué)在研究的技術(shù)路線或目標(biāo)問題方面偏于點(diǎn)、偶有線、少見面,缺乏大時(shí)空尺度的綜合性工作。盡管與國際領(lǐng)先水平存在一定的差距,中國沉積地球化學(xué)基于國際發(fā)展趨勢和研究動(dòng)態(tài),加強(qiáng)分析測試平臺(tái)建設(shè),在關(guān)鍵領(lǐng)域優(yōu)化并創(chuàng)新方法、技術(shù)與理論,結(jié)合本國地質(zhì)特色與既有優(yōu)勢,深化沉積地球化學(xué)在重大地質(zhì)時(shí)期地球環(huán)境與生物演化、沉積礦產(chǎn)與化石能源形成與演化等重大科學(xué)問題上的綜合性研究,有望實(shí)現(xiàn)引領(lǐng)式發(fā)展。

2.1 加強(qiáng)對(duì)沉積地球化學(xué)技術(shù)方法與理論的優(yōu)化和創(chuàng)新

重視對(duì)新技術(shù)方法與理論的開發(fā)。工欲善其事,必先利其器。地球化學(xué)分析測試技術(shù),及方法理論飛速發(fā)展,為沉積學(xué)研究注入了新的活力。例如,LA-ICP-MS測試技術(shù)為碎屑鋯石U-Pb年代學(xué)研究創(chuàng)造了條件,極大的促進(jìn)了物源分析和地質(zhì)年代學(xué)等研究成果的產(chǎn)出。

目前,國際上推出了一系列新的地球化學(xué)方法或指標(biāo),得到了越來越多的應(yīng)用和重視,并展示了獨(dú)特的示蹤能力和應(yīng)用前景。例如,運(yùn)用238U/235U、33S、δ53Cr、δ98Mo、δ142Ce等同位素指標(biāo)評(píng)估大氣和海洋氧化狀態(tài)[96,228-229],運(yùn)用δ18O重建地理海拔高度[71,230],運(yùn)用47(Clumped isotope,團(tuán)簇同位素)約束沉積水體與成巖流體溫度[231],運(yùn)用δ26Mg、δ44Ca、δ7Li同位素揭示大陸風(fēng)化作用[102,113],運(yùn)用δ66Zn同位素約束火山活動(dòng)或海洋生命營養(yǎng)(元素)循環(huán)[142],運(yùn)用δ11B同位素重建海水pH值和大氣pCO2[159],運(yùn)用各類生物標(biāo)志物示蹤生物來源及沉積環(huán)境(表4)等。同時(shí),一些其他新同位素(如88Sr/86Sr、δ56Fe、δ60Ni、δ137Ba、17O、δ205Tl、δ65Cu、δ114Cd、δ74Ge、δ202Hg、δ82Se)等也為理解沉積巖(物)形成過程與環(huán)境背景提供了新的約束手段或方法(表3)。此外,隨著單體分子分離技術(shù)的改進(jìn)及質(zhì)譜靈敏度的提高,單體同位素分析測試方法及技術(shù)將為精細(xì)理解和示蹤沉積物質(zhì)的循環(huán)與轉(zhuǎn)化提供有力的工具。例如,單體分子放射性碳同位素分析(CSRA)將為解釋有機(jī)碳的來源、遷移和轉(zhuǎn)化等提供新的手段,具有廣闊發(fā)展?jié)摿ΑH欢?,這些新方法與新指標(biāo)的相關(guān)理論基礎(chǔ)、實(shí)驗(yàn)室校驗(yàn)及應(yīng)用條件等方面仍存在不確定性,有待進(jìn)一步探索和完善,是沉積地球化學(xué)研究的重要內(nèi)容。值得注意的是,中國及華人學(xué)者已成功將多類新同位素方法應(yīng)用于古氣候、古海洋、古環(huán)境等研究中[96-97,102,112,114,130,142,158,232-233],并在國際上具有較大的影響力[73,101,106,234],這將為中國沉積地球化學(xué)的進(jìn)一步發(fā)展提供有利條件和重要推力。

重視對(duì)傳統(tǒng)地球化學(xué)方法的改進(jìn)和優(yōu)化。傳統(tǒng)地球化學(xué)方法具有適用范圍廣、測試成本低等特點(diǎn),對(duì)其進(jìn)行優(yōu)化和發(fā)展,將為沉積地球化學(xué)研究提供有力的工具。例如,鐵組分分析流程及相關(guān)指標(biāo)的建立[235-236],提升了對(duì)古海洋化學(xué)環(huán)境的辨識(shí)度(如缺氧鐵化和硫化的識(shí)別),豐富了我們對(duì)地質(zhì)歷史時(shí)期(如元古宙及顯生宙重大地質(zhì)事件時(shí)期)海洋化學(xué)環(huán)境及生物演化的認(rèn)識(shí)[13,237-239]。碳酸鹽巖的微量晶格硫酸鹽(CAS)[240-241]及稀土元素[53]分析提取技術(shù)的優(yōu)化,為我們獲取真實(shí)、可靠的地球化學(xué)信號(hào)提供了必要的技術(shù)支持。碳酸鹽巖成巖作用信號(hào)的辨識(shí)與提取,也為碳同位素化學(xué)地層對(duì)比及古海洋環(huán)境解釋提供了新的制約[242-243]。另一方面,生物營養(yǎng)元素(N、P、Ba、Zn、Cu、Ni、Cd等)的生物地球化學(xué)循環(huán),氧化還原敏感元素(Mn、Mo、U、V、Cr、Se等)的沉積地球化學(xué)過程,以及風(fēng)化作用下元素遷移活性(如K、Na、Ca相對(duì)于Ti、Al、Sc等)和代用指標(biāo)(如CIA指數(shù)、Ti/Al、K/Al比值)等研究,仍然有待深化。近年來,生物成因碳酸鹽巖(如有孔蟲、有殼類生物等鈣質(zhì)骨骼)的元素比值(如B/Ca、Ba/Ca,Mg/Ca,Sr/Ca,Mn/Ca、Na/Ca)在海洋化學(xué)組分重建及古環(huán)境解釋等方面開展了一些探索,具有廣闊的應(yīng)用潛力[34,244],但在適用生物類型的多樣性方面仍需進(jìn)一步開發(fā),在元素富集機(jī)理及環(huán)境參數(shù)定量重建等方面仍需開展大量工作。

因此,圍繞沉積物源分析(物質(zhì)來源和時(shí)代、構(gòu)造背景)、氣候背景(大氣組分和含量、大陸風(fēng)化類型及強(qiáng)度)和海洋環(huán)境特征(氧化還原性質(zhì)、溫度、pH值、鹽度、生物生產(chǎn)力)等關(guān)鍵參數(shù),開發(fā)經(jīng)濟(jì)、高效和普適的地球化學(xué)方法及代用指標(biāo),是沉積地球化學(xué)研究者的不懈追求。加強(qiáng)對(duì)現(xiàn)代地球表層沉積物(海洋、河流、湖泊等)地球化學(xué)及沉積作用的研究,有利于建立新的理論與方法,并有助于將今論古。我國沉積地球化學(xué)可以地球關(guān)鍵帶研究為依托,圍繞土壤過程及其生物地球化學(xué)(C、N、P等)循環(huán),研究關(guān)鍵帶物質(zhì)組分和元素在各界面遷移和轉(zhuǎn)化的物理、化學(xué)和生物過程及耦合機(jī)制,建立沉積地球化學(xué)對(duì)地表過程和環(huán)境變化的響應(yīng)機(jī)制及其反饋。另一方面,圍繞“海洋微生物與生物地球化學(xué)循環(huán)”、“生物地球化學(xué)循環(huán)與氣候變化”、“海洋物理—生物地球化學(xué)過程的相互作用”等方向開展相關(guān)研究,建立沉積地球化學(xué)對(duì)海洋過程生物作用的響應(yīng)及反饋。在此基礎(chǔ)上,依托我國完整的海相沉積記錄,開展深時(shí),尤其是關(guān)鍵地質(zhì)時(shí)期地球表生系統(tǒng)環(huán)境過程—生命演化的研究,逐步實(shí)現(xiàn)在理論、方法和技術(shù)上的創(chuàng)新和引領(lǐng)。

2.2 加強(qiáng)對(duì)原位微區(qū)分析技術(shù)的開發(fā)和應(yīng)用

沉積巖(物)是多階段(風(fēng)化、搬運(yùn)、沉積和成巖過程)和多來源(陸源碎屑、生物質(zhì)、水柱自生礦物及成巖礦物)物質(zhì)的組合,不同組構(gòu)和組分具有不同的地質(zhì)意義。因此,重視對(duì)沉積地球化學(xué)信息的精細(xì)分析?;诔练e巖(物)原生物理結(jié)構(gòu)和構(gòu)造特征,對(duì)比分析各組構(gòu)的地球化學(xué)組成,有助于精確示蹤風(fēng)化(及物源)、沉積和成巖作用等地質(zhì)信息。

傳統(tǒng)上,牙鉆和微鉆等機(jī)械性原位微區(qū)取樣是微區(qū)地球化學(xué)分析的重要預(yù)處理手段。例如,通過微區(qū)取樣儀(Micromill Sampling)及配套的陰極發(fā)光(CL)顯微鏡(包括攝像系統(tǒng)),可對(duì)礦物生長環(huán)帶進(jìn)行識(shí)別和微區(qū)取樣[245]。另一方面,近年來隨著分析技術(shù)的進(jìn)步,原位、微區(qū)、微量、高精度地球化學(xué)分析得到顯著發(fā)展,將深刻影響沉積地球化學(xué)研究。這些技術(shù)相對(duì)于傳統(tǒng)化學(xué)分析方法更加省時(shí)、省力、省樣,具有明顯優(yōu)勢。同時(shí),這些技術(shù)可獲取更為精細(xì)的地球化學(xué)信息,可拓展對(duì)沉積及成巖過程的認(rèn)知,具有廣闊的應(yīng)用前景和機(jī)遇。例如,通過LA-ICP-MS、(Nano)SIMS、LCM-Raman、Micro-XRF、FE-EPMA、FE-SEM+EDS等(表1)分析儀器,可獲取高空間分辨元素或同位素分布圖像,有助于重建沉積礦物及微組構(gòu)的化學(xué)組分特征及時(shí)空演化[246-249],并精細(xì)示蹤沉積物—微生物、或者水—巖相互作用等沉積—成巖過程[250-254]。中國已擁有多種大型原位微區(qū)分析儀器,并在沉積地球化學(xué)方面有所應(yīng)用。目前,基于LA-ICP-MS的碎屑鋯石U-Pb年代學(xué)工作開展最為廣泛,在物源分析及地質(zhì)年代學(xué)等研究方面取得了豐碩的成果。此外,中國科學(xué)院地質(zhì)與地球物理研究所已利用Cameca IMS-1280型二次離子質(zhì)譜儀(SIMS)開展單粒莓球狀黃鐵礦高精度硫同位素[255]及牙形刺原位微區(qū)氧同位素分析[256],利用LA-ICP-MS進(jìn)行原位微區(qū)Sr-Nd同位素分析等工作。然而由于多種因素(如機(jī)時(shí)緊張,缺乏合適標(biāo)樣等),中國沉積地球化學(xué)研究對(duì)這些技術(shù)的應(yīng)用十分有限。

因此,為改善測試平臺(tái)方面機(jī)時(shí)少、費(fèi)用高、適用對(duì)象有限等困境,中國應(yīng)進(jìn)一步加強(qiáng)沉積地球化學(xué)專業(yè)實(shí)驗(yàn)室或平臺(tái)的建設(shè),為沉積地球化學(xué)的技術(shù)方法創(chuàng)新和廣泛應(yīng)用提供堅(jiān)實(shí)的支持。同時(shí),為改善測試技術(shù)方面分析方法有限、適用對(duì)象嚴(yán)格等困境,中國可以進(jìn)一步結(jié)合沉積地球化學(xué)的關(guān)鍵技術(shù)指標(biāo)(表2,3,4)和研究熱點(diǎn)(圖4),優(yōu)化改進(jìn)已有技術(shù)方法,并加大對(duì)新技術(shù)、新方法、新標(biāo)樣的開發(fā),促進(jìn)相關(guān)技術(shù)的發(fā)展與推廣??傊?,原位微區(qū)高精度地球化學(xué)分析是未來發(fā)展趨勢,中國可以建設(shè)并發(fā)揮平臺(tái)優(yōu)勢,加強(qiáng)在沉積地球化學(xué)領(lǐng)域的應(yīng)用,為學(xué)科發(fā)展注入強(qiáng)勁動(dòng)力。

2.3 加強(qiáng)對(duì)沉積和成巖過程高分辨率年代學(xué)的發(fā)展與探索

時(shí)間是約束地球表層系統(tǒng)圈層相互作用和化石能源礦產(chǎn)富集機(jī)制的重要參數(shù),建立沉積與成巖過程的高分辨率年代標(biāo)尺,意義重大而又充滿挑戰(zhàn)[257]。傳統(tǒng)上,一系列同位素指標(biāo)(如δ13C、δ18O、δ34S、δ15N、87Sr/86Sr等)常用于建立化學(xué)地層,并間接約束沉積地層時(shí)代。然而,海洋地球化學(xué)特征非均一性,以及后期地質(zhì)過程(成巖作用、風(fēng)化作用、成烴作用等)疊加改造,制約著高分辨率化學(xué)地層格架的建立。同時(shí),化學(xué)地層里同位素指標(biāo)的各種短周期非穩(wěn)態(tài)波動(dòng)特征的可靠識(shí)別、成因解譯、絕對(duì)年齡錨定等工作是建立沉積地層高分辨率年代格架的重要事項(xiàng),值得進(jìn)一步開展與深化。另一方面,多種放射性同位素方法可以對(duì)沉積或成巖過程進(jìn)行不同程度的年代學(xué)約束(表3)。但是,測試周期較長、費(fèi)用較高、適用材料有限、定年精度不足等因素嚴(yán)重制約著相關(guān)工作的開展。目前,沉積地層里的凝灰?guī)r或砂巖的鋯石U-Pb定年技術(shù)已日趨成熟,但測試精度(SIMS的年齡精度約為1%)有時(shí)仍難以滿足研究需求(如事件地層學(xué)研究);因此建立單顆粒鋯石ID-TIMS定年方法將有助于改善中國在相關(guān)研究中的被動(dòng)地位。此外,Re-Os定年技術(shù)在黑色頁巖、富有機(jī)質(zhì)碳酸鹽巖、或者烴類方面有所應(yīng)用,但是也面臨成功率較低的困境[182-187],需要進(jìn)一步優(yōu)化改進(jìn)。另一方面,由于適合高精度定年的成巖礦物十分有限,目前對(duì)成巖過程(或事件)的年代(時(shí)間)約束難度非常大,有待突破。少數(shù)研究成功通過石英、方解石、螢石、黃鐵礦等熱液礦物進(jìn)行了Rb-Sr[191-193]、Sm-Nd同位素[188-189]定年;類似的年代學(xué)工作可利用沉積巖縫洞或脈體充填的熱液礦物進(jìn)行探索,或許將改善目前的研究困局。對(duì)于碎屑巖地層,克服礦物分離、純化難題,黏土礦物(如伊利石、海綠石)K-Ar或40Ar/39Ar法可嘗試對(duì)成巖過程的年代進(jìn)行一定的約束[180-181]。值得注意的是,碎屑獨(dú)居石、成巖磷釔礦的U-Pb同位素定年技術(shù)進(jìn)步,也為沉積地層和埋藏成巖流體事件等年代約束提供了新的手段[170-171]。因此,雖然沉積和成巖過程的年代學(xué)約束存在諸多困難,但是加強(qiáng)相關(guān)技術(shù)方法的改進(jìn)與應(yīng)用,仍有望產(chǎn)出高質(zhì)量的成果,并對(duì)相關(guān)研究產(chǎn)生深刻影響。我國可以Earthtime地學(xué)計(jì)劃為依托,發(fā)揮沉積地球化學(xué)(化學(xué)地層和同位素年代地層)的技術(shù)優(yōu)勢,綜合巖石地層、生物地層和天文年代地層資料,為建立高分辨率綜合年代地層格架提供關(guān)鍵支持。

2.4 加強(qiáng)對(duì)沉積地球化學(xué)數(shù)據(jù)的定量分析與模擬

隨著數(shù)據(jù)的積累,以及對(duì)地球化學(xué)循環(huán)過程的深入理解,目前沉積地球化學(xué)研究呈現(xiàn)從靜態(tài)的定性—半定量描述向動(dòng)態(tài)的定量分析與模型模擬的發(fā)展趨勢。例如,碳—氧同位素等已廣泛用于古海洋與古氣候的模擬及定量重建[72-73,258-263]。此外,通過地球化學(xué)模型計(jì)算,Mo同位素可定量評(píng)估海洋氧化程度[96],有機(jī)質(zhì)或微量元素豐度等可定量評(píng)估海洋儲(chǔ)庫及古氣候背景[264-265],Cr同位素可定量評(píng)估大氣氧氣含量[115],硫酸鹽—硫化物(黃鐵礦)的硫同位素體系可定量重建海洋硫酸鹽濃度[266]等。另一方面,定量分析與模擬方法在早期成巖階段有機(jī)質(zhì)演化[267-268]、元素循環(huán)、甲烷遷移等研究中發(fā)揮著重要作用[269-272]。

通過建立地球化學(xué)模型對(duì)數(shù)據(jù)進(jìn)行定量分析,將深化我們對(duì)地球表生圈層相互作用及其地球化學(xué)響應(yīng)的認(rèn)識(shí)。然而,元素地球化學(xué)循環(huán)過程、數(shù)學(xué)模型改進(jìn)、邊界條件優(yōu)化等方面仍存在大量發(fā)展機(jī)遇,值得中國相關(guān)學(xué)者的關(guān)注。同時(shí),我國沉積地球化學(xué)可以依托深時(shí)“元素生物地球化學(xué)循環(huán)與地球系統(tǒng)”、“海洋化學(xué)環(huán)境變化機(jī)理及其在氣候系統(tǒng)中的作用”等重大關(guān)鍵科學(xué)問題,推進(jìn)地球化學(xué)數(shù)據(jù)的定量分析與模擬工作,增強(qiáng)核心競爭能力。

2.5 加強(qiáng)對(duì)大時(shí)空尺度沉積地球化學(xué)分布和演化特征的重建與優(yōu)化

沉積巖(物)是地球表層物質(zhì)循環(huán)過程、環(huán)境特征及生命活動(dòng)的重要記錄者。地質(zhì)時(shí)期大氣—海洋環(huán)境的地球化學(xué)參數(shù)大時(shí)空尺度的分布與演化趨勢,可能響應(yīng)了冰期—間冰期旋回、低頻海平面變化、板塊裂解聚合、造山運(yùn)動(dòng)、海底熱液活動(dòng)、火山活動(dòng)、生物變革等長周期地質(zhì)過程的演化。同時(shí),大時(shí)空演化背景下,沉積地球化學(xué)異常分布特征可能記錄了短周期或突發(fā)性地質(zhì)過程,值得探索。因此,通過沉積地球化學(xué)對(duì)地球表層環(huán)境參數(shù)進(jìn)行長時(shí)間尺度、大空間范圍的重建,揭示其分布和演化趨勢,具有重要的科學(xué)意義。

另一方面,大空間尺度(多大洋或陸塊、多盆地、多沉積相帶)的沉積地球化學(xué)研究有助于識(shí)別參數(shù)的非均質(zhì)性及區(qū)域變化,有助于揭示其影響因素和控制過程。由于樣品可獲得性,近現(xiàn)代海洋沉積地球化學(xué)在大空間尺度的研究工作開展得比較好,并取得諸多影響深遠(yuǎn)的成果。然而,在深時(shí)古海洋環(huán)境重建方面,相關(guān)工作同樣值得大力開展。例如,多陸塊樣品分析刻畫出了中元古代及早新元古代海洋氧化還原狀態(tài)[294-295];不同沉積相帶樣品分析,揭示了納米比亞地區(qū)晚埃迪卡拉紀(jì)[296]、及揚(yáng)子臺(tái)地早—中寒武世[238-239]海洋氧化還原結(jié)構(gòu)及其與生物演化的關(guān)系。同時(shí),不同沉積相帶的地球化學(xué)對(duì)比分析,可揭示該時(shí)期海洋化學(xué)組分的空間變化,如揚(yáng)子地區(qū)埃迪卡拉紀(jì)—早寒武世海洋δ13C梯度[297-299]、及硫酸鹽濃度[300]非均一性等。這些工作可以更加全面的刻畫沉積地球化學(xué)的空間分布與演化,值得進(jìn)一步開展。

總之,大時(shí)空尺度沉積地球化學(xué)分布和演化特征的重建與優(yōu)化,可對(duì)地質(zhì)歷史時(shí)期環(huán)境演化提供更為全面的約束,因此得到廣泛的關(guān)注和引用。中國沉積地球化學(xué)研究者一方面在繼承地球化學(xué)時(shí)空分布和演化模式的基礎(chǔ)上,重視對(duì)前人研究結(jié)果的優(yōu)化與擴(kuò)展;另一方面查新補(bǔ)缺,拓展舊地球化學(xué)指標(biāo)的適用沉積巖及礦物類型,并開發(fā)新的地球化學(xué)指標(biāo),建立新的分布模式和演化基線。這些工作將有助于增強(qiáng)中國沉積地球化學(xué)研究成果的影響力,提升高被引頻次文章的數(shù)量。

2.6 加強(qiáng)對(duì)關(guān)鍵地質(zhì)時(shí)期地球表層環(huán)境—生物演化的研究

關(guān)鍵地質(zhì)時(shí)期地球表層環(huán)境—生物演化關(guān)系歷來備受關(guān)注。中國具有豐富的沉積—地層資料、并具備一定的高精度生物地層及年代地層等工作基礎(chǔ)。例如,中國保存有多個(gè)重大地質(zhì)歷史變革期的關(guān)鍵地層,如華北地臺(tái)中新元古界,華南新元古界至寒武系、奧陶—志留系界線、泥盆系弗拉—法門階界線、二疊—三疊系界線、白堊紀(jì)大洋紅層及缺氧事件層段等。這為開展關(guān)鍵地質(zhì)時(shí)期環(huán)境—生物事件的沉積地球化學(xué)研究提供了得天獨(dú)厚的條件。目前,我國學(xué)者在相關(guān)領(lǐng)域開展了大量有益的嘗試和探索,取得了一些創(chuàng)新成果,并在國際學(xué)術(shù)界建立了一定的聲譽(yù)和影響。這是中國沉積地球化學(xué)未來值得進(jìn)一步重點(diǎn)發(fā)展的優(yōu)勢方向。

因此,充分發(fā)揮沉積地球化學(xué)既有優(yōu)勢,采取多學(xué)科綜合研究途徑,為解決地質(zhì)環(huán)境—生物協(xié)同演化這一重大關(guān)鍵科學(xué)問題,做出重要貢獻(xiàn)。我國沉積地球化學(xué)應(yīng)結(jié)合沉積學(xué)、盆地構(gòu)造學(xué)、古地磁學(xué)、古生物與地層學(xué)、及地球生物學(xué)等研究成果,在統(tǒng)一的高精度時(shí)間框架內(nèi),綜合約束地史時(shí)期重大地質(zhì)事件—環(huán)境演化—生物響應(yīng)的發(fā)生過程和規(guī)律。

2.7 加強(qiáng)對(duì)沉積礦產(chǎn)和化石能源形成與演化的研究

重視對(duì)沉積礦產(chǎn)形成與演化的應(yīng)用。元素在沉積巖中異常富集,可形成具有經(jīng)濟(jì)價(jià)值的沉積(或?qū)涌?型礦床歷來備受關(guān)注。沉積地球化學(xué)可以示蹤元素來源、遷移及富集過程,是揭示沉積型礦產(chǎn)成因機(jī)制及成礦規(guī)律的重要手段。中國沉積型礦床資源類型多樣(如沉積型錳礦、磷礦、重晶石礦、條帶狀和粒狀鐵建造、砂巖型鈾礦、風(fēng)化型鋁土礦和稀土礦、海底熱液噴流沉積型礦床、黑色頁巖型硫化物多金屬礦、蒸發(fā)沉積礦床等),分布廣泛,資源儲(chǔ)量豐富,具有重要的經(jīng)濟(jì)價(jià)值。例如,華南新元古界—寒武系地層序列伴生多種沉積型礦床,如大塘坡組錳礦、陡山沱組及戈仲武組磷礦、牛蹄塘組Ni-Mo-V多金屬礦和重晶石礦等。圍繞元素異常富集的成礦物質(zhì)來源(大陸風(fēng)化作用、海底熱液活動(dòng)、生物富集作用等)及古海洋(海平面變化、缺氧或洋流上涌)、古構(gòu)造—古地理(如斷控?zé)嵋簢娏?與古氣候(信風(fēng)帶、干燥或潮濕)背景,建立元素富集成礦模式,具有重要科學(xué)意義及經(jīng)濟(jì)價(jià)值。中國沉積地球化學(xué)研究可圍繞“沉積型礦床的成礦作用與地球動(dòng)力學(xué)系統(tǒng)演變的耦合關(guān)系”、“沉積(層控)型礦產(chǎn)形成機(jī)制和成礦規(guī)律與古海洋、古構(gòu)造與古氣候演化”等方面開展工作。

加強(qiáng)對(duì)化石能源形成與演化的應(yīng)用。沉積地球化學(xué)服務(wù)于油氣資源勘探開發(fā),是我國該學(xué)科的一個(gè)顯著特點(diǎn)。近年來,非常規(guī)油氣資源(頁巖油—?dú)夂椭旅苡汀獨(dú)?顯示出巨大的勘探潛力,是化石能源的重要戰(zhàn)略接替領(lǐng)域,也將是沉積(及有機(jī))地球化學(xué)的一個(gè)重要戰(zhàn)場。中國沉積地球化學(xué)應(yīng)進(jìn)一步加強(qiáng)對(duì)烴源巖發(fā)育的地質(zhì)條件,以及油氣生成、運(yùn)聚和成藏等過程的研究,繼續(xù)發(fā)揮地球化學(xué)的示蹤能力。其中,在發(fā)展先進(jìn)的分離測定技術(shù),以及新的描述和表征技術(shù)前提下,“過渡型有機(jī)質(zhì)”的定性與定量研究也將會(huì)是學(xué)科未來的一個(gè)新的生長點(diǎn)。本領(lǐng)域研究應(yīng)結(jié)合國家能源戰(zhàn)略,圍繞“深層油氣成藏條件和油氣分布規(guī)律”、“深層烴源有機(jī)質(zhì)生烴和油氣賦存規(guī)律”、“地球系統(tǒng)演化與盆地中生烴物質(zhì)和儲(chǔ)層的沉積環(huán)境”等方面開展工作。這些工作具有重要的科學(xué)意義和經(jīng)濟(jì)價(jià)值,將為中國沉積地球化學(xué)的發(fā)展提供持久的支持。

3 建議

中國沉積地球化學(xué)應(yīng)加強(qiáng)總體規(guī)劃和戰(zhàn)略布局,以進(jìn)一步增強(qiáng)在國際學(xué)術(shù)界的影響力。因此,建議推進(jìn)下列工作:

(1) 實(shí)驗(yàn)室建設(shè)方面,統(tǒng)籌創(chuàng)建以沉積地球化學(xué)為主旨的綜合性實(shí)驗(yàn)室,建立具有國際領(lǐng)先優(yōu)勢的分析測試技術(shù)平臺(tái),為改進(jìn)或創(chuàng)新沉積巖(物)地球化學(xué)的分析技術(shù)與理論方法提供堅(jiān)實(shí)的支持。

(2) 人才培養(yǎng)方面,建立沉積地球化學(xué)暑期學(xué)校,組織編寫專業(yè)相關(guān)教材,加強(qiáng)國內(nèi)外人員的交流與學(xué)習(xí),促進(jìn)青年人才成長和領(lǐng)軍人物的涌現(xiàn),逐步形成創(chuàng)新人才團(tuán)隊(duì)。

(3) 數(shù)據(jù)庫建設(shè)方面,適時(shí)組織相關(guān)專業(yè)人才,規(guī)劃與啟動(dòng)中國沉積地球化學(xué)數(shù)據(jù)庫建設(shè),占據(jù)學(xué)科研究戰(zhàn)略高地。

4 結(jié)語

沉積地球化學(xué)是沉積學(xué)的重要研究內(nèi)容和手段,在認(rèn)識(shí)地球表層圈層演化和資源環(huán)境效應(yīng)方面發(fā)揮著不可替代的作用。隨著國家科研經(jīng)費(fèi)投入的增加,以及地球化學(xué)分析測試平臺(tái)建設(shè)與技術(shù)進(jìn)步,中國沉積地球化學(xué)迎來了快速發(fā)展期,國際學(xué)術(shù)影響力逐漸增強(qiáng),但在技術(shù)方法與理論創(chuàng)新、及高質(zhì)量成果產(chǎn)出等方面,仍有待改善。為提升中國沉積地球化學(xué)的研究水平和國際地位,并實(shí)現(xiàn)其跨越式發(fā)展,建議加強(qiáng)統(tǒng)籌規(guī)劃和戰(zhàn)略布局,以重大科學(xué)問題為導(dǎo)向,推進(jìn)基礎(chǔ)和前沿研究。因此建議:1)發(fā)展與創(chuàng)新理論、方法和技術(shù),探索示蹤物源、古氣候、古環(huán)境、古生態(tài)的定量化指標(biāo),提升沉積—成巖過程年代的約束能力,重視對(duì)地球化學(xué)數(shù)據(jù)的精細(xì)提取和模型定量分析;2)加強(qiáng)沉積地球化學(xué)在大時(shí)空尺度的應(yīng)用與探索,深化對(duì)關(guān)鍵地質(zhì)時(shí)期地球環(huán)境—生物協(xié)同演化的研究;3)以國家經(jīng)濟(jì)發(fā)展需求為導(dǎo)向,積極發(fā)揮沉積地球化學(xué)在沉積礦產(chǎn)和化石能源的形成與演化研究中的重要作用。同時(shí),鼓勵(lì)運(yùn)用沉積地球化學(xué)理論與方法,開展與環(huán)境科學(xué)、生命科學(xué)以及地球科學(xué)其他學(xué)科的交叉研究。

致謝 中國沉積地球化學(xué)發(fā)展戰(zhàn)略為王成善院士主持的國家自然科學(xué)基金重點(diǎn)項(xiàng)目“沉積學(xué)與古環(huán)境發(fā)展戰(zhàn)略研究”中的一個(gè)專題。此研究受益于沉積學(xué)發(fā)展戰(zhàn)略系列研討會(huì)與會(huì)專家的討論與交流,在此表示感謝。

)

[1] Tréguer P J, de La Rocha C L. The world ocean silica cycle[J]. Annual Review of Marine Science, 2013, 5: 477-501.

[2] Kidder D L, Tomescu I. Biogenic chert and the Ordovician silica cycle[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 458: 29-38.

[3] Penman D E. Silicate weathering and North Atlantic silica burial during the Paleocene-Eocene Thermal Maximum[J]. Geology, 2016, 44(9): 731-734.

[4] Zhang Y Y, Pe-Piper G, Piper D J W, et al. Sediment geochemistry as a provenance indicator: Unravelling the cryptic signatures of polycyclic sources, climate change, tectonism and volcanism[J]. Sedimentology, 2014, 61(2): 383-410.

[5] Bertrand S, Hughen K A, Sepúlveda J, et al. Geochemistry of surface sediments from the fjords of Northern Chilean Patagonia (44-47°S): spatial variability and implications for paleoclimate reconstructions[J]. Geochimica et Cosmochimica Acta, 2012, 76: 125-146.

[6] Goldberg K, Humayun M. The applicability of the Chemical Index of Alteration as a paleoclimatic indicator: An example from the Permian of the Paraná Basin, Brazil[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 293(1/2): 175-183.

[7] Yan D T, Chen D Z, Wang Q C, et al. Large-scale climatic fluctuations in the latest Ordovician on the Yangtze block, south China[J]. Geology, 2010, 38(7): 599-602.

[8] Scheffler K, Buehmann D, Schwark L. Analysis of late Palaeozoic glacial to postglacial sedimentary successions in South Africa by geochemical proxies-response to climate evolution and sedimentary environment[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 240(1/2): 184-203.

[9] Martinez-Ruiz F, Kastner M, Gallego-Torres D, et al. Paleoclimate and paleoceanography over the past 20,000 yr in the Mediterranean Sea Basins as indicated by sediment elemental proxies[J]. Quaternary Science Reviews, 2015, 107: 25-46.

[10] Calvert S E, Pedersen T F. Chapter fourteen: elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: interpretation and application[M]//CLAUDE H M, ANNE DE V. Developments in Marine Geology. Amsterdam: Elsevier, 2007: 567-644.

[11] Yang S Y, Jung H S, Lim D I, et al. A review on the provenance discrimination of sediments in the Yellow Sea[J]. Earth-Science Reviews, 2003, 63(1/2): 93-120.

[12] Raiswell R, Canfield D E. The iron biogeochemical cycle past and present[J]. Geochemical Perspectives, 2012, 1(1): 1-220.

[13] Poulton S W, Canfield D E. Ferruginous conditions: a dominant feature of the ocean through Earth's history[J]. Elements, 2011, 7(2): 107-112.

[14] Johnson J E, Webb S M, Ma C, et al. Manganese mineralogy and diagenesis in the sedimentary rock record[J]. Geochimica et Cosmochimica Acta, 2016, 173: 210-231.

[15] Maynard J B. The chemistry of manganese ores through time: a signal of increasing diversity of earth-surface environments[J]. Economic Geology, 2010, 105(3): 535-552.

[16] Koschinsky A, Hein J R. Marine ferromanganese encrustations: archives of changing oceans[J]. Elements, 2017, 13(3): 177-182.

[17] Montagna P, Mcculloch M, Taviani M, et al. Phosphorus in cold-water corals as a proxy for seawater nutrient chemistry[J]. Science, 2006, 312(5781): 1788-1791.

[18] Canfield D E, Kristensen E, Thamdrup B. The phosphorus cycle[J]. Advances in Marine Biology, 2005, 48: 419-440.

[19] Slomp C P, Thomson J, De Lange G J. Controls on phosphorus regeneration and burial during formation of eastern Mediterranean sapropels[J]. Marine Geology, 2004, 203(1/2): 141-159.

[20] Paytan A, Mclaughlin K. The oceanic phosphorus cycle[J]. Chemical Reviews, 2007, 107(2): 563-576.

[21] Schoepfer S D, Shen J, Wei H, et al. Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity[J]. Earth-Science Reviews, 2015, 149: 23-52.

[22] Tyson R V. The "productivity versus preservation" controversy: cause, flaws, and resolution[M]//HARRIS N B. The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences. Provo, UT, USA: SEPM, 2005, 82: 17-33.

[23] Zhang S C, Wang X M, Wang H J, et al. The oxic degradation of sedimentary organic matter 1400 Ma constrains atmospheric oxygen levels[J]. Biogeosciences, 2017, 14(8): 2133-2149.

[24] Singh P. Major, trace and REE geochemistry of the Ganga River sediments: influence of provenance and sedimentary processes[J]. Chemical Geology, 2009, 266(3/4): 242-255.

[25] Shigemitsu M, Narita H, Watanabe Y W, et al. Ba, Si, U, Al, Sc, La, Th, C and13C/12C in a sediment core in the western subarctic Pacific as proxies of past biological production[J]. Marine Chemistry, 2007, 106(3/4): 442-455.

[26] Robbins L J, Lalonde S V, Planavsky N J, et al. Trace elements at the intersection of marine biological and geochemical evolution[J]. Earth-Science Reviews, 2016, 163: 323-348.

[27] Algeo T J, Rowe H. Paleoceanographic applications of trace-metal concentration data[J]. Chemical Geology, 2012, 324-325: 6-18.

[28] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1/2): 12-32.

[29] Little S H, Vance D, Lyons T W, et al. Controls on trace metal authigenic enrichment in reducing sediments: Insights from modern oxygen-deficient settings[J]. American Journal of Science, 2015, 315(2): 77-119.

[30] Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268(3/4): 211-225.

[31] Partin C A, Lalonde S V, Planavsky N J, et al. Uranium in iron formations and the rise of atmospheric oxygen[J]. Chemical Geology, 2013, 362: 82-90.

[32] Tribovillard N, Algeo T J, Baudin F, et al. Analysis of marine environmental conditions based onmolybdenum-uranium covariation—applications to Mesozoic paleoceanography[J]. Chemical Geology, 2012, 324-325: 46-58.

[33] Keul N, Langer G, Thoms S, et al. Exploring foraminiferal Sr/Ca as a new carbonate system proxy[J]. Geochimica et Cosmochimica Acta, 2017, 202: 374-386.

[34] Quintana Krupinski N B, Russell A D, Pak D K, et al. Core-top calibration of B/Ca in Pacific OceanNeogloboquadrinaincomptaandGlobigerinabulloidesas a surface water carbonate system proxy[J]. Earth and Planetary Science Letters, 2017, 466: 139-151.

[35] Hardisty D S, Lu Z L, Bekker A, et al. Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate[J]. Earth and Planetary Science Letters, 2017, 463: 159-170.

[36] Hardisty D S, Lu Z L, Planavsky N J, et al. An iodine record of Paleoproterozoic surface ocean oxygenation[J]. Geology, 2014, 42(7): 619-622.

[37] Lu Z L, Jenkyns H C, Rickaby R E M. Iodine to calcium ratios in marine carbonate as a paleo-redox proxy during oceanic anoxic events[J]. Geology, 2010, 38(12): 1107-1110.

[38] Zhou X L, Jenkyns H C, Owens J D, et al. Upper ocean oxygenation dynamics from I/Ca ratios during the Cenomanian-Turonian OAE 2[J]. Paleoceanography, 2015, 30(5): 510-526.

[39] Griffith E M, Paytan A. Barite in the ocean-occurrence, geochemistry and palaeoceanographic applications[J]. Sedimentology, 2012, 59(6): 1817-1835.

[40] Paytan A, Griffith E M. Marine barite: recorder of variations in ocean export productivity[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(5/6/7): 687-705.

[41] Rehk?mper M, Nielsen S G. The mass balance of dissolved thallium in the oceans[J]. Marine Chemistry, 2004, 85(3/4): 125-139.

[42] Tokunaga K, Uruga T, Nitta K, et al. Application of arsenic in barite as a redox indicator for suboxic/anoxic redox condition[J]. Chemical Geology, 2016, 447: 59-69.

[43] Vandenbroucke T R, Emsbo P, Munnecke A, et al. Metal-induced malformations in early Palaeozoic plankton are harbingers of mass extinction[J]. Nature Communications, 2015, 6: 7966.

[44] Bowell R J, Alpers C N, Jamieson H E, et al. The environmental geochemistry of arsenic-an overview[J]. Reviews in Mineralogy and Geochemistry, 2014, 79(1): 1-16.

[45] Smedley P L, Kinniburgh D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002, 17(5): 517-568.

[46] Jones D S, Martini A M, FikE D A, et al. A volcanic trigger for the Late Ordovician mass extinction? Mercury data from south China and Laurentia[J]. Geology, 2017, 45(7): 631-634.

[47] Percival L M E, Ruhl M, Hesselbo S P, et al. Mercury evidence for pulsed volcanism during the end-Triassic mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(30): 7929-7934.

[48] Bergquist B A. Mercury, volcanism, and mass extinctions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(33): 8675-8677.

[49] Han Y, Huh Y, Derry L. Ge/Si ratios indicating hydrothermal and sulfide weathering input to rivers of the Eastern Tibetan Plateau and Mt. Baekdu[J]. Chemical Geology, 2015, 410: 40-52.

[50] Dong L, Shen B, Lee C T A, et al. Germanium/silicon of the Ediacaran-Cambrian Laobao cherts: implications for the bedded chert formation and paleoenvironment interpretations[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(3): 751-763.

[51] Shen B, Lee C T A, Xiao S H. Germanium/silica ratios in diagenetic chert nodules from the Ediacaran Doushantuo Formation, South China[J]. Chemical Geology, 2011, 280(3/4): 323-335.

[52] Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1557-1565.

[53] Tostevin R, Shields G A, Tarbuck G M, et al. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings[J]. Chemical Geology, 2016, 438: 146-162.

[54] Slack J F, Grenne T, Bekker A, et al. Suboxic deep seawater in the late Paleoproterozoic: evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA[J]. Earth and Planetary Science Letters, 2007, 255(1/2): 243-256.

[55] Douville E, Bienvenu P, Charlou J L, et al. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 1999, 63(5): 627-643.

[56] Kato Y, Yamaguchi K E, Ohmoto H. Rare earth elements in Precambrian banded iron formations: Secular changes of Ce and Eu anomalies and evolution of atmospheric oxygen[J]. Geological Society of America, 2006, 198: 269-289.

[57] Tremaine D M, Froelich P N, Wang Y. Speleothem calcite farmedinsitu: modern calibration of δ18O and δ13C paleoclimate proxies in a continuously-monitored natural cave system[J]. Geochimica et Cosmochimica Acta, 2011, 75(17): 4929-4950.

[58] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693.

[59] Knauth L P, Kennedy M J. The late Precambrian greening of the Earth[J]. Nature, 2009, 460(7256): 728-732.

[60] Grotzinger J P, Fike D A, Fischer W W. Enigmatic origin of the largest-known carbon isotope excursion in Earth's history[J]. Nature Geoscience, 2011, 4(5): 285-292.

[61] Oehlert A M, Swart P K. Interpreting carbonate and organic carbon isotope covariance in the sedimentary record[J]. Nature Communications, 2014, 5: 4672.

[62] Liu J Z, An Z S, Wang Z S, et al. Using δDn-alkaneas a proxy for paleo-environmental reconstruction: a good choice to sample at the site dominated by woods[J]. Science of the Total Environment, 2017, 599-600: 554-559.

[63] Schimmelmann A, Sessions A L, Mastalerz M. Hydrogen isotopic (D/H) composition of organic matter during diagenesis and thermal maturation[J]. Annual Review of Earth and Planetary Sciences, 2006, 34: 501-533.

[64] Huang Y S, Shuman B, Wang Y, et al. Hydrogen isotope ratios of individual lipids in lake sediments as novel tracers of climatic and environmental change: a surface sediment test[J]. Journal of Paleolimnology, 2004, 31(3): 363-375.

[65] Xie S, Nott C J, Avsejs L A, et al. Palaeoclimate records in compound-specific δD values of a lipid biomarker in ombrotrophic peat[J]. Organic Geochemistry, 2000, 31(10): 1053-1057.

[66] D?hlmann A, De Lange G J. Fluid-sediment interactions at Eastern Mediterranean mud volcanoes: a stable isotope study from ODP Leg 160[J]. Earth and Planetary Science Letters, 2003, 212(3/4): 377-391.

[67] Gao Y, Ibarra D E, Wang C S, et al. Mid-latitude terrestrial climate of East Asia linked to global climate in the Late Cretaceous[J]. Geology, 2015, 43(4): 287-290.

[68] Sun Y D, Joachimski M M, Wignall P B, et al. Lethally hot temperatures during the Early Triassic greenhouse[J]. Science, 2012, 338(6105): 366-370.

[69] Wang Y J, Cheng H, Edwards R L, et al. Millennial-and orbital-scale changes in the East Asian monsoon over the past 224,000 years[J]. Nature, 2008, 451(7182): 1090-1093.

[70] Zhao Y Y, Zheng Y F. Stable isotope evidence for involvement of deglacial meltwater in Ediacaran carbonates in South China[J]. Chemical Geology, 2010, 271(1/2): 86-100.

[71] Rowley D B, Garzione C N. Stable isotope-based paleoaltimetry[J]. Annual Review of Earth and Planetary Sciences, 2007, 35(1): 463-508.

[72] Bao H M, Lyons J R, Zhou C M. Triple oxygen isotope evidence for elevated CO2levels after a Neoproterozoic glaciation[J]. Nature, 2008, 453(7194): 504-506.

[73] Bao H M, Cao X B, Hayles J A. Triple oxygen isotopes: fundamental relationships and applications[J]. Annual Review of Earth and Planetary Sciences, 2016, 44: 463-492.

[74] Peng Y B, Bao H M, Pratt L M, et al. Widespread contamination of carbonate-associated sulfate by present-day secondary atmospheric sulfate: evidence from triple oxygen isotopes[J]. Geology, 2014, 42(9): 815-818.

[75] Eiler J M. Paleoclimate reconstruction using carbonate clumped isotope thermometry[J]. Quaternary Science Reviews, 2011, 30(25/26): 3575-3588.

[76] Loyd S J, Corsetti F A, Eiler J M, et al. Determining the diagenetic conditions of concretion formation: assessing temperatures and pore waters using clumped isotopes[J]. Journal of Sedimentary Research, 2012, 82(12): 1006-1016.

[77] Dennis K J, Schrag D P. Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration[J]. Geochimica et Cosmochimica Acta, 2010, 74(14): 4110-4122.

[78] Ono S. Photochemistry of sulfur dioxide and the origin of mass-independent isotope fractionation in earth's atmosphere[J]. Annual Review of Earth and Planetary Sciences, 2017, 45: 301-329.

[79] Canfield D E. Biogeochemistry of sulfur isotopes[J]. Reviews in Mineralogy and Geochemistry, 2001, 43(1): 607-636.

[80] Canfield D E, Raiswell R. The evolution of the sulfur cycle[J]. American Journal of Science, 1999, 299(7/8/9): 697-723.

[81] Fike D A, Bradley A S, Rose C V. Rethinking the ancient sulfur cycle[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 593-622.

[82] Stüeken E E, Kipp M A, Koehler M C, et al. The evolution of Earth's biogeochemical nitrogen cycle[J]. Earth-Science Reviews, 2016, 160: 220-239.

[83] Canfield D E, Glazer A N, Falkowski P G. The evolution and future of Earth's nitrogen cycle[J]. Science, 2010, 330(6001): 192-196.

[84] Robert F, Chaussidon M. A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts[J]. Nature, 2006, 443(7114): 969-972.

[85] Frings P J, Clymans W, Fontorbe G, et al. The continental Si cycle and its impact on the ocean Si isotope budget[J]. Chemical Geology, 2016, 425: 12-36.

[86] Poitrasson F. Silicon isotope geochemistry[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 289-344.

[87] Shields G A. A normalised seawater strontium isotope curve: possible implications for Neoproterozoic-Cambrian weathering rates and the further oxygenation of the Earth[J]. eEarth, 2007, 2(2): 35-42.

[88] Davis A C, Bickle M J, Teagle D A H. Imbalance in the oceanic strontium budget[J]. Earth and Planetary Science Letters, 2003, 211(1/2): 173-187.

[89] Krabbenh?ft A, Eisenhauer A, B?hm F, et al. Constraining the marine strontium budget with natural strontium isotope fractionations (87Sr/86Sr*, δ88/86Sr) of carbonates, hydrothermal solutions and river waters[J]. Geochimica et Cosmochimica Acta, 2010, 74(14): 4097-4109.

[90] Pearce C R, Parkinson I J, Gaillardet J, et al. Reassessing the stable (δ88/86Sr) and radiogenic (87Sr/86Sr) strontium isotopic composition of marine inputs[J]. Geochimica et Cosmochimica Acta, 2015, 157: 125-146.

[91] Nie J S, Horton B K, Saylor J E, et al. Integrated provenance analysis of a convergent retroarc foreland system: U-Pb ages, heavy minerals, Nd isotopes, and sandstone compositions of the Middle Magdalena Valley basin, northern Andes, Colombia[J]. Earth-Science Reviews, 2012, 110(1/2/3/4): 111-126.

[92] Lacan F, Tachikawa K, Jeandel C. Neodymium isotopic composition of the oceans: a compilation of seawater data[J]. Chemical Geology, 2012, 300-301: 177-184.

[93] Grasse P, Bosse L, Hathorne E C, et al. Short-term variability of dissolved rare earth elements and neodymium isotopes in the entire water column of the Panama Basin[J]. Earth and Planetary Science Letters, 2017, 475: 242-253.

[94] Gordon G W, Lyons T W, Arnold G L, et al. When do black shales tell molybdenum isotope tales?[J]. Geology, 2009, 37(6): 535-538.

[95] Kendall B, Dahl T W, Anbar A D. The stable isotope geochemistry of molybdenum[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 683-732.

[96] Chen X, Ling H F, Vance D, et al. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals[J]. Nature Communication, 2015, 6: 7142.

[97] Wen H J, Fan H F, Zhang Y X, et al. Reconstruction of early Cambrian ocean chemistry from Mo isotopes[J]. Geochimica et Cosmochimica Acta, 2015, 164: 1-16.

[98] Severmann S, Mills R A, Palmer M R, et al. The role of prokaryotes in subsurface weathering of hydrothermal sediments: a combined geochemical and microbiological investigation[J]. Geochimica et Cosmochimica Acta, 2006, 70(7): 1677-1694.

[99] Severmann S, Lyons T W, Anbar A, et al. Modern iron isotope perspective on the benthic iron shuttle and the redox evolution of ancient oceans[J]. Geology, 2008, 36(6): 487-490.

[100] Dauphas N, John S G, Rouxel O. Iron isotope systematics[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 415-510.

[101] Zhu X K, O'nions R K, Guo Y L, et al. Secular variation of iron isotopes in North Atlantic deep water[J]. Science, 2000, 287(5460): 2000-2002.

[102] Huang K J, Teng F Z, Shen B, et al. Episode of intense chemical weathering during the termination of the 635 Ma Marinoan glaciation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(52): 14904-14909.

[103] Higgins J A, Schrag D P. The Mg isotopic composition of Cenozoic seawater-evidence for a link between Mg-clays, seawater Mg/Ca, and climate[J]. Earth and Planetary Science Letters, 2015, 416: 73-81.

[104] Higgins J A, Schrag D P. Constraining magnesium cycling in marine sediments using magnesium isotopes[J]. Geochimica et Cosmochimica Acta, 2010, 74(17): 5039-5053.

[105] Tipper E T, Galy A, Gaillardet J, et al. The magnesium isotope budget of the modern ocean: constraints from riverine magnesium isotope ratios[J]. Earth and Planetary Science Letters, 2006, 250(1/2): 241-253.

[106] Teng F Z. Magnesium isotope geochemistry[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 219-287.

[107] Jacobson A D, Grace Andrews M, Lehn G O, et al. Silicate versus carbonate weathering in Iceland: new insights from Ca isotopes[J]. Earth and Planetary Science Letters, 2015, 416: 132-142.

[108] Husson J M, Higgins J A, Maloof A C, et al. Ca and Mg isotope constraints on the origin of Earth’s deepest δ13C excursion[J]. Geochimica et Cosmochimica Acta, 2015, 160: 243-266.

[109] Fantle M S. Calcium isotopic evidence for rapid recrystallization of bulk marine carbonates and implications for geochemical proxies[J]. Geochimica et Cosmochimica Acta, 2015, 148: 378-401.

[110] Fantle M S, Tipper E T. Calcium isotopes in the global biogeochemical Ca cycle: implications for development of a Ca isotope proxy[J]. Earth-Science Reviews, 2014, 129: 148-177.

[111] Wanner C, Sonnenthal E L, Liu X M. Seawater δ7Li: a direct proxy for global CO2consumption by continental silicate weathering?[J]. Chemical Geology, 2014, 381: 154-167.

[112] LI G J, WEST A J. Evolution of Cenozoic seawater lithium isotopes: coupling of global denudation regime and shifting seawater sinks[J]. Earth and Planetary Science Letters, 2014, 401: 284-293.

[113] Misra S, Froelich P N. Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering[J]. Science, 2012, 335(6070): 818-823.

[114] Wang X L, Reinhard C T, Planavsky N J, et al. Sedimentary chromium isotopic compositions across the Cretaceous OAE2 at Demerara Rise Site 1258[J]. Chemical Geology, 2016, 429: 85-92.

[115] Planavsky N J, Reinhard C T, Wang X L, et al. Low mid-proterozoic atmospheric oxygen levels and the delayed rise of animals[J]. Science, 2014, 346(6209): 635-638.

[116] Qin L P, Wang X L. Chromium isotope geochemistry[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 379-414.

[117] Elliott T, Steele R C J. The isotope geochemistry of Ni[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 511-542.

[118] Porter S J, Selby D, Cameron V. Characterising the nickel isotopic composition of organic-rich marine sediments[J]. Chemical Geology, 2014, 387: 12-21.

[119] Cameron V, Vance D. Heavy nickel isotope compositions in rivers and the oceans[J]. Geochimica et Cosmochimica Acta, 2014, 128: 195-211.

[120] Gall L, Williams H M, Siebert C, et al. Nickel isotopic compositions of ferromanganese crusts and the constancy of deep ocean inputs and continental weathering effects over the Cenozoic[J]. Earth and Planetary Science Letters, 2013, 375: 148-155.

[121] Georg R B, West A J, Vance D, et al. Is the marine osmium isotope record a probe for CO2release from sedimentary rocks?[J]. Earth and Planetary Science Letters, 2013, 367: 28-38.

[122] Georgiev S, Stein H J, Hannah J L, et al. Hot acidic Late Permian seas stifle life in record time[J]. Earth and Planetary Science Letters, 2011, 310(3/4): 389-400.

[123] Du Vivier A D C, Selby D, Sageman B B, et al. Marine187Os/188Os isotope stratigraphy reveals the interaction of volcanism and ocean circulation during Oceanic Anoxic Event 2[J]. Earth and Planetary Science Letters, 2014, 389: 23-33.

[124] Foster G L, Vance D. Negligible glacial-interglacial variation in continental chemical weathering rates[J]. Nature, 2006, 444(7121): 918-921.

[125] Komárek M, Ettler V, Chrastny V, et al. Lead isotopes in environmental sciences: a review[J]. Environment International, 2008, 34(4): 562-577.

[126] Basak C, Martin E E, Kamenov G D. Seawater Pb isotopes extracted from cenozoic marine sediments[J]. Chemical Geology, 2011, 286(3/4): 94-108.

[127] Ling H F, Jiang S Y, Frank M, et al. Differing controls over the cenozoic Pb and Nd isotope evolution of deepwater in the central North Pacific Ocean[J]. Earth and Planetary Science Letters, 2005, 232(3/4): 345-361.

[128] Rolison J M, Stirling C H, Middag R, et al. Uranium stable isotope fractionation in the Black Sea: modern calibration of the238U/235U paleo-redox proxy[J]. Geochimica et Cosmochimica Acta, 2017, 203: 69-88.

[129] Wang X L, Planavsky N J, Reinhard C T, et al. A Cenozoic seawater redox record derived from238U/235U in ferromanganese crusts[J]. American Journal of Science, 2016, 316(1): 64-83.

[130] Chen X M, Romaniello S J, Anbar A D. Uranium isotope fractionation induced by aqueous speciation: IMPLICATIONS for U isotopes in marine CaCO3as a paleoredox proxy[J]. Geochimica et Cosmochimica Acta, 2017, 215: 162-172.

[131] Hinojosa J L, Stirling C H, Reid M R, et al. Trace metal cycling and238U/235U in New Zealand’s fjords: Implications for reconstructing global paleoredox conditions in organic-rich sediments[J]. Geochimica et Cosmochimica Acta, 2016, 179: 89-109.

[132] Andersen M B, Stirling C H, Weyer S. Uranium isotope fractionation[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 799-850.

[133] Nakada R, Takahashi Y, Tanimizu M. Cerium stable isotope ratios in ferromanganese deposits and their potential as a paleo-redox proxy[J]. Geochimica et Cosmochimica Acta, 2016, 181: 89-100.

[134] Nakada R, Takahashi Y, Tanimizu M. Isotopic and speciation study on cerium during its solid-water distribution with implication for Ce stable isotope as a paleo-redox proxy[J]. Geochimica et Cosmochimica Acta, 2013, 103: 49-62.

[135] Nielsen S G, Goff M, Hesselbo S P, et al. Thallium isotopes in early diagenetic pyrite-a paleoredox proxy?[J]. Geochimica et Cosmochimica Acta, 2011, 75(21): 6690-6704.

[136] Owens J D, Nielsen S G, Horner T J, et al. Thallium-isotopic compositions of euxinic sediments as a proxy for global manganese-oxide burial[J]. Geochimica et Cosmochimica Acta, 2017, 213: 291-307.

[137] Ostrander C M, Owens J D, Nielsen S G. Constraining the rate of oceanic deoxygenation leading up to a Cretaceous Oceanic Anoxic Event (OAE-2: ~94 Ma)[J]. Science Advances, 2017, 3(8): e1701020.

[138] Stüeken E E. Selenium isotopes as a biogeochemical proxy in deep time[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 657-682.

[139] Mitchell K, Mansoor S Z, Mason P R D, et al. Geological evolution of the marine selenium cycle: Insights from the bulk shale δ82/76Se record and isotope mass balance modeling[J]. Earth and Planetary Science Letters, 2016, 441: 178-187.

[140] Kipp M A, Stüeken E E, Bekker A, et al. Selenium isotopes record extensive marine suboxia during the great oxidation event[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(5): 875-880.

[141] Stüeken E E, Foriel J, Buick R, et al. Selenium isotope ratios, redox changes and biological productivity across the end-Permian mass extinction[J]. Chemical Geology, 2015, 410: 28-39.

[142] Liu S A, Wu H C, Shen S Z, et al. Zinc isotope evidence for intensive magmatism immediately before the end-Permian mass extinction[J]. Geology, 2017, 45(4): 343-346.

[143] K?bberich M, Vance D. Kinetic control on Zn isotope signatures recorded in marine diatoms[J]. Geochimica et Cosmochimica Acta, 2017, 210: 97-113.

[144] Kunzmann M, Halverson G P, Sossi P A, et al. Zn isotope evidence for immediate resumption of primary productivity after snowball Earth[J]. Geology, 2012, 41(1): 27-30.

[145] Maréchal C N, Nicolas E, Douchet C, et al. Abundance of zinc isotopes as a marine biogeochemical tracer[J]. Geochemistry Geophysics Geosystems, 2000, 1(5): 1015.

[146] Little S H, Vance D, Mcmanus J, et al. Copper isotope signatures in modern marine sediments[J]. Geochimica et Cosmochimica Acta, 2017, 212: 253-273.

[147] Guinoiseau D, Gélabert A, Allard T, et al. Zinc and copper behaviour at the soil-river interface: new insights by Zn and Cu isotopes in the organic-rich Rio Negro basin[J]. Geochimica et Cosmochimica Acta, 2017, 213: 178-197.

[148] Moynier F, Vance D, Fujii T, et al. The isotope geochemistry of zinc and copper[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 543-600.

[149] Horner T J, Kinsley C W, Nielsen S G. Barium-isotopic fractionation in seawater mediated by barite cycling and oceanic circulation[J]. Earth and Planetary Science Letters, 2015, 430: 511-522.

[150] Cao Z M, Siebert C, Hathorne E C, et al. Constraining the oceanic barium cycle with stable barium isotopes[J]. Earth and Planetary Science Letters, 2016, 434: 1-9.

[151] Grasby S E, Shen W J, Yin R S, et al. Isotopic signatures of mercury contamination in latest Permian oceans[J]. Geology, 2017, 45(1): 55-58.

[152] Blum J D, Sherman L S, Johnson M W. Mercury isotopes in earth and environmental sciences[J]. Annual Review of Earth and Planetary Sciences, 2014, 42: 249-269.

[153] Bergquist B A, Blum J D. The odds and evens of mercury isotopes: applications of mass-dependent and mass-independent isotope fractionation[J]. Elements, 2009, 5(6): 353-357.

[154] Janssen D J, Conway T M, John S G, et al. Undocumented water column sink for cadmium in open ocean oxygen-deficient zones[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(19): 6888-6893.

[155] Conway T M, John S G. Biogeochemical cycling of cadmium isotopes along a high-resolution section through the North Atlantic Ocean[J]. Geochimica et Cosmochimica Acta, 2015, 148: 269-283.

[156] Guillermic M, Lalonde S V, Hendry K R, et al. The isotope composition of inorganic germanium in seawater and deep sea sponges[J]. Geochimica et Cosmochimica Acta, 2017, 212: 99-118.

[157] Baronas J J, Hammond D E, Mcmanus J, et al. A global Ge isotope budget[J]. Geochimica et Cosmochimica Acta, 2017, 203: 265-283.

[158] Zhang S, Henehan M J, Hull P M, et al. Investigating controls on boron isotope ratios in shallow marine carbonates[J]. Earth and Planetary Science Letters, 2017, 458: 380-393.

[159] Rasbury E T, Hemming N G. Boron isotopes: a “paleo-pH meter” for tracking ancient atmospheric CO2[J]. Elements, 2017, 13(4): 243-248.

[160] Foster G L, Rae J W B. Reconstructing ocean pH with boron isotopes in foraminifera[J]. Annual Review of Earth and Planetary Sciences, 2016, 44: 207-237.

[161] Clarkson M O, Kasemann S A, Wood R A, et al. Ocean acidification and the Permo-Triassic mass extinction[J]. Science, 2015, 348(6231): 229-232.

[162] Peucker-Ehrenbrink B, Ravizza G, Winckler G. Geochemical tracers of extraterrestrial matter in sediments[J]. Elements, 2016, 12(3): 191-196.

[163] Resing J A, Sedwick P N, German C R, et al. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean[J]. Nature, 2015, 523(7559): 200-203.

[164] Murphy B H, Farley K A, Zachos J C. An extraterrestrial3He-based timescale for the Paleocene-Eocene thermal maximum (PETM) from Walvis Ridge, IODP Site 1266[J]. Geochimica et Cosmochimica Acta, 2010, 74(17): 5098-5108.

[165] Hua Q. Radiocarbon: a chronological tool for the recent past[J]. Quaternary Geochronology, 2009, 4(5): 378-390.

[166] Lund D C, Mix A C, Southon J. Increased ventilation age of the deep northeast Pacific Ocean during the last deglaciation[J]. Nature Geoscience, 2011, 4(11): 771-774.

[167] Muscheler R, Kromer B, Bj?rck S, et al. Tree rings and ice cores reveal14C calibration uncertainties during the Younger Dryas[J]. Nature Geoscience, 2008, 1(4): 263-267.

[168] Shen S Z, Crowley J L, Wang Y, et al. Calibrating the end-Permian mass extinction[J]. Science, 2011, 334(6061): 1367-1372.

[169] Condon D, Zhu M Y, Bowring S, et al. U-Pb ages from the Neoproterozoic Doushantuo formation, China[J]. Science, 2005, 308(5718): 95-98.

[170] Zhang Y B, Li Q L, Lan Z W, et al. Diagenetic xenotime dating to constrain the initial depositional time of the Yan-Liao Rift[J]. Precambrian Research, 2015, 271: 20-32.

[171] Lan Z W, Li X H, Chen Z Q, et al. Diagenetic xenotime age constraints on the Sanjiaotang Formation, Luoyu Group, southern margin of the North China Craton: implications for regional stratigraphic correlation and early evolution of eukaryotes[J]. Precambrian Research, 2014, 251: 21-32.

[172] Gallup C D, Cheng H, Taylor F W, et al. Direct determination of the timing of sea level change during Termination II[J]. Science, 2002, 295(5553): 310-313.

[173] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550): 2345-2348.

[174] Cheng H, Adkins J, Edwards R L, et al. U-Th dating of deep-sea corals[J]. Geochimica et Cosmochimica Acta, 2000, 64(14): 2401-2416.

[175] Chew D M, Spikings R A. Geochronology and thermochronology using apatite: time and temperature, lower crust to surface[J]. Elements, 2015, 11(3): 189-194.

[176] Chang J, Qiu N S, Li J W. Tectono-thermal evolution of the northwestern edge of the Tarim Basin in China: constraints from apatite (U-Th)/He thermochronology[J]. Journal of Asian Earth Sciences, 2012, 61: 187-198.

[177] Qiu N S, Chang J, Zuo Y H, et al. Thermal evolution and maturation of lower Paleozoic source rocks in the Tarim Basin, northwest China[J]. AAPG Bulletin, 2012, 96(5): 789-821.

[178] Farley K A. (U-Th)/He dating: techniques, calibrations, and applications[J]. Reviews in Mineralogy and Geochemistry, 2002, 47(1): 819-844.

[179] Jourdan F, Hodges K, Sell B, et al. High-precision dating of the Kalkarindji large igneous province, Australia, and synchrony with the Early-Middle Cambrian (Stage 4-5) extinction[J]. Geology, 2014, 42(6): 543-546.

[180] Clauer N. The K-Ar and40Ar/39Ar methods revisited for dating fine-grained K-bearing clay minerals[J]. Chemical Geology, 2013, 354: 163-185.

[181] Clauer N, Zwingmann H, Liewig N, et al. Comparative40Ar/39Ar and K-Ar dating of illite-type clay minerals: a tentative explanation for age identities and differences[J]. Earth-Science Reviews, 2012, 115(1/2): 76-96.

[182] Kendall B, Creaser R A, Selby D.187Re-187Os geochronology of Precambrian organic-rich sedimentary rocks[J]. Geological Society, London, Special Publications, 2009, 326(1): 85-107.

[183] Zhu B, Becker H, Jiang S Y, et al. Re-Os geochronology of black shales from the Neoproterozoic Doushantuo Formation, Yangtze platform, South China[J]. Precambrian Research, 2013, 225: 67-76.

[184] Zhao H, Li C, Jiang X J, et al. Direct radiometric dating of Limestone from Changxing Permian-Triassic boundary using the Re-Os geochronometer[J]. Chinese Science Bulletin, 2015, 60(23): 2209-2215.

[185] Xu L G, Lehmann B, Mao J W, et al. Re-Os age of polymetallic Ni-Mo-PGE-Au mineralization in early cambrian black shales of South China—a reassessment[J]. Economic Geology, 2011, 106(3): 511-522.

[186] Selby D, Mutterlose J, Condon D J. U-Pb and Re-Os geochronology of the Aptian/Albian and Cenomanian/Turonian stage boundaries: implications for timescale calibration, osmium isotope seawater composition and Re-Os systematics in organic-rich sediments[J]. Chemical Geology, 2009, 265(3/4): 394-409.

[187] Selby D, Creaser R A. Direct radiometric dating of hydrocarbon deposits using rhenium-osmium isotopes[J]. Science, 2005, 308(5726): 1293-1295.

[188] Henjes-Kunst F, Prochaska W, Niedermayr A, et al. Sm-Nd dating of hydrothermal carbonate formation: an example from the Breitenau magnesite deposit (Styria, Austria)[J]. Chemical Geology, 2014, 387: 184-201.

[189] Su W C, Hu R Z, Xia B, et al. Calcite Sm-Nd isochron age of the Shuiyindong Carlin-type gold deposit, Guizhou, China[J]. Chemical Geology, 2009, 258(3/4): 269-274.

[190] Barker S L L, Bennett V C, Cox S F, et al. Sm-Nd, Sr, C and O isotope systematics in hydrothermal calcite-fluorite veins: implications for fluid-rock reaction and geochronology[J]. Chemical Geology, 2009, 268(1/2): 58-66.

[191] Middleton A W, Uysal I T, Bryan S E, et al. Integrating40Ar-39Ar,87Rb-87Sr and147Sm-143Nd geochronology of authigenic illite to evaluate tectonic reactivation in an intraplate setting, central Australia[J]. Geochimica et Cosmochimica Acta, 2014, 134: 155-174.

[192] Li Q L, Chen F K, Yang J H, et al. Single grain pyrite Rb-Sr dating of the Linglong gold deposit, eastern China[J]. Ore Geology Reviews, 2008, 34(3): 263-270.

[193] Yang J H, Zhou X H. Rb-Sr, Sm-Nd, and Pb isotope systematics of pyrite: implications for the age and genesis of lode gold deposits[J]. Geology, 2001, 29(8): 711-714.

[194] Prahl F G, Mix A C, Sparrow M A. Alkenone paleothermometry: biological lessons from marine sediment records off western South America[J]. Geochimica et Cosmochimica Acta, 2006, 70(1): 101-117.

[195] Tissot B P, Welte D H. Petroleum Formation and Occurrence[M]. 2nd ed. Berlin: Springer-Verlag, 1984.

[196] Liu H, Liu W G.n-Alkane distributions and concentrations in algae, submerged plants and terrestrial plants from the Qinghai-Tibetan Plateau[J]. Organic Geochemistry, 2016, 99: 10-22.

[197] Feakins S J, Peters T, Wu M S, et al. Production of leaf waxn-alkanes across a tropical forest elevation transect[J]. Organic Geochemistry, 2016, 100: 89-100.

[198] Connan J, Bouroullec J, Dessort D, et al. The microbial input in carbonate-anhydrite facies of a sabkha palaeoenvironment from Guatemala: a molecular approach[J]. Organic Geochemistry, 1986, 10(1/2/3): 29-50.

[199] Schinteie R, Brocks J J. Paleoecology of Neoproterozoic hypersaline environments: biomarker evidence for haloarchaea, methanogens, and cyanobacteria[J]. Geobiology, 2017, 15(5): 641-663.

[200] Stolper D A, Love G D, Bates S, et al. Paleoecology and paleoceanography of the Athel silicilyte, Ediacaran-Cambrian boundary, Sultanate of Oman[J]. Geobiology, 2017, 15(3): 401-426.

[201] Duda J P, Blumenberg M, Thiel V, et al. Geobiology of a palaeoecosystem with Ediacara-type fossils: the Shibantan member (dengying formation, South China)[J]. Precambrian Research, 2014, 255: 48-62.

[202] Maslen E, Grice K, Gale J D, et al. Crocetane: a potential marker of photic zone euxinia in thermally mature sediments and crude oils of Devonian age[J]. Organic Geochemistry, 2009, 40(1): 1-11.

[203] Aboglila S, Grice K, Trinajstic K, et al. The significance of 24-norcholestanes, 4-methylsteranes and dinosteranes in oils and source-rocks from East Sirte Basin (Libya)[J]. Applied Geochemistry, 2011, 26(9/10): 1694-1705.

[204] Brocks J J, Love G D, Summons R E, et al. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea[J]. Nature, 2005, 437(7060): 866-870.

[205] Koopmans M P, Schouten S, Kohnen M E, et al. Restricted utility of aryl isoprenoids as indicators for photic zone anoxia[J]. Geochimica et Cosmochimica Acta, 1996, 60(23): 4873-4876.

[206] Melendez I, Grice K, Trinajstic K, et al. Biomarkers reveal the role of photic zone euxinia in exceptional fossil preservation: an organic geochemical perspective[J]. Geology, 2013, 41(2): 123-126.

[207] Smolarek J, Marynowski L, Trela W, et al. Redox conditions and marine microbial community changes during the end-Ordovician mass extinction event[J]. Global and Planetary Change, 2017, 149: 105-122.

[208] Brocks J J, Schaeffer P. Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the 1640 Ma Barney Creek Formation[J]. Geochimica et Cosmochimica Acta, 2008, 72(5): 1396-1414.

[209] Sachse V F, Delvaux D, Littke R. Petrological and geochemical investigations of potential source rocks of the central Congo Basin, Democratic Republic of Congo[J]. AAPG Bulletin, 2012, 96(2): 245-275.

[210] Miceli Romero A, Philp R P. Organic geochemistry of the Woodford Shale, southeastern Oklahoma: how variable can shales be?[J]. AAPG Bulletin, 2012, 96(3): 493-517.

[211] Kelly A E, Love G D, Zumberge J E, et al. Hydrocarbon biomarkers of Neoproterozoic to Lower Cambrian oils from eastern Siberia[J]. Organic Geochemistry, 2011, 42(6): 640-654.

[212] Korkmaz S, Kara-Gülbay R, Iztan Y H. Organic geochemistry of the Lower Cretaceous black shales and oil seep in the Sinop Basin, Northern Turkey: an oil-source rock correlation study[J]. Marine and Petroleum Geology, 2013, 43: 272-283.

[213] Araújo B Q, De Almeida Azevedo D. Uncommon steranes in Brazilian marginal crude oils: dinoflagellate molecular fossils in the Sergipe-Alagoas Basin, Brazil[J]. Organic Geochemistry, 2016, 99: 38-52.

[214] Rohrssen M, Gill B C, Love G D. Scarcity of the C30sterane biomarker, 24-n-propylcholestane, in Lower Paleozoic marine paleoenvironments[J]. Organic Geochemistry, 2015, 80: 1-7.

[215] Gold D A, O'reilly S S, Watson J, et al. Lipidomics of the sea sponge Amphimedon queenslandica and implication for biomarker geochemistry[J]. Geobiology, 2017, 15(6): 836-843.

[216] Brocks J J, Jarrett A J M, Sirantoine E, et al. The rise of algae in Cryogenian oceans and the emergence of animals[J]. Nature, 2017, 548(7669): 578-581.

[217] Luo Q Y, George S C, Xu Y H, et al. Organic geochemical characteristics of the Mesoproterozoic Hongshuizhuang Formation from northern China: implications for thermal maturity and biological sources[J]. Organic Geochemistry, 2016, 99: 23-37.

[218] Eigenbrode J L, Freeman K H, Summons R E. Methylhopane biomarker hydrocarbons in Hamersley Province sediments provide evidence for Neoarchean aerobiosis[J]. Earth and Planetary Science Letters, 2008, 273(3/4): 323-331.

[219] Xie S C, Algeo T J, Zhou W F, et al. Contrasting microbial community changes during mass extinctions at the Middle/Late Permian and Permian/Triassic boundaries[J]. Earth and Planetary Science Letters, 2017, 460: 180-191.

[220] Payne J L, Clapham M E. End-permian mass extinction in the oceans: an ancient analog for the twenty-first century?[J]. Annual Review of Earth and Planetary Sciences, 2012, 40: 89-111.

[221] Whiteside J H, Grice K. Biomarker records associated with mass extinction events[J]. Annual Review of Earth and Planetary Sciences, 2016, 44: 581-612.

[222] Rudra A, Dutta S, Raju S V. The Paleogene vegetation and petroleum system in the tropics: a biomarker approach[J]. Marine and Petroleum Geology, 2017, 86: 38-51.

[223] Jiang F J, Pang X Q, Bai J, et al. Comprehensive assessment of source rocks in the Bohai Sea area, eastern China[J]. AAPG Bulletin, 2016, 100(6): 969-1002.

[224] Al-Ameri T K, Al-Temimi A K, Zumberge J. Assessments of oil characterization, source affinities, and hydrocarbon dynamic of East Baghdad oil fields, Central Iraq[J]. Marine and Petroleum Geology, 2016, 77: 353-375.

[225] Wang H Y, Liu W G, Lu H X. Appraisal of branched glycerol dialkyl glycerol tetraether-based indices for North China[J]. Organic Geochemistry, 2016, 98: 118-130.

[226] Schouten S, Hopmans E C, Schefube, et al. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures?[J]. Earth and Planetary Science Letters, 2002, 204(1/2): 265-274.

[227] Mutterlose J, Malkoc M, Schouten S, et al. TEX86and stable δ18O paleothermometry of early Cretaceous sediments: Implications for belemnite ecology and paleotemperature proxy application[J]. Earth and Planetary Science Letters, 2010, 298(3/4): 286-298.

[228] Farquhar J, Bao H M, Thiemens M. Atmospheric influence of Earth's earliest sulfur cycle[J]. Science, 2000, 289(5480): 756-758.

[229] Frei R, Gaucher C, Poulton S W, et al. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes[J]. Nature, 2009, 461(7261): 250-253.

[230] Rowley D B, Pierrehumbert R T, Currie B S. A new approach to stable isotope-based paleoaltimetry: implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene[J]. Earth and Planetary Science Letters, 2001, 188(1/2): 253-268.

[231] Dale A, John C M, Mozley P S, et al. Time-capsule concretions: unlocking burial diagenetic processes in the Mancos Shale using carbonate clumped isotopes[J]. Earth and Planetary Science Letters, 2014, 394: 30-37.

[232] Shen B, Dong L, Xiao S H, et al. Molar tooth carbonates and benthic methane fluxes in Proterozoic oceans[J]. Nat Commun, 2016, 7: 10317.

[233] Shen Y N, Farquhar J, Zhang H, et al. Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction[J]. Nature Communications, 2011, 2: 210.

[234] Teng F Z, Dauphas N, Watkins J M. Non-traditional stable isotopes: retrospective and prospective[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 1-26.

[235] Raiswell R, Canfield D E. Sources of iron for pyrite formation in marine sediments[J]. American Journal of Science, 1998, 298(3): 219-245.

[236] Poulton S W, Canfield D E. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates[J]. Chemical Geology, 2005, 214(3-4): 209-221.

[237] Li C, Love G D, Lyons T W, et al. A stratified redox model for the Ediacaran ocean[J]. Science, 2010, 328(5974): 80-83.

[238] Li C, Jin C S, Planavsky N J, et al. Coupled oceanic oxygenation and metazoan diversification during the early-middle Cambrian?[J]. Geology, 2017, 45(8): 743-746.

[239] Jin C S, Li C, Algeo T J, et al. A highly redox-heterogeneous ocean in South China during the early Cambrian (~529-514 Ma): implications for biota-environment co-evolution[J]. Earth and Planetary Science Letters, 2016, 441: 38-51.

[240] Wotte T, Shields-Zhou G A, Strauss H. Carbonate-associated sulfate: experimental comparisons of common extraction methods and recommendations toward a standard analytical protocol[J]. Chemical Geology, 2012, 326-327: 132-144.

[241] Theiling B P, Coleman M. Refining the extraction methodology of carbonate associated sulfate: evidence from synthetic and natural carbonate samples[J]. Chemical Geology, 2015, 411: 36-48.

[242] Swart P K. The geochemistry of carbonate diagenesis: the past, present and future[J]. Sedimentology, 2015, 62(5): 1233-1304.

[243] Swart P K, Kennedy M J. Does the global stratigraphic reproducibility of δ13C in Neoproterozoic carbonates require a marine origin? A Pliocene-Pleistocene comparison[J]. Geology, 2012, 40(1): 87-90.

[244] Prendergast A L, Versteegh E A A, Sch?ne B R. New research on the development of high-resolution palaeoenvironmental proxies from geochemical properties of biogenic carbonates[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 484: 1-6.

[245] Dong S F, Chen D Z, Qing H R, et al.Insitustable isotopic constraints on dolomitizing fluids for the hydrothermally-originated saddle dolomites at Keping, Tarim Basin[J]. Chinese Science Bulletin, 2013, 58(23): 2877-2882.

[246] Zhou L L, Mckenna C A, Long D G F, et al. LA-ICP-MS elemental mapping of pyrite: an application to the Palaeoproterozoic atmosphere[J]. Precambrian Research, 2017, 297: 33-55.

[247] Shanahan T M, Overpeck J T, Hubeny J B, et al. Scanning micro-X-ray fluorescence elemental mapping: a new tool for the study of laminated sediment records[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(2): Q02016.

[248] Large R R, Halpin J A, Danyushevsky L V, et al. Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution[J]. Earth and Planetary Science Letters, 2014, 389: 209-220.

[249] Gregory D D, Large R R, Halpin J A, et al. Trace element content of sedimentary pyrite in black shales[J]. Economic Geology, 2015, 110(6): 1389-1410.

[250] Wacey D, Kilburn M R, Saunders M, et al. Uncovering framboidal pyrite biogenicity using nano-scale CNorg mapping[J]. Geology, 2014, 43(1): 27-30.

[251] Peng X T, Ta K W, Chen S, et al. Coexistence of Fe(II)-and Mn(II)-oxidizing bacteria govern the formation of deep sea umber deposits[J]. Geochimica et Cosmochimica Acta, 2015, 169: 200-216.

[252] Peng X T, Guo Z X, House C H, et al. SIMS and NanoSIMS analyses of well-preserved microfossils imply oxygen-producing photosynthesis in the Mesoproterozoic anoxic ocean[J]. Chemical Geology, 2016, 441: 24-34.

[253] Marshall C P, Emry J R, Marshall A O. Haematite pseudomicrofossils present in the 3.5-billion-year-old Apex Chert[J]. Nature Geoscience, 2011, 4(4): 240-243.

[254] Brasier M D, Antcliffe J, Saunders M, et al. Changing the picture of Earth's earliest fossils (3.5-1.9 Ga) with new approaches and new discoveries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(16): 4859-4864.

[255] Lin Z Y, Sun X M, Peckmann J, et al. How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite: a SIMS study from the South China Sea[J]. Chemical Geology, 2016, 440: 26-41.

[256] Chen J, Shen S Z, Li X H, et al. High-resolution SIMS oxygen isotope analysis on conodont apatite from South China and implications for the end-Permian mass extinction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448: 26-38.

[257] Schmitz M D, Kuiper K F. High-precision geochronology[J]. Elements, 2013, 9(1): 25-30.

[258] Rothman D H, Hayes J M, Summons R E. Dynamics of the Neoproterozoic carbon cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(14): 8124-8129.

[259] Bjerrum C J, Canfield D E. Towards a quantitative understanding of the late Neoproterozoic carbon cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(14): 5542-5547.

[260] Mcinerney F A, Wing S L. The paleocene-eocene thermal maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future[J]. Annual Review of Earth and Planetary Sciences, 2011, 39: 489-516.

[261] Meissner K J, Bralower T J, Alexander K, et al. The paleocene-eocene thermal maximum: how much carbon is enough?[J]. Paleoceanography, 2014, 29(10): 946-963.

[262] Frieling J, Svensen H H, Planke S, et al. Thermogenic methane release as a cause for the long duration of the PETM[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(43): 12059-12064.

[263] Hülse D, Arndt S, Wilson J D, et al. Understanding the causes and consequences of past marine carbon cycling variability through models[J]. Earth-Science Reviews, 2017, 171: 349-382.

[264] Reinhard C T, Planavsky N J, Robbins L J, et al. Proterozoic ocean redox and biogeochemical stasis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(14): 5357-5362.

[265] Zhang S C, Wang X M, Wang H J, et al. Sufficient oxygen for animal respiration 1,400 million years ago[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(7): 1731-1736.

[266] Algeo T J, Luo G M, Song H Y, et al. Reconstruction of secular variation in seawater sulfate concentrations[J]. Biogeosciences, 2015, 12(7): 2131-2151.

[267] Arning E T, Van Berk W, Schulz H M. Fate and behaviour of marine organic matter during burial of anoxic sediments: testing CH2O as generalized input parameter in reaction transport models[J]. Marine Chemistry, 2016, 178: 8-21.

[268] Meister P, Liu B, Ferdelman T G, et al. Control of sulphate and methane distributions in marine sediments by organic matter reactivity[J]. Geochimica et Cosmochimica Acta, 2013, 104: 183-193.

[269] Dickens G R, Fewless T, Thomas E, et al. Excess barite accumulation during the Paleocene-Eocene thermal Maximum: massive input of dissolved barium from seafloor gas hydrate reservoirs[J]. Geological Society of America Special Papers, 2003, 369: 11-23.

[270] Paraska D W, Hipsey M R, Salmon S U. Sediment diagenesis models: review of approaches, challenges and opportunities[J]. Environmental Modelling & Software, 2014, 61: 297-325.

[271] Dickens G R. Sulfate profiles and barium fronts in sediment on the Blake Ridge: present and past methane fluxes through a large gas hydrate reservoir[J]. Geochimica et Cosmochimica Acta, 2001, 65(4): 529-543.

[272] Malinverno A, Pohlman J W. Modeling sulfate reduction in methane hydrate-bearing continental margin sediments: does a sulfate-methane transition require anaerobic oxidation of methane?[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(7): Q07006.

[273] Veizer J, Ala D, Azmy K, et al.87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater[J]. Chemical Geology, 1999, 161(1/2/3): 59-88.

[274] Shields G, Veizer J. Precambrian marine carbonate isotope database: version 1.1[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(6): 1 of 12-12 of 12.

[275] Jaffrés J B D, Shields G A, Wallmann K. The oxygen isotope evolution of seawater: a critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years[J]. Earth-Science Reviews, 2007, 83(1/2): 83-122.

[276] Liu X M, Kah L C, Knoll A H, et al. Tracing Earth’s O2evolution using Zn/Fe ratios in marine carbonates[J]. Geochemical Perspectives Letters, 2016, 2(1): 24-34.

[277] Scott C, Lyons T W, Bekker A, et al. Tracing the stepwise oxygenation of the Proterozoic ocean[J]. Nature, 2008, 452(7186): 456-459.

[278] Sahoo S K, Planavsky N J, Kendall B, et al. Ocean oxygenation in the wake of the Marinoan glaciation[J]. Nature, 2012, 489(7417): 546-549.

[279] Partin C, Bekker A, Planavsky N J, et al. Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales[J]. Earth and Planetary Science Letters, 2013, 369-370: 284-293.

[280] Stüeken E E, Buick R, Bekker A, et al. The evolution of the global selenium cycle: Secular trends in Se isotopes and abundances[J]. Geochimica et Cosmochimica Acta, 2015, 162: 109-125.

[281] Konhauser K O, Pecoits E, Lalonde S V, et al. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event[J]. Nature, 2009, 458(7239): 750-753.

[282] Planavsky N J, Rouxel O J, Bekker A, et al. The evolution of the marine phosphate reservoir[J]. Nature, 2010, 467(7319): 1088-1090.

[283] Large R R, Halpin J A, Lounejeva E, et al. Cycles of nutrient trace elements in the Phanerozoic ocean[J]. Gondwana Research, 2015, 28(4): 1282-1293.

[284] Large R R, Gregory D D, Steadman J A, et al. Gold in the oceans through time[J]. Earth and Planetary Science Letters, 2015, 428: 139-150.

[285] Algeo T J, Meyers P A, Robinson R S, et al. Icehouse-greenhouse variations in marine denitrification[J]. Biogeosciences, 2014, 11(4): 1273-1295.

[286] Johnson C M, Beard B L, Roden E E. The Iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient earth[J]. Annual Review of Earth and Planetary Sciences, 2008, 36: 457-493.

[287] Farquhar J, Peters M, Johnston D T, et al. Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry[J]. Nature, 2007, 449(7163): 706-709.

[288] Vollstaedt H, Eisenhauer A, Wallmann K, et al. The Phanerozoic δ88/86Sr record of seawater: new constraints on past changes in oceanic carbonate fluxes[J]. Geochimica et Cosmochimica Acta, 2014, 128: 249-265.

[289] Farka? J, B?hm F, Wallmann K, et al. Calcium isotope record of Phanerozoic oceans: Implications for chemical evolution of seawater and its causative mechanisms[J]. Geochimica et Cosmochimica Acta, 2007, 71(21): 5117-5134.

[290] Lowenstein T K, Timofeeff M N, Brennan S T, et al. Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions[J]. Science, 2001, 294(5544): 1086-1088.

[291] Peucker-Ehrenbrink B, Ravizza G. The marine osmium isotope record[J]. Terra Nova, 2000, 12(5): 205-219.

[292] Berner R A. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2and CO2[J]. Geochimica et Cosmochimica Acta, 2006, 70(23): 5653-5664.

[293] Lyons T W, Reinhard C T, Planavsky N J. The rise of oxygen in Earth's early ocean and atmosphere[J]. Nature, 2014, 506(7488): 307-315.

[294] Planavsky N J, Mcgoldrick P, Scott C T, et al. Widespread iron-rich conditions in the mid-Proterozoic ocean[J]. Nature, 2011, 477(7365): 448-451.

[295] Guilbaud R, Poulton S W, Butterfield N J, et al. A global transition to ferruginous conditions in the early Neoproterozoic oceans[J]. Nature Geoscience, 2015, 8(6): 466-470.

[296] Tostevin R, Wood R A, Shields G A, et al. Low-oxygen waters limited habitable space for early animals[J]. Nature Communications, 2016, 7: 12818.

[297] Jiang G Q, Kaufman A J, Christie-Blick N, et al. Carbon isotope variability across the Ediacaran Yangtze platform in South China: implications for a large surface-to-deep ocean δ13C gradient[J]. Earth and Planetary Science Letters, 2007, 261(1/2): 303-320.

[298] Jiang G Q, Wang X Q, Shi X Y, et al. The origin of decoupled carbonate and organic carbon isotope signatures in the early Cambrian (ca. 542-520 Ma) Yangtze platform[J]. Earth and Planetary Science Letters, 2012, 317-318: 96-110.

[299] Li C, Hardisty D S, Luo G, et al. Uncovering the spatial heterogeneity of Ediacaran carbon cycling[J]. Geobiology, 2017, 15(2): 211-224.

[300] Feng L J, Li C, Huang J, et al. A sulfate control on marine mid-depth euxinia on the early Cambrian (ca. 529-521 Ma) Yangtze platform, South China[J]. Precambrian Research, 2014, 246: 123-133.

TheFutureofSedimentologyinChina:AReviewandPerspectiveofSedimentaryGeochemistry

ZHOU XiQiang1,2,3, CHEN DaiZhao1,2,3, LIU Mu1,2,3, HU JianFang4

1.KeyLaboratoryofPetroleumResourcesResearch,InstituteofGeologyandGeophysics,ChineseAcademyofSciences,Beijing100029,China2.InstitutionsofEarthScience,ChineseAcademyofSciences,Beijing100029,China3.UniversityofChineseAcademyofSciences,Beijing100049,China4.StateKeyLaboratoryofOrganicGeochemistry,GuangzhouInstituteofGeochemistry,ChineseAcademyofSciences,Guangzhou510640,China

Sedimentary geochemistry is an important content and tool of sedimentary study, playing an essential role in understanding the evolution of Earth surface system and related resource-environment effects. With the increasing investments in scientific and technological researches, and the laboratory platform construction and technological advance in geochemical analysis, the studies of sedimentary geochemistry in China have stepped into a period of rapid development and gained increasing academic influences in the world. However, to narrow the gap with international leading countries and/or academic communities, sedimentary geochemistry studies in China should persistently aim to more high-quality outcomes and innovations, particularly in aspects of analytical technologies, methods and basic theories. Therefore, the Chinese sedimentological community should strengthen the overall planning and strategic arrangement for the development of sedimentary geochemistry: 1) in term of tactics, strive for development and innovation in geochemical theory, method and technology; enhance high-resolution geochronological constraints on sedimentary and diagenetic process; promote the ability of accurate extraction and quantitative modeling for geochemical data; 2) in term of strategy, explore the evolution and distribution of geochemical proxies in greater geological space and time scale; intensify the applications of sedimentary geochemistry on critical scientific issues, such as the co-evolution of geological environment and life at critical transitions in Earth's history, and the formation and evolution of sedimentary ore deposits and fossil fuels. In this context, sedimentary geochemical studies in China are expected to further improve the academic achievement and influence in the world, realizing leapfrog development.

sedimentology; sedimentary geochemistry; major elements; trace elements; isotopes; biomarkers

1000-0550(2017)06-1293-24

10.14027/j.cnki.cjxb.2017.06.020

2016-10-02;收修改稿日期2016-10-20

國家自然科學(xué)基金項(xiàng)目(41502117,L1524005)[FoundationNational Natural Science Foundation of China, No.41502117,L1524005]

周錫強(qiáng),男,1985年出生,博士,副研究員,沉積學(xué),E-mail: zhouxiqiang@mail.iggcas.ac.cn

陳代釗,男,研究員,E-mail: dzh-chen@mail.iggcas.ac.cn

P512.2

A

猜你喜歡
同位素沉積研究
FMS與YBT相關(guān)性的實(shí)證研究
遼代千人邑研究述論
視錯(cuò)覺在平面設(shè)計(jì)中的應(yīng)用與研究
《沉積與特提斯地質(zhì)》征稿簡則
EMA伺服控制系統(tǒng)研究
《沉積與特提斯地質(zhì)》征稿簡則
《同位素》變更為雙月刊暨創(chuàng)刊30周年征文通知
化學(xué)浴沉積制備防污自潔型PVDF/PMMA共混膜研究
《同位素》(季刊)2015年征訂通知
慈溪市| 中江县| 阿拉善右旗| 佛学| 佛教| 林甸县| 嘉义市| 马关县| 龙胜| 乌鲁木齐县| 那曲县| 邯郸县| 东山县| 长寿区| 宕昌县| 红桥区| 长春市| 河东区| 察隅县| 天峨县| 仙游县| 山西省| 普兰县| 浮山县| 孟州市| 腾冲县| 崇礼县| 阳新县| 吴桥县| 惠东县| 渭源县| 宁津县| 慈利县| 兴海县| 浙江省| 新龙县| 罗城| 白银市| 班玛县| 四会市| 桦南县|