賈永軍,于 勇,賀太平,于 楠,楊創(chuàng)勃,張喜榮,段海峰
(陜西中醫(yī)藥大學(xué)附屬醫(yī)院醫(yī)學(xué)影像科,陜西 咸陽 712000)
新一代基于模型的迭代重建在低劑量上腹部CT中的應(yīng)用
賈永軍,于 勇,賀太平*,于 楠,楊創(chuàng)勃,張喜榮,段海峰
(陜西中醫(yī)藥大學(xué)附屬醫(yī)院醫(yī)學(xué)影像科,陜西 咸陽 712000)
目的比較自適應(yīng)統(tǒng)計(jì)迭代重建(ASIR)、常規(guī)基于模型的迭代重建(MBIRc)、新一代基于模型的迭代重建(MBIRn)中優(yōu)化低密度對(duì)比設(shè)置的MBIRNR403種算法對(duì)低劑量上腹部CT圖像質(zhì)量的影響。方法采用CT掃描靜止?fàn)顟B(tài)下水模,比較0.625 mm層厚時(shí)濾波反投影算法(FBP)、ASIR、MBIRc和MBIRNR40的空間分辨率和密度分辨率。1年內(nèi)接受2次腹部增強(qiáng)CT掃描受檢者60例,初次檢查采用常規(guī)輻射劑量(噪聲指數(shù)=10)掃描,F(xiàn)BP重建。復(fù)查時(shí)采用低輻射劑量方案(噪聲指數(shù)=20)掃描,分別采用標(biāo)準(zhǔn)算法ASIR、MBIRc和MBIRNR40三種方法重建為0.625 mm層厚的圖像后進(jìn)行對(duì)比分析。測(cè)量皮下脂肪、背部肌肉、肝脾實(shí)質(zhì)CT值和噪聲,計(jì)算以皮下脂肪為背景的肝脾實(shí)質(zhì)CNR,采用單因素方差分析比較各重建算法噪聲和CNR。由2名放射科醫(yī)師以常規(guī)劑量FBP重建為基礎(chǔ),采用半定量目測(cè)評(píng)分法盲法進(jìn)行噪聲和細(xì)節(jié)結(jié)構(gòu)、病變邊緣清晰度評(píng)分,比較主觀評(píng)分差異,評(píng)價(jià)觀察者間一致性。結(jié)果體模研究提示MBIRc空間分辨率最高,MBIRNR40密度分辨率最高。臨床研究顯示初次檢查劑量長(zhǎng)度乘積(DLP)為(368.03±146.25)mGy·cm,有效劑量(ED)為(5.52±2.19)mSv;復(fù)查時(shí)DLP為(93.18±41.21)mGy.cm,ED為(1.40±0.62)mSv,分別下降約74.68%和74.64%。MBIRNR40重建圖像肌肉、脂肪噪聲低于MBIRc、ASIR重建和常規(guī)劑量FBP重建(P均<0.05)。MBIRNR40重建圖像肝脾CNR大于MBIRc、ASIR重建和常規(guī)劑量FBP重建(P均<0.05)。2名放射科醫(yī)師主觀評(píng)分一致性優(yōu)良。低劑量MBIRNR40主觀圖像噪聲最低、顯示上腹部細(xì)節(jié)結(jié)構(gòu)和病變邊緣特征最清晰,優(yōu)于MBIRc,MBIRc優(yōu)于常規(guī)劑量FBP,低劑量ASIR最差,差異均有統(tǒng)計(jì)學(xué)意義(P均<0.05)。結(jié)論減少輻射劑量約75%低劑量上腹部成像時(shí),MBIR重建圖像質(zhì)量?jī)?yōu)于ASIR、MBIRc重建圖像及常規(guī)劑量FBP圖像。
迭代重建;輻射劑量;體層攝影術(shù),X線計(jì)算機(jī)
基于電離輻射的線性非閾值理念,輻射劑量增加將增加受檢者患癌風(fēng)險(xiǎn),故ALARA(as low as reasonably achievable)原則下低劑量CT(low dose CT,LDCT)已成為影像醫(yī)學(xué)關(guān)注的熱點(diǎn)[1]。相較于濾波反投影算法(filtered back projection, FBP)較高的噪聲、明顯的條紋偽影和較差的空間分辨率[2],通過改進(jìn)和優(yōu)化數(shù)據(jù)處理以允許輻射劑量減少的同時(shí)保持診斷圖像質(zhì)量[3]的多種迭代重建(iterative reconstruction,IR),為進(jìn)一步降低輻射劑量提供了一種新的途徑。本研究以常規(guī)劑量FBP重建圖像為基礎(chǔ),比較自適應(yīng)統(tǒng)計(jì)迭代重建(adaptive statistical iterative reconstruction, ASIR)、常規(guī)基于模型的迭代重建(conventional model-based iterative reconstruction, MBIRc)、新一代基于模型的迭代重建(new version of model-based iterative reconstruction, MBIRn)中優(yōu)化低密度對(duì)比設(shè)置的MBIRNR40三種重建算法對(duì)低劑量上腹部CT圖像質(zhì)量的影響,探討MBIRn在低輻射劑量上腹部CT中的應(yīng)用價(jià)值。
1.1 一般資料 收集2016年6月—10月于我院接受上腹部增強(qiáng)掃描的惡性腫瘤患者60例,均為復(fù)查患者,男44例,女16例,年齡38~82歲,平均(61.0±10.1)歲,體質(zhì)量39~79 kg,平均(57.70±8.94)kg。所有受檢者1年內(nèi)均接受上腹部CT增強(qiáng)檢查(初次檢查)。CT擬診:肝占位37例、胰腺癌7例、胃癌6例(2例術(shù)后轉(zhuǎn)移)、膽囊癌4例、壺腹周圍癌4例,食管癌、結(jié)腸癌術(shù)后轉(zhuǎn)移各1例。
1.2 儀器與方法 采用GE Discovery CT750 HD寶石能譜CT機(jī)。體模研究掃描CT-200B型水模,分別采用標(biāo)準(zhǔn)算法FBP和ASIR、MBIRc、MBIRNR40重建層厚0.625 mm的圖像,對(duì)比空間分辨率及密度分辨率。臨床研究時(shí)患者取仰臥位,雙手上舉,采取吸氣末單次屏氣掃描,掃描范圍自膈頂至肝下緣水平。層厚、層間距均為5.0 mm,管旋轉(zhuǎn)時(shí)間0.6秒/轉(zhuǎn),螺距1.375∶1,準(zhǔn)直器寬度64×0.625 mm,電壓120 kVp,自動(dòng)曝光控制技術(shù)(Auto mA),預(yù)設(shè)噪聲指數(shù)(noise index, NI)控制管電流。初次檢查采用常規(guī)輻射劑量(NI=10)掃描,F(xiàn)BP重建;復(fù)查采用低輻射劑量方案(NI=20)掃描,分別采用標(biāo)準(zhǔn)算法ASIR、MBIRc,MBIRNR40重建層厚0.625 mm的圖像后進(jìn)行對(duì)比分析。
表1 常規(guī)劑量FBP和低劑量ASIR、MBIRc、MBIRNR40的噪聲和CNR比較(±s)
表1 常規(guī)劑量FBP和低劑量ASIR、MBIRc、MBIRNR40的噪聲和CNR比較(±s)
方法噪聲肌肉脂肪肝臟脾臟CNR肝臟脾臟FBP(NI=10)23.14±2.7421.27±5.3424.15±2.8425.19±3.791.13±0.511.16±0.53ASIR(NI=20)33.87±4.4931.76±8.2336.73±5.0437.61±5.770.71±0.290.73±0.32MBIRc(NI=20)13.47±2.2214.25±2.6612.98±1.4713.07±1.501.81±0.701.81±0.65MBIRNR40(NI=20)7.94±1.7410.37±2.307.30±0.997.52±1.092.95±1.012.98±1.02F值876.56194.811117.50842.43123.50124.47P值<0.001<0.001<0.001<0.001<0.001<0.001
注:4種重建算法兩兩比較,P均<0.05
表2 低劑量ASIR、MBIRc、MBIRNR40重建圖像質(zhì)量主觀評(píng)分比較(例)
1.3 數(shù)據(jù)測(cè)量及圖像質(zhì)量評(píng)價(jià)
1.3.1 體模研究 觀察固定平面各種算法重建水??臻g分辨率、密度分辨率部分軸位圖像,根據(jù)不同間隔線及大小不等圓形低密度影的顯示效果對(duì)各算法空間分辨率和密度分辨率排序。
1.3.2 臨床研究 客觀評(píng)價(jià)選擇目測(cè)密度均勻的肝脾實(shí)質(zhì)放置ROI,避開明顯偽影區(qū)的背部肌肉、皮下脂肪,記錄CT值平均值及噪聲,以背部肌肉為基準(zhǔn)計(jì)算肝脾CNR。比較常規(guī)劑量FBP和低劑量ASIR、MBIRc、MBIRNR40圖像噪聲和肝脾CNR。主觀評(píng)價(jià)方面,由2名分別有7和15年的CT診斷經(jīng)驗(yàn)放射科醫(yī)師經(jīng)PACS三維觀察,初始窗寬窗位為240 HU/40 HU,可根據(jù)觀察者習(xí)慣調(diào)整窗寬窗位。以常規(guī)劑量FBP為基準(zhǔn),采用7級(jí)半定量目測(cè)評(píng)分法[4]對(duì)低劑量各算法重建圖像的主觀噪聲和細(xì)節(jié)結(jié)構(gòu)、病變邊緣清晰度評(píng)分:0分,與常規(guī)劑量FBP圖像無明顯差異;-3分,最差并影響判斷,3分,最好,最清晰;-2分,較差并可影響判斷,2分,較好并有利于判斷;-1分,稍差但不影響判斷,1分,稍優(yōu)但不影響判斷。
1.4 統(tǒng)計(jì)學(xué)分析 采用SPSS 20.0統(tǒng)計(jì)分析軟件。正態(tài)分布的計(jì)量資料以±s表示。不同算法重建圖像的SD和CNR比較采用單因素方差分析,兩兩比較采用LSD法;主觀評(píng)分采用Wilcoxon檢驗(yàn);P<0.05為差異有統(tǒng)計(jì)學(xué)意義。Kappa檢驗(yàn)評(píng)價(jià)觀察者間一致性,Kappa≥0.75為優(yōu)、0.60~0.74為良、0.40~0.59為中等、<0.40為較差。
2.1 體模研究 MBIRc空間分辨率最高,MBIRNR40密度分辨率最高??臻g分辨率由高到低依次為MBIRc>MBIRNR40>ASIR≈FBP;密度分辨率由高到低依次為MBIRNR40>MBIRc>ASIR≈FBP(圖1)。
2.2 臨床研究 初次檢查劑量長(zhǎng)度乘積(dose length product, DLP)為(368.03±146.25)mGy.cm,有效劑量(effective dose, ED)為(5.52±2.19)mSv;復(fù)查低劑量DLP為(93.18±41.21)mGy.cm,ED為(1.40±0.62)mSv,分別下降約74.68%和74.64%。
圖1 CT-200B型水模 A~D.空間分辨率層面; E~H.密度分辨率層面 (A、E為FBP重建; B、F為ASIR重建; C、G為MBIRc重建; D、H為MBIRn中MBIRNR40重建 )
圖2 患者女,61歲,軸位圖像示壺腹周圍癌伴肝內(nèi)外膽管擴(kuò)張 A.常規(guī)劑量FBP圖像,肝臟噪聲、CNR分別為26.80、0.75,脾臟為24.60、1.01; B.低劑量ASIR圖像,肝臟噪聲、CNR分別為38.80、0.62,脾臟為41.40、0.66; C.MBIRc重建,肝臟噪聲、CNR分別為14.40、1.72,脾臟為12.70、1.79; D.MBIRNR40重建,肝臟噪聲、CNR分別為9.50、3.11,脾臟為7.40、3.41
低劑量MBIRNR40圖像背部肌肉、皮下脂肪和肝脾實(shí)質(zhì)噪聲低于MBIRc和ASIR,低劑量MBIRc噪聲低于常規(guī)劑量FBP,低劑量ASIR圖像噪聲最大 (P均<0.05);低劑量MBIRNR40圖像肝脾CNR大于MBIRc和ASIR,低劑量MBIRc圖像肝脾的CNR大于常規(guī)劑量FBP,低劑量ASIR圖像CNR最小(P均<0.05),見表1、圖2。
低劑量MBIRNR40的主觀圖像噪聲評(píng)分最高,優(yōu)于ASIR、MBIRc及常規(guī)劑量FBP,低劑量ASIR主觀噪聲評(píng)分最低(P均<0.05);低劑量MBIRNR40更清晰顯示上腹部細(xì)節(jié)結(jié)構(gòu)和病變邊緣特征,優(yōu)于ASIR、MBIRc及優(yōu)于常規(guī)劑量FBP,低劑量ASIR最差(P均<0.05)。2名醫(yī)師對(duì)低劑量各重建圖像評(píng)分及一致性檢驗(yàn)Kappa值見表2、圖3。
FBP重建速度快,是CT圖像重建的“金標(biāo)準(zhǔn)”,但劑量降低與圖像質(zhì)量間存在制衡關(guān)系,在數(shù)據(jù)采集不足時(shí),噪聲增多,重建圖像質(zhì)量可能無法滿足診斷需要[5]。IR可在較低的輻射劑量下獲得噪聲較小的高質(zhì)量圖像,在降低X線輻射劑量方面有優(yōu)勢(shì)[6],近年來逐漸普及[7]。ASIR是在投影數(shù)據(jù)空間和圖像數(shù)據(jù)空間中將FBP影像和IR影像以不同比例融合的IR算法[8]。研究[9]表明,ASIR在相同的輻射劑量時(shí)可提高圖像質(zhì)量,在保證圖像質(zhì)量時(shí)可降低32%~65%輻射劑量。本研究根據(jù)文獻(xiàn)[10]推薦選用40%ASIR,結(jié)果表明聯(lián)合Auto mA降低輻射劑量約75%時(shí),ASIR重建上腹部CT圖像不能達(dá)到臨床診斷要求。
圖3 患者男,63歲,冠狀位圖像示食管癌術(shù)后肝臟多發(fā)轉(zhuǎn)移、淋巴結(jié)轉(zhuǎn)移,MBIRNR40重建的主觀圖像噪聲最低,顯示肝臟內(nèi)轉(zhuǎn)移瘤、腹腔積液等最優(yōu) A.常規(guī)劑量FBP圖像; B.ASIR圖像; C.MBIRc重建; D.MBIRNR40圖像
MBIR僅在投影數(shù)據(jù)空間對(duì)X線光學(xué)系統(tǒng)和信號(hào)采集過程進(jìn)行建模,可真實(shí)還原射線發(fā)射、吸收、采集的過程,可明顯降低噪聲和提高空間分辨率[4],在不影響整體圖像質(zhì)量的前提下,可減少60%~80%的輻射劑量[11]。本研究表明MBIR可顯著降低圖像噪聲、提高信噪比,更清晰顯示掃描范圍內(nèi)的細(xì)節(jié)結(jié)構(gòu)和病變邊緣特征,在減少約75%輻射劑量條件下圖像質(zhì)量?jī)?yōu)于常規(guī)劑量FBP圖像。但MBIRc圖像存在隨機(jī)斑紋狀偽影[12],可導(dǎo)致部分細(xì)小結(jié)構(gòu)邊界模糊。本研究也發(fā)現(xiàn)MBIRc圖像雖然空間分辨率較高,但斑紋狀偽影降低了其主觀評(píng)分。MBIRn增添了紋理增強(qiáng)設(shè)置,用以在整個(gè)采集空間內(nèi)重新平衡噪聲分布,使噪聲和空間分辨率分布更均勻,可有效解決斑紋狀偽影;通過提供重建0.625、1.25、2.5、3.75和5.0 mm層厚和更多設(shè)置后具有與MBIRc相同的物理特性,進(jìn)一步改善低劑量條件下圖像質(zhì)量。本研究體模部分提示MBIRc空間分辨率最高,MBIRNR40密度分辨率最高,原因在于MBIRc本質(zhì)是0.625 mm層厚的標(biāo)準(zhǔn)MBIR重建,可兼顧空間分辨率和密度分辨率,雖存在斑紋狀偽影,但其空間分辨率最高。MBIRNR40為MBIRn中降噪能力最強(qiáng)的設(shè)置,但卻可輕度降低空間分辨率。然而腹部CT對(duì)密度分辨率要求高[13],且輻射劑量主要影響圖像噪聲[14]。故本研究選擇其代表MBIRn,MBIRNR40在低劑量成像時(shí)的降噪能力、對(duì)小病灶和腹部小結(jié)構(gòu)清晰度方面優(yōu)于MBIRc,且肝臟噪聲小于10 HU,保證了重建圖像質(zhì)量的穩(wěn)定。相比寧培鋼等[11]認(rèn)為MBIRc可減少約60%的掃描劑量,采用MBIRn可降低約75%輻射劑量,且圖像質(zhì)量更優(yōu)。
本研究的局限性:①由于MBIR重建時(shí)間長(zhǎng),遠(yuǎn)慢于FBP和ASIR[15],尚不能實(shí)現(xiàn)實(shí)時(shí)顯像;②對(duì)于ASIR,參考文獻(xiàn)[10]推薦的40%混合因子一個(gè)迭代強(qiáng)度的圖像進(jìn)行比較,但更高的ASIR百分比可進(jìn)一步降低圖像噪聲;③雖然主觀評(píng)價(jià)采用盲法和隨機(jī)化,但各種重建算法圖像存在一定程度特點(diǎn),可能導(dǎo)致觀察者評(píng)分偏差;④本研究尚未比較各組圖像病變檢出率和診斷信心的差異,將在今后分析討論。
總之,減少輻射劑量約75%低劑量上腹部成像時(shí),MBIR重建圖像質(zhì)量?jī)?yōu)于常規(guī)劑量FBP。與ASIR、MBIRc比較,MBIRn中MBIRNR40可顯著降低圖像噪聲并提高信噪比,可降低主觀噪聲,更清晰地顯示細(xì)節(jié)結(jié)構(gòu)和病變邊緣特征。
[1] Hall EJ, Brenner DJ. Cancer risks from diagnostic radiology. Br J Radiol, 2008,81(965):362-378.
[2] Kilic K, Erbas G, Guryildirim M, et al. Lowering the dose in head CT using adaptive statistical iterative reconstruction. AJNR Am J Neuroradiol, 2011,32(9):1578-1582.
[3] 孫記航,陰捷,劉志敏,等.基于模型的迭代重建算法應(yīng)用于80 kV低劑量?jī)和夭緾T的可行性.中國(guó)醫(yī)學(xué)影像技術(shù),2017,33(4):599-602.
[4] Deák Z, Grimm JM, Treitl M, et al. Filtered back projection, adaptive statistical iterative reconstruction, and a model-based iterative reconstruction in abdominal CT: An experimental clinical study. Radiology, 2013,266(1):197-206.
[5] Mettler FA, Bhargavan M, Faulkner K, et al. Radiologic and nuclear medicine studies in the United States and worldwide: Frequency, radiation dose, and comparison with other radiation sources—1950—2007. Radiology, 2009,253(2):520-531.
[6] 張卓璐,劉卓,綦維維,等.基于多模型的迭代重建算法在胸部低劑量CT篩查中的應(yīng)用.中國(guó)介入影像與治療學(xué),2015,12(11):691-695.
[7] 顏利輝,陳飛,姚立正,等.前置自適應(yīng)統(tǒng)計(jì)迭代重建技術(shù)對(duì)胸部CT輻射劑量和圖像質(zhì)量的影響:體模與臨床研究.中國(guó)醫(yī)學(xué)影像技術(shù),2017,33(3):468-472.
[8] 殷小平,左紫薇,徐英進(jìn),等.自動(dòng)協(xié)議選取能譜聯(lián)合自適應(yīng)迭代計(jì)算法重建技術(shù)降低腹部增強(qiáng)及血管成像輻射劑量及對(duì)比劑劑量的可行性.中國(guó)醫(yī)學(xué)影像技術(shù),2017,33(4):603-607.
[9] Hara AK, Paden RG, Silva AC, et al. Iterative reconstruction technique for reducing body radiation dose at CT: Feasibility study. AJR Am J Roentgenol, 2009,193(3):764-771.
[10] Kahn J,Grupp U, Rotzinger R, et al. CT for evaluation of potential renal donors—how does iterative reconstruction influence image quality and dose? Eur J Radiol, 2014,83(8):1332-1336.
[11] 寧培鋼,朱紹成,史大鵬,等.高級(jí)迭代重建算法降低腹部CT劑量的潛能:體模研究.中國(guó)醫(yī)學(xué)影像技術(shù),2012,28(12):2243-2247.
[12] Padole A, Singh S, Ackman JB, et al. Submillisievert chest CT with filtered back projection and iterative reconstruction techniques. AJR Am J Roentgenol, 2014,203(4):772-781.
[13] 唐坤,曹國(guó)全,李瑞,等.低管電壓腹部CT掃描對(duì)圖像質(zhì)量及輻射劑量影響的體模實(shí)驗(yàn).中國(guó)醫(yī)學(xué)影像技術(shù),2012,28(4):800-804.
[14] Primak AN, Mccollough CH, Bruesewitz MR, et al. Relationship between noise, dose, and pitch in cardiac multi-detector row CT. Radiographics, 2006,26(6):1785-1794.
[15] Katsura M, Matsuda I, Akahane M, et al. Model-based iterative reconstruction technique for radiation dose reduction in chest CT: Comparison with the adaptive statistical iterative reconstruction technique. Eur Radiol, 2012,22(8):1613-1623.
Applicationofnewmodel-basediterativereconstructioninlow-doseupperabdominalCT
JIAYongjun,YUYong,HETaiping*,YUNan,YANGChuangbo,ZHANGXirong,DUANHaifeng
(DepartmentofRadiology,AffiliatedHospitalofShaanxiChineseMedicineUniversity,Xianyang712000,China)
ObjectiveTo compare the effect on image quality of low-dose upper abdominal CT reconstructed with the new version of model-based iterative reconstruction (MBIRn) focused on low-contrast resolution (MBIRNR40), conventional model-based iterative reconstruction (MBIRc), adaptive statistical iterative reconstruction (ASIR) and routine-dose CT reconstructed with filtered back projection (FBP).MethodsWater plantom at rest was scanned with CT, and spatial resolution and density resolution were compared among FBP, ASIR, MBIRc, and MBIRNR40. Sixty patients with 2 times CT in the upper abdomen within a year were enrolled. The initial examination was acquired at a standard radiation dose (noise index [NI] of 10 HU) and reconstructed with the conventional FBP algorithm. The follow-up scan was acquired at a low-dose (NI=20 HU) and reconstructed with the standard ASIR, MBIRc and MBIRNR40. All images were obtained with 0.625 mm slice thickness. CT values and noise of fat, muscle as well as the liver and kidney parenchyma were measured and CNR of liver and kidney parenchyma using the fat SD as background image noise were calculated. Two radiologists independently graded images for noise, sharpness of details of structures and lesion. The quantitative image quality scores of different reconstructions were analyzed with one-wayANOVAusing FBP reconstruction as reference of standard. The degree of interobserver consistency was evaluated usingKappatest.ResultsThe phantom study revealed the highest spatial resolution with MBIRc and highest density resolution with MBIRNR40among all reconstructions. The dose-length product and radiation dose for the first inspection was (93.18±41.21)mGy·cm, (1.40±0.62)mSv, respectively, and were (368.03±146.25)mGy·cm, (5.52±2.19)mSv for the second inspection, representing an approximate overall dose reduction of 74.68% and 74.64%. The mean image noise of muscle and fat for MBIRNR40was significantly lower than that of MBIR, ASIR and FBP(P<0.05). The mean CNR values of liver and spleen for MBIRNR40were significantly higher than that of ASIR, MBIRc and FBP (P<0.05). Two radiologists had a good subjective score consistency. Low-dose MBIRNR40subjective image noise was the lowest, showing the most detailed on the upper abdominal detail structure and lesion edge, better than MBIRc, MBIRc was superior to routine-dose FBP, low dose ASIR was worst, the difference was statistically significant (P<0.05).ConclusionWith 75% dose reduction in upper abdominal CT, the MBIRNR40can provide well objective and subjective image quality than MBIRc and ASIR40, and the routine-dose FBP.
Iterative reconstruction; Radiation dosage; Tomography, X-ray computed
R735; R814.42
A
1003-3289(2017)12-1882-06
陜西中醫(yī)藥大學(xué)科研基金(2016QN20)。
賈永軍(1985—),男,陜西咸陽人,在讀博士,主治醫(yī)師。研究方向:頸胸部影像診斷及影像新技術(shù)臨床應(yīng)用。E-mail: jiayongjun1985@163.com
賀太平,陜西中醫(yī)藥大學(xué)附屬醫(yī)院醫(yī)學(xué)影像科,712000。E-mail: htp89956@163.com
2017-03-21
2017-07-20
10.13929/j.1003-3289.201703108