国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于修正嵌入式容積卡爾曼濾波的相位展開(kāi)算法

2018-01-02 07:14:15代高興謝先明
測(cè)繪學(xué)報(bào) 2017年12期
關(guān)鍵詞:卡爾曼濾波容積信噪比

代高興,謝先明

桂林電子科技大學(xué)信息與通信學(xué)院,廣西 桂林 541004

基于修正嵌入式容積卡爾曼濾波的相位展開(kāi)算法

代高興,謝先明

桂林電子科技大學(xué)信息與通信學(xué)院,廣西 桂林 541004

針對(duì)干涉圖展開(kāi)問(wèn)題,將Levenberg-Marquardt方法修正后的嵌入式容積卡爾曼濾波器應(yīng)用于纏繞相位圖像的展開(kāi)中,結(jié)合基于修正矩陣束模型的局部相位梯度估計(jì)算法以及量化跟蹤策略,提出一種基于修正嵌入式容積卡爾曼濾波的相位展開(kāi)算法。該算法不僅可以精確和快速地展開(kāi)纏繞像元,還可以在展開(kāi)纏繞像元的同時(shí)抑制相位噪聲,降低前置預(yù)濾波器的難度與復(fù)雜度,甚至可以在處理受噪聲污染不嚴(yán)重的干涉圖時(shí)免去前置預(yù)濾波處理步驟。試驗(yàn)結(jié)果表明本文算法具有較高的效率和良好的穩(wěn)鍵性。

相位展開(kāi);嵌入式容積卡爾曼濾波器;Levenberg-Marquardt方法;量化跟蹤策略

干涉合成孔徑雷達(dá)(interferometric synthetic aperture radar,InSAR)可以高精度、高可靠性地獲取地表三維信息和高程變化信息,被廣泛應(yīng)用于大地測(cè)繪、海洋監(jiān)測(cè)、火山監(jiān)測(cè)和地震檢測(cè)等領(lǐng)域。干涉相位展開(kāi)是lnSAR技術(shù)應(yīng)用中尤為關(guān)鍵的環(huán)節(jié),其相位展開(kāi)精度直接影響著InSAR系統(tǒng)高程測(cè)量的精度,故干涉圖展開(kāi)算法的研究至關(guān)重要。

干涉圖展開(kāi)算法研究至今大致可分為路徑跟蹤法[1-11]、最小范數(shù)法[12-13]、最優(yōu)估計(jì)法[14-23]三大類。其中經(jīng)典相位展開(kāi)算法,包括枝切法[1]、質(zhì)量圖引導(dǎo)法[3-5]、網(wǎng)絡(luò)流法[7-9]、最小二乘法[12]等。為了得到較為理想的展開(kāi)結(jié)果,通常要在相位展開(kāi)之前使用前置預(yù)濾波器抑制干涉圖中的相位噪聲,即使用濾波器,如均值濾波器、Goldstein濾波器等,對(duì)干涉圖展開(kāi)前濾波,但在盡可能地抑制相位噪聲的同時(shí)不免會(huì)模糊掉干涉條紋的邊緣特性?;跀?shù)據(jù)融合的最優(yōu)估計(jì)相位展開(kāi)算法,包括擴(kuò)展卡爾曼濾波相位展開(kāi)算法(EKFPU)[14-15]、不敏卡爾曼濾波相位展開(kāi)算法(UKFPU)[16-20]、粒子濾波相位展開(kāi)算法[21-22]等,利用非線性濾波器自身具有的噪聲抑制能力,可以在展開(kāi)纏繞像元的同時(shí)抑制相位噪聲,在一定程度上彌補(bǔ)了經(jīng)典相位展開(kāi)算法的不足,拓展了InSAR技術(shù)應(yīng)用的范圍。

為進(jìn)一步促進(jìn)基于數(shù)據(jù)融合的相位展開(kāi)技術(shù)發(fā)展,本文將經(jīng)Levenberg-Marquardt方法[24-25]修正后的嵌入式容積卡爾曼濾波器[26-27](MECKF)、基于修正矩陣束模型(AMPM)的局部相位梯度估計(jì)算法[20]以及量化跟蹤策略[28]結(jié)合起來(lái),提出一種新的基于數(shù)據(jù)融合的最優(yōu)估計(jì)相位展開(kāi)算法——修正嵌入式容積卡爾曼濾波的相位展開(kāi)(modified embedded cubature Kalman filter phase unwrapping,MECKFPU)。MECKFPU算法利用MECKF同時(shí)執(zhí)行相位展開(kāi)和噪聲抑制,利用AMPM局部相位梯度估計(jì)算法快速和精確地從復(fù)干涉圖中獲取相位梯度信息,以及利用量化跟蹤策略從高質(zhì)量像元到低質(zhì)量像元的路徑快速地搜索最佳待展開(kāi)像元,從而保證了MECKFPU精確和快速地展開(kāi)纏繞像元,具有比經(jīng)典相位展開(kāi)算法更穩(wěn)健的相位展開(kāi)能力,且相比于同類型的EKFPU、UKFPU等算法,MECKFPU擁有更佳的相位展開(kāi)效率和精度,能夠較好地解決干涉圖展開(kāi)問(wèn)題。

1 MECKFPU算法

1.1 MECKF相位展開(kāi)算法原理

利用干涉圖中相鄰干涉相位之間的關(guān)系,將歸一化復(fù)干涉的同向分量和正交分量分別作為干涉相位的兩個(gè)觀測(cè)值,在沿某一確定路徑下,相位展開(kāi)系統(tǒng)模型如下[20]

(1)

式中,x(m,n)和x(a,s)分別表示(m,n)像元和(a,s)像元的真實(shí)干涉相位;g(m,n)|(a,s)表示干涉圖中(m,n)像元與(a,s)像元之間的相位梯度估計(jì)值,本文通過(guò)AMPM局部相位梯度估計(jì)算法[20]獲得;ζ(m,n)|(a,s)表示干涉圖中(m,n)像元與(a,s)像元之間的相位梯度估計(jì)誤差;v1,(m,n)和v2,(m,n)分別表示附加在復(fù)干涉正交分量和同向分量上的噪聲。

MECKF相位展開(kāi)算法是在質(zhì)量圖引導(dǎo)策略指導(dǎo)下,同時(shí)利用待展開(kāi)像元相鄰8個(gè)像元中已展開(kāi)像元信息,沿高質(zhì)量區(qū)域到低質(zhì)量區(qū)域的路徑完成對(duì)纏繞像元遞推估計(jì)。

嵌入式容積卡爾曼濾波器采用三階嵌入式容積準(zhǔn)則,利用附有權(quán)值的積分點(diǎn)實(shí)現(xiàn)對(duì)非線性系統(tǒng)后驗(yàn)均值和方差的逼近,具有良好的狀態(tài)估計(jì)精度和數(shù)值穩(wěn)定性。相應(yīng)積分點(diǎn)和權(quán)值計(jì)算如下

(2)

式中,nx表示狀態(tài)變量維數(shù),本文nx為1;[δ]i表示[δ]的第i列,其δ及[δ]的詳細(xì)取值請(qǐng)參見(jiàn)文獻(xiàn)[26—27],本文δ由經(jīng)驗(yàn)取值為0.5。

根據(jù)相位展開(kāi)系統(tǒng)模型,MECKF相位展開(kāi)算法預(yù)測(cè)過(guò)程如下

(3)

式中,(m,n)和(a,s)分別表示待展開(kāi)像元以及待展開(kāi)像元相鄰8個(gè)像元中的已展開(kāi)像元;γ(a,s)表示干涉圖(a,s)像元的相干系數(shù)(或偽相干系數(shù));ψ表示(m,n)像元相鄰8個(gè)像元的集合;P(m,n)|(a,s)表示由(a,s)像元的估計(jì)誤差方差P(a,s)通過(guò)權(quán)系數(shù)d(a,s)加權(quán)得到的(m,n)像元的預(yù)測(cè)估計(jì)誤差方差的預(yù)測(cè)值;γi,(m,n)表示(m,n)像元積分點(diǎn)的預(yù)測(cè)值;Pxx,(m,n)表示狀態(tài)預(yù)測(cè)值X(m,n)的預(yù)測(cè)估計(jì)誤差方差;Q(m,n)|(a,s)表示g(m,n)|(a,s)的相位梯度估計(jì)誤差方差[20]。

MECKF相位展開(kāi)算法利用Levenberg-Marquardt方法優(yōu)化預(yù)測(cè)過(guò)程中的預(yù)測(cè)估計(jì)誤差方差,以提高算法收斂性,減小待展開(kāi)像元的展開(kāi)誤差

(4)

式中,μ表示優(yōu)化Pxx,(m,n)的調(diào)節(jié)參數(shù)[24-25],本文由經(jīng)驗(yàn)取值為0.3;I表示nx維單位矩陣。

MECKF相位展開(kāi)算法更新過(guò)程如下

(5)

式中,y(m,n)和Y(m,n)分別表示(m,n)像元的觀測(cè)值和觀測(cè)預(yù)測(cè)值;R(m,n)表示(m,n)像元的觀測(cè)預(yù)測(cè)協(xié)方差[20];κ(m,n)表示(m,n)像元的增益矩陣;x(m,n)和P(m,n)分別表示(m,n)像元的狀態(tài)估計(jì)和狀態(tài)估計(jì)誤差方差。

1.2 結(jié)合量化跟蹤策略的二維MECKF相位展開(kāi)算法(MECKFPU)

為減少M(fèi)ECKF相位展開(kāi)算法搜索最佳待展開(kāi)像元的時(shí)間消耗,引入文獻(xiàn)[28]提出的量化跟蹤策略來(lái)指導(dǎo)相位展開(kāi)路徑。量化跟蹤策略通過(guò)歸一化和量化路徑引導(dǎo)圖,利用附有鏈表的優(yōu)先隊(duì)列快速排序算法實(shí)現(xiàn)最佳待展開(kāi)像元的快速搜索工作。利用干涉圖偽相干系數(shù)圖和微分偏差圖構(gòu)造指導(dǎo)MECKF相位展開(kāi)算法展開(kāi)路徑的路徑引導(dǎo)圖[19],如下

(6)

式中,D(m,n)表示像元(m,n)的微分偏差;β表示調(diào)整參數(shù),詳細(xì)請(qǐng)參見(jiàn)文獻(xiàn)[19],本文由經(jīng)驗(yàn)取值為0.2;normalization[·]表示歸一化處理;round{·}表示四舍五入取整操作;M(m,n)表示(m,n)像元經(jīng)歸一化和量化處理后的量化路徑引導(dǎo)值;N表示量化等級(jí),本文取500。MECKFPU算法流程如圖1。

圖1 MECKFPU算法流程Fig.1 Flow chart of MECKFPU

2 試驗(yàn)結(jié)果與分析

2.1 模擬數(shù)據(jù)試驗(yàn)

2.1.1 結(jié)合預(yù)濾波處理的金字塔地形干涉圖展開(kāi)試驗(yàn)

模擬干涉圖主要參數(shù):軌道高度為590 km,基線長(zhǎng)度為610 m,下視角為45°,波長(zhǎng)為0.04 m,基線傾角為10°,地面分辨率為6×6 m,場(chǎng)景為380 m的金字塔地形(256×256),干涉圖見(jiàn)圖2。圖3為MECKFPU展開(kāi)經(jīng)均值濾波器(3×3)處理信噪比為3.01 dB圖2(c)后的結(jié)果。可以看出,MECKFPU的展開(kāi)誤差絕大分集中在[-0.5,0.5]。表1列出了枝切法、質(zhì)量圖引導(dǎo)法、迭代最小二乘法、網(wǎng)絡(luò)流法、EKFPU、UKFPU和MECKFPU處理不同信噪比干涉圖時(shí)的均方根誤差(MSRE)??梢灾庇^地看出,MECKFPU的展開(kāi)精度最高。表2列出了相同運(yùn)算環(huán)境條件下上述各算法展開(kāi)圖2(c)的運(yùn)行時(shí)間,顯然,MECKFPU時(shí)間消耗遠(yuǎn)遠(yuǎn)小于質(zhì)量圖引導(dǎo)法、EKFPU以及UKFPU算法,即使與枝切法、迭代最小二乘法以及網(wǎng)絡(luò)流法等算法相比,MECKFPU時(shí)間消耗也是可以接受的。

2.1.2 無(wú)預(yù)濾波處理的金字塔地形干涉圖展開(kāi)試驗(yàn)

為了進(jìn)一步分析MECKFPU的性能,直接用MECKFPU展開(kāi)圖2(b),結(jié)果見(jiàn)圖4??梢?jiàn)MECKFPU對(duì)于不經(jīng)預(yù)濾波處理的干涉圖也可以得到理想的展開(kāi)結(jié)果。表3列出了質(zhì)量圖引導(dǎo)法、迭代最小二乘法、網(wǎng)絡(luò)流法、EKFPU、UKFPU和MECKFPU處理不同信噪比(無(wú)預(yù)濾波處理的)干涉圖時(shí)的MSRE??梢?jiàn),相比于表1,質(zhì)量圖引導(dǎo)法和EKFPU的展開(kāi)精度明顯降低,且干涉圖信噪比越低其展開(kāi)精度越低;迭代最小二乘法和網(wǎng)絡(luò)流法不僅展開(kāi)精度下降明顯,而且算法較不穩(wěn)定;UKFPU和MECKFPU的展開(kāi)精度稍有變化,但無(wú)明顯下降,且在干涉圖信噪比較低的情況下,仍有較為理想的展開(kāi)精度,遠(yuǎn)遠(yuǎn)高于其他算法的展開(kāi)精度,其中MECKFPU的展開(kāi)精度更高。由此可得,即使對(duì)于較低信噪比金字塔地形干涉圖,MECKFPU仍有較高的展開(kāi)精度。

2.1.3 復(fù)雜多山地形干涉圖展開(kāi)試驗(yàn)

用多山地形場(chǎng)景取代上一節(jié)的金字塔地形場(chǎng)景,即可得復(fù)雜多山地形干涉圖,見(jiàn)圖5。圖6為MECKFPU對(duì)信噪比為1.42 dB圖5(b)的處理結(jié)果??梢?jiàn),MECKFPU的展開(kāi)誤差大部分集中在0附近。選取金字塔地形干涉圖展開(kāi)試驗(yàn)中表現(xiàn)出較好能力的UKFPU和MECKFPU做進(jìn)一步比較,直接展開(kāi)不經(jīng)預(yù)濾波處理的不同信噪比復(fù)雜多山地形干涉圖,其MSRE在表4中列出,可看出,MECKFPU展開(kāi)精度更高。綜上可得,MECKFPU處理低信噪比復(fù)雜多山地形干涉圖仍有較高的展開(kāi)精度。

圖2 金字塔地形干涉圖Fig.2 Synthetic interferogram over pyramid

圖3 MECKFPU處理經(jīng)預(yù)濾波的金字塔地形干涉圖結(jié)果Fig.3 The MECKFPU solution of pre-filtered interferogram over pyramid

表2 各算法運(yùn)行時(shí)間

圖4 MECKFPU處理無(wú)預(yù)濾波的金字塔地形干涉圖結(jié)果Fig.4 The MECKFPU solution of without-filtered interferogram over pyramid

圖5 復(fù)雜多山地形干涉圖Fig.5 Synthetic interferogram over peaks

Tab.4Phaseunwrappingaccuracyofdifferentmethodswithoutpre-filteringprocedure

rad

2.2 實(shí)測(cè)數(shù)據(jù)試驗(yàn)

在實(shí)測(cè)數(shù)據(jù)試驗(yàn)中,用MECKFPU算法展開(kāi)經(jīng)均值濾波器(3×3)處理后的局部Etna火山干涉圖(256×256),見(jiàn)圖7??梢?jiàn),展開(kāi)相位平滑連續(xù),重纏繞相位圖干涉條紋與圖7(a)中干涉條紋保持一致,且干涉條紋清晰,幾乎不存在相位噪聲。這表明MECKFPU算法有效地抑制干涉圖中的相位噪聲,并獲得了較好展開(kāi)結(jié)果。綜上所述,對(duì)于實(shí)際地形干涉圖,MECKFPU仍有理想的展開(kāi)效果和展開(kāi)效率,具有良好的魯棒性。

3 結(jié) 論

本文提出的MECKFPU是將經(jīng)Levenberg-Marquardt方法修正后的嵌入式容積卡爾曼濾波器、AMPM局部相位梯度估計(jì)算法以及量化跟蹤策略相結(jié)合的結(jié)果,并在模擬與實(shí)測(cè)數(shù)據(jù)處理試驗(yàn)中驗(yàn)證其有效性。本文算法與部分常用經(jīng)典算法包括枝切法、質(zhì)量圖引導(dǎo)法、迭代最小二乘法、網(wǎng)絡(luò)流法、EKFPU和UKFPU等算法在相關(guān)數(shù)據(jù)處理試驗(yàn)中進(jìn)行了比較。結(jié)果表明,MECKFPU可以在快速和精確地展開(kāi)干涉圖的同時(shí)抑制相位噪聲,具有較高的效率和良好的穩(wěn)健性,能夠有效地解決干涉圖展開(kāi)問(wèn)題。

圖7 MECKFPU展開(kāi)結(jié)果Fig.7 The MECKFPU solution

[1] GOLDSTEIN R M,ZEBKER H A,WERNER C L.Satellite Radar Interferometry:Two-dimensional Phase Unwrapping[J].Radio Science,1988,23(4):713-720.

[2] ASUNDI A,ZHOU Wensen.Fast Phase-unwrapping Algorithm Based on a Gray-scale Mask and Flood Fill[J].Applied Optics,1998,37(23):5416-5420.

[3] ZHAO Ming,HUANG Lei,ZHANG Qican,et al.Quality-guided Phase Unwrapping Technique:Comparison of Quality Maps and Guiding Strategies[J].Applied Optics,2011,50(33):6214-6224.

[4] FANG Suping,MENG Lei,WANG Leijie,et al.Quality-guided Phase Unwrapping Algorithm Based on Reliability Evaluation[J].Applied Optics,2011,50(28):5446-5452.

[5] ZHONG Heping,TANG Jinsong,ZHANG Sen,et al.An Improved Quality-guided Phase-unwrapping Algorithm Based on Priority Queue[J].IEEE Geoscience and Remote Sensing Letters,2011,8(2):364-368.

[6] GHIGLIA D C,PRITT M D.Two-dimensional Phase Unwrapping:Theory,Algorithms,and Software[M].New York:John Wiley and Sons Inc,1998.

[7] CHEN C W.Statistical-cost Network-flow Approaches to Two-dimensional Phase Unwrapping for Radar Interferometry[D].Stanford,California:Stanford University,2001.

[8] COSTANTINI M.A Novel Phase Unwrapping Method Based on Network Programming[J].IEEE Transactions on Geoscience and Remote Sensing,1998,36(3):813-821.

[9] CHEN C W,ZEBKER H A.Network Approaches to Two-dimensional Phase Unwrapping:Intractability and Two New Algorithms[J].Journal of the Optical Society of America A,2000,17(3):401-414.

[10] GAO Dapeng,YIN Fuliang.Mask Cut Optimization in Two-dimensional Phase Unwrapping[J].IEEE Geoscience and Remote Sensing Letters,2012,9(3):338-342.

[11] FLYNN T J.Two-dimensional Phase Unwrapping with Minimum Weighted Discontinuity[J].Journal of the Optical Society of America A,1997,14(10):2692-2701.

[12] GHIGLIA D C,ROMERO L A.Robust Two-dimensional Weighted and Unweighted Phase Unwrapping that Uses Fast Transforms and Iterative Methods[J].Journal of the Optical Society of America A,1994,11(1):107-117.

[13] 陳強(qiáng),楊瑩輝,劉國(guó)祥,等.基于邊界探測(cè)的InSAR最小二乘整周相位解纏方法[J].測(cè)繪學(xué)報(bào),2012,41(3):441-448.

CHEN Qiang,YANG Yinghui,LIU Guoxiang,et al.InSAR Phase Unwrapping Using Least Squares Method with Integer Ambiguity Resolution and Edge Detection[J].Acta Geodaetica et Cartographica Sinica,2012,41(3):441-448.

[14] LOFFELD O,NIES H,KNEDLIK S,et al.Phase Unwrapping for SAR Interferometry: A Data Fusion Approach by Kalman Filtering[J].IEEE Transactions on Geoscience and Remote Sensing,2008,46(1):47-58.

[15] NIES H,LOFFELD O,WANG R.Phase Unwrapping Using 2D-Kalman Filter: Potential and Limitations[C]∥Proceedings of 2008 IEEE International Geoscience and Remote Sensing Symposium.Boston,MA:IEEE,2008:IV-1213-IV-1216.

[16] WAGHMARE R G,MISHRA D,SAI SUBRAHMANYAM G R,et al.Signal Tracking Approach for Phase Estimation in Digital Holographic Interferometry[J].Applied Optics,2014,53(19):4150-4157.

[17] 謝先明.結(jié)合濾波算法的不敏卡爾曼濾波器相位解纏方法[J].測(cè)繪學(xué)報(bào),2014,43(7):739-745.DOI:10.13485/j.cnki.11-2089.2014.0102.

XIE Xianming.An UKF Phase Unwrapping Algorithm with a Pre-filtering Procedure[J].Acta Geodaetica et Cartographica Sinica,2014,43(7):739-745.DOI:10.13485/j.cnki.11-2089.2014.0102.

[18] CHENG Zhongtao,LIU Dong,YANG Yongying,et al.Practical Phase Unwrapping of Interferometric Fringes Based on Unscented Kalman Filter Technique[J].Optics Express,2015,23(25):32337-32349.

[19] XIE Xianming,ZENG Qingning.Efficient and Robust Phase Unwrapping Algorithm Based on Unscented Kalman Filter,the Strategy of Quantizing Paths-guided Map,and Pixel Classification Strategy[J].Applied Optics,2015,54(31):9294-9307.

[20] XIE Xianming,LI Yinghui.Enhanced Phase Unwrapping Algorithm Based on Unscented Kalman Filter,Enhanced Phase Gradient Estimator,and Path-Following Strategy[J].Applied Optics,2014,53(18):4049-4060.

[21] MARTINEZ-ESPLA J J,MARTINEZ-MARIN T,LOPEZ-SANCHEZ J M.A Particle Filter Approach for InSAR Phase Filtering and Unwrapping[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(4):1197-1211.

[22] WAGHMARE R G,SUKUMAR P R,SUBRAHMANYAM G R K S,et al.Particle-filter-based Phase Estimation in Digital Holographic Interferometry[J].Journal of the Optical Society of America A,2016,33(3):326-332.

[23] KULKARNI R,RASTOGI P.Simultaneous Estimation of Phase Derivative and Phase Using Parallel Kalman Filter Implementation[J]. Measurement Science and Technology,2016,27(6):065203.

[24] MORé J J.The Levenberg-Marquardt Algorithm:Implementation and Theory[M]∥WATSON G A.Numerical Analysis.Berlin:Springer,1978:105-116.

[25] 侯代文,殷福亮.基于迭代中心差分卡爾曼濾波的說(shuō)話人跟蹤方法[J].電子與信息學(xué)報(bào),2008,30(7):1684-1689.

HOU Daiwen,YIN Fuliang.Iterated Central Difference Kalman Filter Based Speaker Tracking[J].Journal of Electronics & Information Technology,2008,30(7):1684-1689.

[26] 張?chǎng)未?,郭承?均方根嵌入式容積卡爾曼濾波[J].控制理論與應(yīng)用,2013,30(9):1116-1121.

ZHANG Xinchun,GUO Chengjun.Square-root Imbedded Cubature Kalman Filtering[J].Control Theory & Applications,2013,30(9):1116-1121.

[27] 張?chǎng)未?INS/GNSS深組合導(dǎo)航系統(tǒng)的非線性研究[D].成都:電子科技大學(xué),2014.

ZHANG Xinchun.Research on the Nonlinearity of INS/GNSS Deeply Integration[D].Chengdu:University of Electronic Science and Technology of China,2014.

[28] 鐘何平,唐勁松,張森,等.利用量化質(zhì)量圖和優(yōu)先隊(duì)列的快速相位解纏算法[J].武漢大學(xué)學(xué)報(bào)(信息科學(xué)版),2011,36(3):342-345.

ZHONG Heping,TANG Jinsong,ZHANG Sen,et al.A Fast Phase Unwrapping Algorithm Based on Quantized Quality Map and Priority Queue[J].Geomatics and Information Science of Wuhan University,2011,36(3):342-354.

A Fresh Phase Unwrapping Method Based on Modified Embedded Cubature Kalman Filter

DAI Gaoxing,XIE Xianming

School of Information and Communication,Guilin University of Electronic Technology,Guilin 541004,China

A phase unwrapping algorithm is proposed that based on modified embedded cubature Kalman filter for interferometric fringes.The algorithm is the result through combining an embedded cubature Kalman filter modified by a Levenberg-Marquardt method,a robust phase gradient estimator based on amended matrix pencil model,and a quantization path-following strategy.This method can accurately estimate unambiguous unwrapped phase of interferometric fringes by applying the modified embedded cubature Kalman filter to perform phase unwrapping and noise suppress simultaneously along the path routed by the quantization path-following strategy,which is beneficial to simplify the complexity and the difficulty of pre-filtering procedure followed by phase unwrapping procedure,and even can remove the pre-filtering procedure.Results obtained with synthetic data and real data show more acceptable solutions with the proposed method,compared with some of the most used algorithms.

phase unwrapping; modified embedded cubature Kalman filter; Levenberg-Marquardt method;quantization path-following strategy

The National Natural Science Foundation of China(Nos. 41661092; 61461011); The State Key Program of National Natural Science of Guangxi Zhuang Autonomous Region (No. 2016GXNSFDA380009); The Natural Science Foundation of Guangxi Zhuang Autonomous Region (No. 2014GXNSFBA118273); The Guangxi Wireless Broad Band Communication and Signal Processing Key Laboratory 2014/2015 Director Fund Project (No. GXKL061503); 2017 Postgraduate Research and Innovation Project of Guilin University of Electronic Technology(No. 2017YJCX23)

DAI Gaoxing (1991—),male,master of science,majors in InSAR phase unwrapping.

XIE Xianming

E-mail: xxmxgm@163.com

代高興,謝先明.基于修正嵌入式容積卡爾曼濾波的相位展開(kāi)算法[J].測(cè)繪學(xué)報(bào),2017,46(12):1998-2005.

10.11947/j.AGCS.2017.20160665.

DAI Gaoxing,XIE Xianming.A Fresh Phase Unwrapping Method Based on Modified Embedded Cubature Kalman Filter[J]. Acta Geodaetica et Cartographica Sinica,2017,46(12):1998-2005. DOI:10.11947/j.AGCS.2017.20160665.

P236

A

1001-1595(2017)12-1998-08

國(guó)家自然科學(xué)基金(41661092;61461011);廣西自然科學(xué)基金重點(diǎn)項(xiàng)目(2016GXNSFDA380009);廣西自然科學(xué)基金(2014GXNSFBA118273);廣西無(wú)線寬帶通信與信號(hào)處理重點(diǎn)實(shí)驗(yàn)室2014/2015年主任基金(GXKL061503);2017年桂林電子科技大學(xué)研究生科研創(chuàng)新項(xiàng)目(2017YJCX23)

叢樹(shù)平)

2016-12-26

2017-07-19

代高興(1991—),男,碩士,研究方向?yàn)镮nSAR相位解纏。

E-mail: 1984393901@qq.com

謝先明

猜你喜歡
卡爾曼濾波容積信噪比
怎樣求醬油瓶的容積
基于深度學(xué)習(xí)的無(wú)人機(jī)數(shù)據(jù)鏈信噪比估計(jì)算法
低信噪比下LFMCW信號(hào)調(diào)頻參數(shù)估計(jì)
低信噪比下基于Hough變換的前視陣列SAR稀疏三維成像
基于遞推更新卡爾曼濾波的磁偶極子目標(biāo)跟蹤
巧求容積
截?cái)嗟淖赃m應(yīng)容積粒子濾波器
不同容積成像技術(shù)MR增強(qiáng)掃描對(duì)檢出腦轉(zhuǎn)移瘤的價(jià)值比較
基于模糊卡爾曼濾波算法的動(dòng)力電池SOC估計(jì)
基于擴(kuò)展卡爾曼濾波的PMSM無(wú)位置傳感器控制
馆陶县| 旬阳县| 溧水县| 乐清市| 泊头市| 衡东县| 台东县| 武城县| 石林| 乐陵市| 廉江市| 靖边县| 高碑店市| 胶南市| 富宁县| 织金县| 桑日县| 南郑县| 福泉市| 兴山县| 赣州市| 南京市| 孟连| 保山市| 镇平县| 木兰县| 丰原市| 云安县| 阳泉市| 贵阳市| 庄河市| 大关县| 和平区| 沁阳市| 乌兰县| 无棣县| 灌阳县| 额敏县| 广河县| 天津市| 布拖县|