, ,,,育霖
(上海大學(xué) 材料科學(xué)與工程學(xué)院 省部共建高品質(zhì)特殊鋼冶金與制備國家重點(diǎn)實(shí)驗(yàn)室 上海市鋼鐵冶金新技術(shù)開發(fā)應(yīng)用重點(diǎn)實(shí)驗(yàn)室,上海 200072)
鎳/銅/鋅多層鍍層的制備及其耐蝕性
孫金虎,李輝,鐘慶東,黃哲瑞,李育霖
(上海大學(xué) 材料科學(xué)與工程學(xué)院 省部共建高品質(zhì)特殊鋼冶金與制備國家重點(diǎn)實(shí)驗(yàn)室 上海市鋼鐵冶金新技術(shù)開發(fā)應(yīng)用重點(diǎn)實(shí)驗(yàn)室,上海 200072)
采用電沉積法在低碳鋼基體上制備了鎳/銅/鋅多層鍍層。采用掃描電鏡觀察鎳/銅/鋅多層鍍層的微觀結(jié)構(gòu);通過鹽水(NaCl質(zhì)量分?jǐn)?shù)為5%)浸泡試驗(yàn)對制得的鎳/銅/鋅多層鍍層進(jìn)行耐蝕性評價(jià);利用電化學(xué)阻抗譜(EIS)技術(shù)測試鎳/銅/鋅多層鍍層在5% NaCl(質(zhì)量分?jǐn)?shù))溶液中的電化學(xué)性能。結(jié)果表明:底層鎳鍍層顆粒以四角錐型交錯(cuò)堆積,中間層銅鍍層顆粒以圓胞型結(jié)構(gòu)沉積,表層鋅鍍層的表面平整致密,無明顯孔隙;鎳/銅/鋅多層鍍層具有較好的耐蝕性,電化學(xué)阻抗達(dá)到了5 623 Ω·cm2,耐鹽水浸泡時(shí)間可達(dá)2 880 h時(shí),是相同厚度單一鍍層耐鹽水浸泡時(shí)間的5~8倍。
電沉積;多層鍍層;耐蝕性;鹽水浸泡試驗(yàn);電化學(xué)阻抗譜
電鍍處理(電沉積)是一種通過在金屬基體表面覆蓋耐蝕性較好的鍍層來提高金屬表面耐蝕性的重要方法[1-8],運(yùn)用較多的金屬鍍層包括鎳、銅、鋅、鉻等。相對于低碳鋼基體,鋅鍍層屬于陽極性鍍層,可有效延長金屬材料的使用壽命,但是因?yàn)榻饘黉\本身比較活潑,在腐蝕性溶液中易發(fā)生腐蝕,從而縮短對基體的防護(hù)時(shí)間;鎳鍍層屬于陰極性鍍層,在潮濕環(huán)境中易發(fā)生點(diǎn)蝕而失效。多層鍍層在耐蝕性及力學(xué)性能方面表現(xiàn)優(yōu)異,因此該防護(hù)工藝得到廣泛關(guān)注[9-17]。
本工作采用多槽電沉積法在低碳鋼基體上制備鎳/銅/鋅多層鍍層,表征了其微觀結(jié)構(gòu),并采用鹽水浸泡試驗(yàn)和電化學(xué)阻抗譜對鎳/銅/鋅多層鍍層的耐蝕性和耐蝕機(jī)理進(jìn)行了研究。
試驗(yàn)材料選用低碳鋼,尺寸為10 mm×10 mm×3 mm。 將低碳鋼放入含30 g/L NaOH和10 g/L鋅粉的除油溶液中進(jìn)行除油,溫度35~50 ℃,除油時(shí)間為20~40 min,取出后用去離子水沖洗,并去除表面氧化的殘留物,再用去離子水沖洗,得到預(yù)處理后的低碳鋼。
將上述預(yù)處理后的低碳鋼進(jìn)行多層電鍍處理制備得到鎳/銅/鋅多層鍍層:首先分別配制鍍鎳電鍍液、鍍銅電鍍液、鍍鋅電鍍液,其組成及工藝參數(shù)見表1;將上述預(yù)處理后的低碳鋼依次放到上述電鍍液中進(jìn)行電鍍(底層是鎳鍍層,中間層為銅鍍層,表層為鋅鍍層),電鍍過程中,前一層電鍍之后用去離子水沖洗干凈后再進(jìn)行后一層電鍍。鍍鎳電鍍液、鍍銅電鍍液、鍍鋅電鍍液的組成及電鍍工藝參數(shù)見表1,電鍍過程中用磁力攪拌器不停攪拌電鍍液。電鍍處理在上海辰華CHI660C型電化學(xué)工作站上采用三電極體系完成。其中,飽和甘汞電極(SCE)為參比電極,低碳鋼電極為工作電極,鉑電極為輔助電極。鉑電極尺寸為15 mm×15 mm×0.1 mm,陰陽極極間距為1.5 cm。
在相同試驗(yàn)條件下,分別在低碳鋼表面制備鎳鍍層、銅鍍層、鋅鍍層、鎳/鋅鍍層、鎳/銅鍍層和銅/鋅鍍層,與鎳/銅/鋅多層鍍層進(jìn)行對比研究。
采用SHU-SU1510掃描電子顯微鏡(SEM)觀察鎳/銅/鋅多層鍍層的截面形貌和表面形貌,并用其附帶的能譜儀(EDS)對鍍層截面上化學(xué)元素的分布進(jìn)行分析。
對鎳/銅/鋅多層鍍層及對比鍍層進(jìn)行鹽水(NaCl質(zhì)量分?jǐn)?shù)為5%)浸泡試驗(yàn),根據(jù)鍍層表面第一次出現(xiàn)紅色銹點(diǎn)的時(shí)間長短來評價(jià)沉積層的耐蝕性,鹽水浸泡時(shí)間越長說明耐蝕性越好。采用CHI660C電化學(xué)工作站在開路電位下測試鎳/銅/鋅鍍層及各鍍層在5.0% NaCl(質(zhì)量分?jǐn)?shù))溶液中的電化學(xué)阻抗譜,正弦波的頻率范圍為10-2~105Hz。
表1 鍍鎳電鍍液、鍍銅電鍍液、鍍鋅電鍍液的組成及電鍍工藝參數(shù)Tab. 1 Composition of nickel plating bath, copper plating bath and zinc plating bath and technological parameters for electrodeposition
圖1為鎳/銅/鋅多層鍍層各層的表面SEM形貌。由圖1可以看出:底層鎳鍍層的表面較為平整均勻,無明顯孔隙,顆粒以四角錐型交錯(cuò)堆積,排列較為致密;中間層銅鍍層表面較為平整,顆粒以圓胞型結(jié)構(gòu)沉積,晶粒細(xì)小均勻,排列致密,無明顯孔隙;表層鋅鍍層的表面結(jié)晶均勻,晶粒細(xì)小,無明顯孔隙。表層鋅鍍層的表面形貌不僅受鍍鋅配方及工藝參數(shù)的影響,也受底層鎳鍍層及中間層銅鍍層的影響,底層和中間層的質(zhì)量直接影響到表層的質(zhì)量。
(a) 底層 (b) 中間層 (c) 表層 圖1 鎳/銅/鋅多層鍍層的表面SEM形貌Fig. 1 SEM morphology of the surface of Ni/Cu/Zn multilayer coating: (a) bottom layer; (b) inter layer; (c) surface layer
圖2為鎳/銅/鋅多層鍍層的截面SEM形貌。由圖2可以看出:鎳/銅/鋅多層鍍層與基體之間有明顯的分界,但是沒有孔隙存在,說明鍍層與基體之間結(jié)合效果較好;多層鍍層的底層、中間層和表層之間沒有明顯的分層現(xiàn)象,也沒有孔隙,這說明多層鍍層的各層之間結(jié)合較好。
圖3為鎳/銅/鋅多層鍍層的截面的線掃描能譜圖。從圖3中可看出:多層鍍層由內(nèi)向外依次為鎳鍍層、銅鍍層及鋅鍍層,與電鍍處理過程相一致。從圖3中還可以看出:在距表面18~23 μm處,元素Ni含量較高,在距表面12~18 μm處,元素Cu含量較高,在距表面0~12 μm處,元素Zn含量較高。由此可見,鎳/銅/鋅多層鍍層中的鎳鍍層的厚度約為5 μm,銅鍍層的厚度約為6 μm,鋅鍍層的厚度約為12 μm。
圖2 鎳/銅/鋅多層鍍層的截面SEM形貌Fig. 2 SEM morphology of the cross-section of Ni/Cu/Zn multilayer coating
2.2.1 鹽水浸泡試驗(yàn)
用鍍層表面出現(xiàn)紅色銹點(diǎn)時(shí)的浸泡時(shí)間來評價(jià)鍍層的耐蝕性,鹽水浸泡時(shí)間越長說明耐蝕性越好。圖4為相同厚度的各鍍層在鹽水中出現(xiàn)紅色銹點(diǎn)時(shí)的浸泡時(shí)間。由圖4可知:在鹽水浸泡試驗(yàn)中,鎳/銅/鋅多層鍍層表面出現(xiàn)紅色銹點(diǎn)時(shí)的浸泡時(shí)間最長,接近3 000 h;其次為銅/鋅、鎳/鋅等鍍層,其表面出現(xiàn)紅色銹點(diǎn)時(shí)的浸泡時(shí)間接近1 500 h;最短的是鎳、鋅等單一鍍層,其表面出現(xiàn)紅色銹點(diǎn)時(shí)的浸泡時(shí)間只有400 h左右。通過鹽水浸泡試驗(yàn)可知:鎳/銅/鋅多層鍍層的耐蝕性最好,其耐鹽水浸泡時(shí)間是相同厚度單一鍍層的5~8倍。
2.2.2 電化學(xué)阻抗譜
圖5為相同厚度的各鍍層在5.0% NaCl溶液中的電化學(xué)阻抗譜。由圖5(a)中可以看出:不同鍍層的最大模值均出現(xiàn)在低頻區(qū),這代表了鍍層的極化電阻,所測試樣中鎳/銅/鋅鍍層的極化電阻最大,電化學(xué)阻抗值達(dá)到了5 623 Ω·cm2。從圖5(b)可以看出:各鍍層時(shí)間常數(shù)出現(xiàn)的位置不同,這與鍍層的顯微結(jié)構(gòu)有關(guān)。由圖5(c)圖中可以看出:各鍍層的阻抗譜都只出現(xiàn)高頻的容抗弧,容抗弧越大表示其耐蝕性越好,這與高的電荷轉(zhuǎn)移電阻和低的腐蝕電流密度相對應(yīng)[18-19]。電化學(xué)阻抗譜所反映的總阻抗變化趨勢與鹽水浸泡試驗(yàn)結(jié)果變化趨勢一致:鎳/銅/鋅多層鍍層的耐蝕性最好,鎳/鋅鍍層、銅/鋅鍍層和鎳/銅鍍層耐蝕性次之,鋅鍍層、鎳鍍層及銅鍍層的耐蝕性最差。
(a) 全元素 (b) Fe (c) Zn
(d) Ni (e) Cu圖3 鎳/銅/鋅多層鍍層的截面的線掃描能譜圖Fig. 3 Energy spectra of linear scanning the cross-section of Ni/Cu/Zn multilayer coating: (a) all elements; (b) Fe; (c) Zn; (d) Ni; (e) Cu
圖4 相同厚度的各鍍層在鹽水中出現(xiàn)紅色銹點(diǎn)時(shí)的浸泡時(shí)間Fig. 4 Immersion time of red rust spot occurring for coatings with the same thickness in brine
(a) Bode圖(模) (b) Bode圖(相位角) (c) Nyquist圖圖5 相同厚度的各鍍層在5.0% NaCl溶液中的電化學(xué)阻抗譜Fig. 5 EIS of coatings with the same thickness in 5.0% NaCl solution: (a) Bode plots (module); (b) Bode plots (phase angle); (c) Nyquist plots
2.2.3 耐蝕機(jī)理
鎳/銅/鋅多層鍍層較雙鍍層及單一鍍層的耐蝕性更好。一方面是因?yàn)槎鄬渝儗又胁煌Я3叽绲腻儗酉嗷盈B阻礙了腐蝕介質(zhì)的傳輸,對基體起到了保護(hù)作用。底層鎳鍍層晶粒以四角錐型交錯(cuò)堆積,排列較為致密;中間層銅鍍層顆粒以圓胞型結(jié)構(gòu)沉積,晶粒細(xì)小均勻,排列致密,降低了鎳鍍層點(diǎn)蝕發(fā)生的可能性。另一方面是因?yàn)槎鄬渝儗拥拿恳粚渝儗拥臉O化電位都不同,有效避免了點(diǎn)蝕的發(fā)生。當(dāng)鍍層體系接觸腐蝕溶液時(shí),表層鋅鍍層首先起防護(hù)作用,一旦鋅鍍層破損,腐蝕介質(zhì)滲透到鋅、銅兩鍍層界面,陽極性表層則代替中間層優(yōu)先發(fā)生陽極溶解,減緩中間層發(fā)生破壞的速率,大大推遲了鎳鍍層發(fā)生點(diǎn)蝕的時(shí)間,很好地保護(hù)了基體材料。
(1) 采用電沉積法在低碳鋼上成功制備了鎳/銅/鋅多層鍍層。底層鎳鍍層顆粒以四角錐型交錯(cuò)堆積,中間層銅鍍層顆粒以圓胞型結(jié)構(gòu)沉積,表層鋅鍍層的表面平整致密,無明顯孔隙。
(2) 鎳/銅/鋅多層鍍層具有很好的耐蝕性,電化學(xué)阻抗達(dá)到了5 623 Ω·cm2,耐鹽水浸泡時(shí)間可達(dá)2 880 h時(shí),是相同厚度單一鍍層耐鹽水浸泡時(shí)間的5~8倍。對于相同厚度的不同鍍層,鎳/銅/鋅多層鍍層的耐蝕性最好,鎳/鋅鍍層、銅/鋅鍍層和鎳/銅鍍層耐蝕性次之,鋅鍍層、鎳鍍層及銅鍍層耐蝕性最差。
[1] 田偉,謝發(fā)勤,吳向清. 鋅鎳合金鍍層耐蝕性研究[J]. 腐蝕與防護(hù),2006,27(11):552-554.
[2] JIANG Y F,LIU L F,ZHAI C Q,et al. Corrosion behavior of pulse plated Zn-Ni alloy coatings on AZ91 magnesium-alloy in alkaline solutions[J]. Thin Solid Films,2005,484:232-237.
[3] ZHAI L L,LIU X J,LI T Q,et al. Vacuum and ultrasonic co-assisted electroless copper plating on carbon foams[J]. Vacuum,2015,114:21-25.
[4] ZHANG W Y,WANG S J,LI J G,et al. Photocatalytic hydrogen production from methanol aqueous solution under visible-light using Cu/S-TiO2prepared by electroless plating method[J]. Catalysis Communications,2015,59:189-194.
[5] KAN H M,YANG Z Y,ZHANG N. Preparation of Ni-SiC composite coating by electrochemical deposition[J]. Rare Metal Materials and Engineering,2015,44(12):2960-2964.
[6] 杜朝軍,李欣玲,楊家祥,等. 電沉積銅-鎳-錫-聚四氟乙烯復(fù)合鍍層及其性能[J]. 電鍍與涂飾,2015,34(24):1391-1394.
[7] FEI J Y,WILCOX G D. Electrodeposition of zinc-nickel compositionally modulated multilayer coatings and their corrosion behaviours[J]. Surface & Coatings Technology,2006,200(11):3533-3539.
[8] SHAO A L,CHENG Y,ZHOU Y,et al. Electrochemistry properties of multilayer TiN/Ti coatings on NiTi alloy for cardia occlude application[J]. Surface & Coatings Technology,2013,228:257-261.
[9] WANG H,XIE G Y,YING Z,et al. Enhanced mechanical properties of multi-layer graphene filled poly(vinyl chloride) composite films[J]. Journal of Materials Science & Technology,2015,31:340-344.
[10] YI P Y,PENG L F,HUANG J Q. Multilayered TiAlN films on Ti6Al4V alloy for biomedical applications by closed field unbalanced magnetron sputter ion plating process[J]. Materials Science and Engineering:C,2016,59(2):669-676.
[11] ZHANG C,LI Y P,HOU Y H,et al. Corrosion resistance of Cu and Fe modified Ni-30Co-16Cr-15Mo alloy in aqueous hydrofluoric acid[J]. Corrosion Science,2014,89(89):81-92.
[12] SOSIATI H,HATA S,DOI T,et al. Nanostructure characterization of Ni and B layers as artificial pinning centers in multilayered MgB2/Ni and MgB2/B superconducting thin films[J]. Physica C:Superconductivity,2013,488:1-8.
[13] SUN H K,DONG J Y,HWANG S T,et al. Investigation on growth behavior of multiphase silicon carbon film for front contact layer in a Si thin film solar cell[J]. Solar Energy Materials & Solar Cells,2014,127(4):98-103.
[14] DU X,ZHAO L,CHEN H,et al. Synthesis and properties of multilayered films foams[J]. Colloids & Surfaces A:Physicochemical & Engineering Aspects,2013,436(35):599-603.
[15] MU W N,ZHAI Y C,SHI S Z. Preparation,formation mechanism and mechanical properties of multilayered TiO2-organic nanocomposite film[J]. Transactions of Nonferrous Metals Society of China,2015,25(4):1128-1134.
[16] ZHOU Q,LI J J,WANG F,et al. Strain rate sensitivity of Cu/Ta multilayered films:comparison between grain boundary and heterophase interface[J]. Scripta Materialia,2016,111:123-126.
[17] LU Y,LI Y,SAKA M. Growth of Ag micro/nanoparticles using stress migration from multilayered metallic structure[J]. Applied Surface Science,2015,351:1011-1015.
[18] 過家駒,郭乃名. Al-Mn合金鍍層的組成結(jié)構(gòu)及其耐蝕性[J]. 電化學(xué),1995,1(4):451-455.
[19] 紀(jì)丹,勒霞文,鐘慶東,等. 酸性環(huán)境中pH對低碳鋼表面Ni-Mn合金沉積層的影響[J]. 腐蝕與防護(hù),2014,35(12):1217-1220.
PreparationandCorrosionResistanceofNi/Cu/ZnMultilayerCoating
SUN Jinhu, LI Hui, ZHONG Qingdong, HUANG Zherui, LI Yulin
(Shanghai Key Laboratory of Advanced Ferrous Metallurgy, State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China)
Ni/Cu/Zn multilayer coating was prepared on low carbon steel substrate by electrodeposition. The microstructure of the Ni/Cu/Zn multilayer coating was observed by scanning electron microscopy (SEM). The corrosion resistance of the Ni/Cu/Zn multilayer coating was evaluated by the brine immersion testing in which NaCl mass fraction was 5%. The electrochemical properties of Ni/Cu/Zn multilayer coating in 5.0% (mass) NaCl solution were measured by electrochemical impedance spectroscopy (EIS) technique. The results show that: the particles in the under layer of nickel were stacked interlacedly as four pyramid type, the particles in the middle layer of copper were deposited by round cell structure, and the surface layer of zinc was flat and compact without apparent pores. The Ni/Cu/Zn multilayer coating exhibited good corrosion resistance, showing a value of electrochemical impedance of 5 623 Ω·cm2. The immersion time of red rust spot occurring on the coating surface in brine reached 2 880 h which was 5-8 times of that for single layer coating with the same thickness.
electrodeposition; multilayer coating; corrosion resistance; brine immersion test; electrochemical impedance spectroscopy (EIS)
10.11973/fsyfh-201712006
TG174.4
A
1005-748X(2017)12-0928-05
2016-04-06
南通市產(chǎn)學(xué)研協(xié)同創(chuàng)新計(jì)劃項(xiàng)目(BC2014010); 上海市鋼鐵冶金新技術(shù)開發(fā)應(yīng)用重點(diǎn)實(shí)驗(yàn)室開放課題基金資助(SELF-2015-01)
鐘慶東(1969-),教授,博士,從事材料腐蝕與防護(hù)研究,13391312191,qdzhong@shu.edu.cn