劉維,劉浩,董雙玉,古豐瑋,陳志強(qiáng),王加峰,王慧
?
水稻葉鞘原生質(zhì)體轉(zhuǎn)化體系的構(gòu)建及Pik-H4和AvrPik-H4蛋白的瞬時(shí)表達(dá)
劉維,劉浩,董雙玉,古豐瑋,陳志強(qiáng),王加峰,王慧
(華南農(nóng)業(yè)大學(xué)國(guó)家植物航天育種工程技術(shù)研究中心,廣州 510642)
探索水稻葉鞘原生質(zhì)體最佳游離時(shí)間以及轉(zhuǎn)化時(shí)間,提高瞬時(shí)表達(dá)效率,在蛋白水平對(duì)目的基因進(jìn)行檢測(cè)且大批量表達(dá)。探索該系統(tǒng)表達(dá)抗稻瘟病蛋白Pik1-H4、Pik2-H4及無毒蛋白AvrPik-H4的可行性,對(duì)目的基因的功能進(jìn)行分析。以高抗稻瘟病品種H4及對(duì)照品種中二軟占作為試驗(yàn)材料,利用1/2 MS培養(yǎng)基種植水稻幼苗25℃恒溫培養(yǎng)7—10 d。利用纖維素酶及離析酶對(duì)水稻葉鞘進(jìn)行酶解,血球計(jì)數(shù)板分別統(tǒng)計(jì)游離1、2、3、4、5、6、7、8、9、10、11和12 h的細(xì)胞數(shù)目獲得最佳的酶解時(shí)間。將目標(biāo)基因Pik-H4、Pik-H4及分別與GFP融合,構(gòu)建瞬時(shí)表達(dá)載體,利用PEG介導(dǎo)轉(zhuǎn)入水稻葉鞘原生質(zhì)體。設(shè)置轉(zhuǎn)化10、12、14、16、18、20、22和24 h,分別提取細(xì)胞總RNA,管家基因?yàn)閷?duì)照,設(shè)計(jì)特異性擴(kuò)增引物,利用實(shí)時(shí)熒光定量PCR(qRT-PCR)檢測(cè)的相對(duì)表達(dá)量,探索最佳的轉(zhuǎn)化時(shí)間。通過激光共聚焦掃描顯微鏡對(duì)目標(biāo)基因進(jìn)行亞細(xì)胞定位觀察,推測(cè)基因功能。提取細(xì)胞總蛋白,以Anti-GFP為一抗用Western blot對(duì)目標(biāo)蛋白表達(dá)進(jìn)行驗(yàn)證。相對(duì)室溫土壤栽培,營(yíng)養(yǎng)豐富且均衡的1/2 MS培養(yǎng)基恒溫種植的水稻幼苗質(zhì)量更優(yōu)質(zhì),活力更高。游離時(shí)間的長(zhǎng)短對(duì)游離效率影響較大,游離的最佳時(shí)間為4—6 h,在3—4 h細(xì)胞游離數(shù)目增長(zhǎng)速度最快,4—6 h細(xì)胞數(shù)量趨于平穩(wěn),6 h以后細(xì)胞總量呈現(xiàn)下降趨勢(shì),特別是7 h以后,顯微下細(xì)胞碎片增多,細(xì)胞死亡速度加快。檢測(cè)的相對(duì)表達(dá)量,獲得最佳轉(zhuǎn)化時(shí)間為14—16 h,16 h達(dá)到最高值,之后逐漸下降。隨著時(shí)間的推移,熒光顯微鏡下觀察到GFP蛋白發(fā)出的熒光逐漸淬滅。亞細(xì)胞定位觀察發(fā)現(xiàn)AvrPik-H4蛋白主要被定位于水稻細(xì)胞膜上,初步推測(cè)是一種膜蛋白,通過某種形式運(yùn)輸?shù)剿拗骷?xì)胞作為激發(fā)子觸發(fā)一系列反應(yīng)。是高效廣譜抗稻瘟病基因,分為Pik-H4和Pik-H4兩個(gè)部分,Pik1-H4主要定位在內(nèi)質(zhì)網(wǎng),Pik2-H4主要定位在質(zhì)體,從定位結(jié)果初步推定Pik1-H4可能主要參與AvrPik-H4蛋白的識(shí)別反應(yīng),Pik2-H4主要起到調(diào)控下游抗病的作用。Western blot結(jié)果顯示目標(biāo)蛋白表達(dá)成功,分子大小正確。Pik1-H4和AvrPik-H4的表達(dá)量高于Pik2-H4,說明分子量的大小不是影響轉(zhuǎn)化效率的關(guān)鍵因素。水稻葉鞘原生質(zhì)體瞬時(shí)表達(dá)系統(tǒng)具有高效快速的特點(diǎn),通過對(duì)游離及轉(zhuǎn)化時(shí)間的探索為水稻瞬時(shí)表達(dá)體系的廣泛實(shí)踐應(yīng)用提供參考。目標(biāo)基因的成功表達(dá)為Pik-H4與無毒蛋白互作機(jī)制的研究提供了有價(jià)值的理論依據(jù)。
水稻;原生質(zhì)體;亞細(xì)胞定位;western 雜交
【研究意義】稻瘟病是由稻瘟病菌()引起的全球性真菌性病害,目前世界上有85個(gè)國(guó)家已出現(xiàn)該病害,每年減產(chǎn)10%—35%[1]。實(shí)踐證明,選育和使用水稻抗病品種是控制稻瘟病最為經(jīng)濟(jì)有效的措施。植物瞬時(shí)表達(dá)系統(tǒng)以宿主單個(gè)細(xì)胞為基礎(chǔ),轉(zhuǎn)入外源的DNA在短時(shí)間內(nèi)進(jìn)行蛋白質(zhì)高水平表達(dá)。由于水稻原生質(zhì)體的生物功能在一定程度上與完整的細(xì)胞相似,為研究植物細(xì)胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)提供了非常有利的細(xì)胞環(huán)境[2]。利用水稻葉鞘原生質(zhì)體瞬時(shí)表達(dá)系統(tǒng)表達(dá)Pik1-H4、Pik2-H4及AvrPik-H4蛋白并進(jìn)行亞細(xì)胞定位,有助于目的基因分子功能及抗病基因和無毒基因互作機(jī)制的研究。【前人研究進(jìn)展】水稻抗稻瘟病蛋白基因由和組成,屬于典型的NBS-LRR類基因,對(duì)廣東的稻瘟病菌生理小種大多表現(xiàn)出高抗[3]。為編碼113 aa的小分子分泌蛋白,不含有保守區(qū)域,容易發(fā)生突變。相較穩(wěn)定的轉(zhuǎn)基因表達(dá)系統(tǒng),瞬時(shí)表達(dá)體系具有宿主范圍廣、周期短、檢測(cè)快速及高通量的特點(diǎn),已被廣泛應(yīng)用于分子生物學(xué)研究領(lǐng)域,如啟動(dòng)子活性分析[4]、Cas9編輯效率檢測(cè)[5-6]、mRNA衰變[7]、microRNAs對(duì)靶基因的調(diào)控[8]、蛋白功能研究[9]、信號(hào)轉(zhuǎn)導(dǎo)[10-11]等。目前主要通過基因槍法、農(nóng)桿菌滲透法、聚乙二醇(PEG)介導(dǎo)法、電擊法及植物病毒載體介導(dǎo)對(duì)目標(biāo)基因進(jìn)行轉(zhuǎn)化[12],在小麥[5]、葡萄[9]、玉米[10]、水稻[13]、擬南芥[14]、櫻桃[15]、萵苣[16]、馬鈴薯[6,17]、煙草[18]等都有應(yīng)用。水稻葉表面具有蠟質(zhì)層,不利于原生質(zhì)體的游離,如鹿連明等[19]利用煙草的瞬時(shí)表達(dá)體系研究水稻條紋病毒(,RSV)的相關(guān)蛋白互作,但基因產(chǎn)物的正確折疊、亞細(xì)胞精細(xì)定位都依賴于宿主特異性表達(dá)系統(tǒng)[20]。近幾年,有關(guān)水稻原生質(zhì)體瞬時(shí)表達(dá)系統(tǒng)已經(jīng)有相關(guān)報(bào)道,轉(zhuǎn)化效率也相對(duì)提高[21],如利用Co-IP技術(shù)驗(yàn)證互作蛋白[13],探索ABA信號(hào)通路[22],鄰近生物素(BioID)技術(shù)篩選近端蛋白[23]等。【本研究切入點(diǎn)】盡管對(duì)水稻原生質(zhì)體瞬時(shí)表達(dá)系統(tǒng)的應(yīng)用已經(jīng)有少量報(bào)道,但原生質(zhì)體游離轉(zhuǎn)化效率限制了該技術(shù)的應(yīng)用,利用該技術(shù)進(jìn)行抗稻瘟病基因蛋白的表達(dá)還未見報(bào)道?!緮M解決的關(guān)鍵問題】探索原生質(zhì)體游離及轉(zhuǎn)化的最佳時(shí)間,通過將目的片段融合綠色熒光蛋白(GFP)構(gòu)建載體,利用水稻葉鞘原生質(zhì)體瞬時(shí)表達(dá)體系成功表達(dá)目標(biāo)蛋白,在激光共聚焦掃描顯微鏡下觀察蛋白在細(xì)胞內(nèi)的表達(dá)部位,并且利用Western blot技術(shù)驗(yàn)證結(jié)論的真實(shí)性,為水稻原生質(zhì)體瞬時(shí)表達(dá)系統(tǒng)的推廣應(yīng)用提供依據(jù),為水稻抗病相關(guān)基因的功能性研究及互作蛋白的篩選打下基礎(chǔ)。
試驗(yàn)于2016年10月至2017年3月在華南農(nóng)業(yè)大學(xué)國(guó)家植物航天育種技術(shù)工程研究中心完成。
水稻材料為H4以及中二軟占,H4是經(jīng)過空間搭載誘變的中二軟占突變體經(jīng)地面選育的廣譜、高抗的水稻優(yōu)質(zhì)種質(zhì)資源。
試驗(yàn)中所有的瞬時(shí)表達(dá)載體均以pYL322d1- eGFPn為骨架,如圖1所示,由花椰菜花葉病毒(CaMV)35S啟動(dòng)子、綠色熒光蛋白(GFP)片段和NOS終止子組成。目標(biāo)基因Pik-H4、Pik-H4克隆于高抗稻瘟病水稻品種H4的cDNA,克隆于稻瘟病菌GD0193,利用CE Design V1.03軟件設(shè)計(jì)引物,如表1所示,去除開放閱讀框架片段終止密碼子,利用同源重組方法構(gòu)建p35S-Pik1-H4/Pik2-H4/ AvrPik- H4-GFP載體。載體骨架由亞熱帶農(nóng)業(yè)生物資源保護(hù)與利用國(guó)家重點(diǎn)實(shí)驗(yàn)室劉耀光研究員惠贈(zèng)。
表1 引物寡核苷酸序列
挑選飽滿的H4水稻種子,去殼,75%乙醇消毒2 min,2%的次氯酸鈉150 r/min消毒30 min。在超凈工作臺(tái)中用滅菌水洗凈殘留的次氯酸鈉后,將種子接種到1/2 MS培養(yǎng)基中,放到恒溫培養(yǎng)箱,25℃,光周期為12 h光照/12 h黑暗培養(yǎng)10 d左右。
參照YANG等[13]的原生質(zhì)體游離方法,沿根部將水稻幼苗剪下,用鋒利的刀片將水稻葉鞘切割成0.5—1 mm的片段,放到0.6 mol·L-1甘露醇中,室溫預(yù)質(zhì)壁分離30 min,吸干殘留的甘露醇,用W5(154 mmol·L-1NaCl,125 mmol·L-1CaCl2,5 mmol·L-1KCl,2 mmol·L-1MES,pH 5.7)溶液稍清洗后加入現(xiàn)配酶液(0.5 mol·L-1甘露醇,10 mmol·L-1MES,1.5%纖維素酶,0.75%離析酶,10 mmol·L-1CaCl2,0.1% BSA),30℃,60 r/min,酶解4—6 h。在普通光學(xué)顯微鏡40×物鏡下觀察細(xì)胞,視野中有20—40個(gè)完整的細(xì)胞即可。用200目篩子過濾酶液,加入10 ml預(yù)冷的W5溶液于酶解的殘?jiān)焖偈謸u1 min,再次過濾,合并濾液,300×,離心5 min,吸出上清液。向BD管中加入2 ml預(yù)冷的W5溶液,讓原生質(zhì)體重新懸浮,200×,離心3 min,重復(fù)此步驟一次。用500 μl W5重懸沉淀,置于冰上30 min后,150×,離心2 min,去除上清,用1 ml MMg懸浮細(xì)胞(使終濃度約為107個(gè)/ml)。
圖1 322-d1-eGFPn載體結(jié)構(gòu)圖
在100 μl原生質(zhì)體中,加入高純度10 μg(約10 μl)質(zhì)粒,再加入110 μl 40% PEG(40% PEG4000,0.3 mol·L-1甘露醇,0.1 mol·L-1CaCl2),混勻后,28℃黑暗中橫放15 min。加入500 μl的W5溶液終止反應(yīng),充分混勻,300×離心5 min,去除上清,加入600 μl WI溶液(4 mmol·L-1MES,pH 5.7,0.5 mol·L-1甘露醇,20 mmol·L-1KCl),28℃黑暗中培養(yǎng)14—16 h。
使用激光掃描共聚焦顯微鏡(LSM 7 DUO)觀察轉(zhuǎn)化后含有GFP蛋白以及GFP融合蛋白的原生質(zhì)體,GFP、mCherry的激發(fā)波長(zhǎng)分別為488、561 nm,發(fā)射波長(zhǎng)分別為530—560、580—620 nm。葉綠體自發(fā)熒光的激發(fā)波長(zhǎng)為488 nm,發(fā)射波長(zhǎng)為650—750 nm。
收集轉(zhuǎn)化后的原生質(zhì)體,300×,離心6 min,盡量去除上清。加入20 μl的SDS-PAGE樣品緩沖液(50 mmol·L-1Tris-HCl,2% SDS,0.1%溴酚藍(lán),10%甘油,1%巰基乙醇)100℃煮沸5 min,提取原生質(zhì)體中的總蛋白。室溫離心1 min,吸取上清,用10%的SDS-聚丙烯凝膠(Bio-Rad)200 V 35 min分離樣品的蛋白,300 mA 3 h將蛋白轉(zhuǎn)到硝酸纖維素膜上,使用一抗Anti-GFP溫室孵育1 h,二抗Anti-Mouse溫室孵育1 h,使用化學(xué)發(fā)光試劑(Thermo Scientific)溫室孵育5 min后,進(jìn)行觀察。
為確定轉(zhuǎn)化的最佳時(shí)間,在原生質(zhì)體中轉(zhuǎn)入GFP載體,分別提取轉(zhuǎn)化10、12、14、16、18、20、22、24 h的產(chǎn)物,300×離心5 min,棄上清,加入500 μl TRIzol,渦旋15 s,溫室靜置3 min。加入150 μl氯仿,渦旋15 s,靜置2 min,4℃,12 000×離心5 min,吸取水相到新的離心管,加入250 μl預(yù)冷的異丙醇,混勻后溫室放置3 min,4℃,12 000×離心5 min,棄上清,加入1 ml 75%乙醇,簡(jiǎn)單混勻后4℃,12 000×離心2 min,去除殘留酒精,加入20 μl RNase水溶解沉淀。分別取1 μg RNA用SMARTScribeTMReverse Transcriptase試劑盒(TakaRa Clontech)進(jìn)行逆轉(zhuǎn)錄,反應(yīng)條件:30℃ 10 min,42℃ 20 min,99℃ 5 min,4℃ 5 min,瞬間離心后,將樣品濃度稀釋至300—500 ng,以此為模板做qPCR定量分析,設(shè)計(jì)PCR引物GFP-F:GACGACGGCAACTACAAGAC、GFP-R:TCGGCCATGATATA GACGTT,產(chǎn)物為163 bp,管家基因作為對(duì)照。使用AceQ qPCR SYBR@Green MasterMix試劑盒(Vazyme),反應(yīng)條件:95℃ 5 min,95℃ 10 s,60℃ 30 s,40個(gè)循環(huán)。
將目的片段分別與GFP進(jìn)行組裝,如圖2所示,選用RⅠ、Ⅰ兩個(gè)限制性內(nèi)切酶將載體線性化,選用這兩個(gè)酶切位點(diǎn)插入目的片段不會(huì)導(dǎo)致移碼,保證目標(biāo)蛋白的正確表達(dá)。經(jīng)PCR檢測(cè)后結(jié)果如圖3所示,除了Pik1-H4-GFP有一個(gè)擴(kuò)增片段不正確以外,其余都正確,挑取PCR結(jié)果正確質(zhì)粒送去公司測(cè)序,結(jié)果表明組裝成功。
選取茁壯、葉鞘較硬的幼苗,用手術(shù)刀片將葉鞘切割成小段(圖4)。通過血球計(jì)數(shù)板統(tǒng)計(jì)獲得不同游離時(shí)間細(xì)胞的數(shù)目,游離的最佳時(shí)間為4—6 h,在3—4 h細(xì)胞游離數(shù)目增長(zhǎng)速度最快,4—6 h細(xì)胞數(shù)量趨于平穩(wěn),6 h以后細(xì)胞總量呈現(xiàn)下降趨勢(shì),特別是7 h以后,顯微下細(xì)胞碎片增多,細(xì)胞死亡速度加快(圖5)。隨著游離時(shí)間的增加,細(xì)胞總數(shù)目增多,導(dǎo)致供氧不足,初始的游離細(xì)胞活力下降,加上游離過程中的機(jī)械碰撞使細(xì)胞膜破碎,從而導(dǎo)致總體細(xì)胞數(shù)目呈現(xiàn)下降趨勢(shì)。
GFP蛋白在藍(lán)色波長(zhǎng)范圍的光線激發(fā)下,發(fā)出綠色螢光。將GFP載體轉(zhuǎn)化到原生質(zhì)體中,28℃,經(jīng)過14—16 h的暗培養(yǎng)后,吸取5 μl在熒光顯微鏡下進(jìn)行檢測(cè),可以看到GFP蛋白發(fā)出的熒光(圖6)。從圖中可以看出,GFP載體有較高的轉(zhuǎn)化效率,經(jīng)過暗培養(yǎng)后,大部分細(xì)胞還保持有較完整的形態(tài),較高的生命活力。圖中也存在一部分細(xì)胞碎片,說明存在一部分的細(xì)胞死亡,有一定比例的損失。
Ⅰ: AvrPik; Ⅱ: Pik1-H4; Ⅲ: Pik2-H4
M: 1 kb Marker; 1-6: Pik1-H4-GFP; 7-12: Pik2-H4-GFP; 13-18: AvrPik-GFP
a:水稻葉鞘游離過程圖Process of rice leaf sheath protoplasts;b:水稻葉鞘原生質(zhì)體圖Observation of protoplasts isolation from leaf sheath
為探索原生質(zhì)體轉(zhuǎn)化的最佳時(shí)間,通過轉(zhuǎn)化GFP質(zhì)粒,設(shè)置不同的轉(zhuǎn)化時(shí)間,通過提取原生質(zhì)體的總RNA,用實(shí)時(shí)熒光定量技術(shù)估測(cè)的相對(duì)表達(dá)量,獲得最佳轉(zhuǎn)化時(shí)間為14—16 h相對(duì)表達(dá)量最高的轉(zhuǎn)化時(shí)間為16 h,之后逐漸下降(圖7)。
大部分基因產(chǎn)物與特定的細(xì)胞器有一定的關(guān)聯(lián),可通過亞細(xì)胞定位來探索該蛋白的功能以及蛋白相互作用的網(wǎng)絡(luò)。將瞬時(shí)表達(dá)載體轉(zhuǎn)染到水稻的原生質(zhì)體中,通過激光共聚焦掃描顯微鏡63×水鏡觀察到目標(biāo)蛋白在水稻細(xì)胞內(nèi)的具體表達(dá)部位。由圖8可知AvrPik-H4主要定位于細(xì)胞膜,Pik1-H4主要定位于內(nèi)質(zhì)網(wǎng),Pik2-H4主要定位于質(zhì)體。AvrPik-H4蛋白被定位于水稻細(xì)胞膜上,說明是一種膜蛋白或者積累于膜上的蛋白,通過某種形式運(yùn)輸?shù)剿拗骷?xì)胞作為激發(fā)子觸發(fā)一系列反應(yīng)。從定位結(jié)果初步推定Pik1-H4可能主要參與AvrPik蛋白的識(shí)別反應(yīng)以及信號(hào)傳遞的作用,Pik2-H4主要起到改變能量的傳輸方式及調(diào)控下游抗病引發(fā)過敏性壞死的作用。相比煙葉、洋蔥表皮細(xì)胞的瞬時(shí)轉(zhuǎn)化體系,水稻葉鞘細(xì)胞更具有說服力,有正確的蛋白合成系統(tǒng),能引導(dǎo)目標(biāo)蛋白的正確折疊。
圖5 酶解時(shí)間對(duì)原生質(zhì)體產(chǎn)量的影響
a:GFP熒光GFP filter;b:白光bright field
圖7 不同轉(zhuǎn)化時(shí)間GFP相對(duì)表達(dá)量
圖8 AvrPik-H4、Pik1-H4及Pik2-H4亞細(xì)胞定位
收集轉(zhuǎn)化結(jié)束后原生質(zhì)體,提取總蛋白,進(jìn)行Western blot驗(yàn)證,結(jié)果如圖9所示。融合蛋白比目標(biāo)蛋白分子量增加30 kD左右,用Anti-GFP作為一抗進(jìn)行孵育,其中泳道1是沒有轉(zhuǎn)入質(zhì)粒的細(xì)胞總蛋白作為陰性對(duì)照,泳道2轉(zhuǎn)入GFP質(zhì)粒作為陽性對(duì)照,泳道3—5是目的片段與GFP的融合蛋白,與Marker進(jìn)行對(duì)照結(jié)果表明正確,為亞細(xì)胞定位的準(zhǔn)確性提供了有力證據(jù)。
1:陰性對(duì)照Negative control;2:陽性對(duì)照Positive control; 3:Pik1-H4-GFP;4:Pik2-H4-GFP;5:AvrPik-H4-GFP
水稻作為單子葉模式植物被廣泛地應(yīng)用于分子功能、遺傳進(jìn)化研究,是探索基因組學(xué)和比較基因組學(xué)的有效工具[24]。利用水稻轉(zhuǎn)基因植株進(jìn)行基因功能研究存在周期長(zhǎng)、生物安全性問題,而水稻瞬時(shí)表達(dá)體系能在短時(shí)間內(nèi)實(shí)現(xiàn)目標(biāo)基因的高水平表達(dá),且保留原有的合成、修飾及轉(zhuǎn)運(yùn)蛋白的途徑,更有益于后續(xù)接近真實(shí)情況抗病相關(guān)蛋白的篩選。目前,水稻系統(tǒng)的瞬時(shí)表達(dá)主要采用原生質(zhì)體表達(dá)系統(tǒng)[25]、農(nóng)桿菌侵染[26]方法,相對(duì)來說原生質(zhì)體的方法更便捷高效。水稻葉片表面的蠟質(zhì)層含有10%的硅膠[27],不利于被纖維素酶降解,而水稻幼苗葉鞘的硅膠含量較低[28],適合做原生質(zhì)體游離的材料。本研究利用1/2 MS培養(yǎng)基25℃種植水稻幼苗,得到了較好的游離效果。相對(duì)于土壤栽培,培養(yǎng)基種植能提供更豐富均衡的營(yíng)養(yǎng),提供了更高質(zhì)的游離材料。PEG與二價(jià)陽離子共價(jià)結(jié)合時(shí)能介導(dǎo)DNA發(fā)生有效沉淀達(dá)到轉(zhuǎn)化的目的。有研究表明載體分子量越大轉(zhuǎn)化效率越低,Bart等[29]研究表明12 kb質(zhì)粒轉(zhuǎn)化效率為25%—30%;YANG等[13]研究表明5.9 kb質(zhì)粒轉(zhuǎn)化效率達(dá)到70%左右,3 kb的GFP質(zhì)粒轉(zhuǎn)化效率達(dá)到90%以上;段煉等[30]用蔗糖密度梯度法純化水稻原生質(zhì)體,質(zhì)粒轉(zhuǎn)化濃度為0.7 μg?μL-1時(shí)轉(zhuǎn)化效率達(dá)到60%—70%。本研究中,4.7 kb的GFP載體轉(zhuǎn)化效率可達(dá)95%以上,融合GFP的目的基因載體大小分別為5、7.7、8.2 kb,GFP空載體與AvrPik-H4-GFP的轉(zhuǎn)化效率相對(duì)稍高,但并無太大差別。相對(duì)以前的報(bào)道,本研究采用離心的方法對(duì)細(xì)胞進(jìn)行收集,相對(duì)蔗糖密度梯度純化法簡(jiǎn)便高效,利用實(shí)時(shí)熒光定量PCR法得到最佳轉(zhuǎn)化時(shí)間為14—16 h,獲得了較高的轉(zhuǎn)化效率。Western blot驗(yàn)證結(jié)果顯示,Pik1-H4-GFP與AvrPik-H4-GFP的表達(dá)量最高,說明轉(zhuǎn)化效率與質(zhì)粒分子大小無顯著的線性關(guān)系,蛋白的表達(dá)量則與蛋白本身的功能性質(zhì)有關(guān)。PEG介導(dǎo)的原生質(zhì)體轉(zhuǎn)化對(duì)DNA屬于無選擇性吸收,要同時(shí)保證質(zhì)粒的高濃度及高質(zhì)量才能獲得較高的轉(zhuǎn)化效率。
位于水稻第11號(hào)染色體,由兩個(gè)相鄰的NBS-LRR基因Pik、Pik組成,NBS-LRR類是水稻抗稻瘟病基因中最常見的編碼結(jié)構(gòu)域[31]。位點(diǎn)存在7個(gè)等位基因(、、、、、、),對(duì)稻瘟病菌都具有廣譜抗性[32-33]。利用水稻瞬時(shí)表達(dá)系統(tǒng)對(duì)Pik-H4及AvrPik-H4蛋白的成功表達(dá)以及亞細(xì)胞定位對(duì)蛋白的功能研究有非常重要的意義,可為揭示靶蛋白介導(dǎo)的抗性通路提供依據(jù)。本研究表明在H4幼苗接種GD0193稻瘟病菌24 h游離的原生質(zhì)體中轉(zhuǎn)入無毒蛋白AvrPik-H4后,在短時(shí)間內(nèi)大部分水稻細(xì)胞聚集成團(tuán)呈現(xiàn)膠稠透明狀發(fā)生過敏性壞死,而對(duì)照品種中二軟占則不會(huì)有此現(xiàn)象,說明介導(dǎo)的免疫反應(yīng)是通過迅速而高效地引起宿主過敏性壞死實(shí)現(xiàn)的。該現(xiàn)象為目標(biāo)基因在水稻葉鞘原生質(zhì)體中的成功表達(dá)提供了有力證據(jù)。
瞬時(shí)表達(dá)系統(tǒng)常用于靶蛋白的亞細(xì)胞定位,如農(nóng)桿菌侵染煙草[34]、洋蔥[35]及擬南芥表皮瞬時(shí)表達(dá)[36]。介于異源表達(dá)系統(tǒng)蛋白修飾、轉(zhuǎn)運(yùn)存在差異可能出現(xiàn)的錯(cuò)定位,同源表達(dá)系統(tǒng)的亞細(xì)胞定位結(jié)果更接近真實(shí)情況[37]。Zhai等[38]利用水稻原生質(zhì)體表達(dá)系統(tǒng)定位Pikh-1、Pikh-2及AvrPik-h均在細(xì)胞質(zhì)和細(xì)胞核。靶基因的亞細(xì)胞定位對(duì)基因功能的研究有重要意義,本研究中將目標(biāo)蛋白分別與GFP蛋白融合表達(dá),利用水稻葉鞘原生質(zhì)體瞬時(shí)表達(dá)系統(tǒng)進(jìn)行亞細(xì)胞定位,觀察到Pik1-H4主要定位于內(nèi)質(zhì)網(wǎng),Pik2-H4主要定位于質(zhì)體,AvrPik-H4主要定位于細(xì)胞膜。Pikh是Pik-H4的等位基因,二者定位結(jié)果出現(xiàn)差異的原因有兩個(gè):(1)CDS堿基序列存在差異。Pikh-1與Pik1-H4的CDS序列存在兩個(gè)堿基的差異,Pikh-2與Pik2-H4的CDS序列則完全相同,AvrPikh與AvrPik-H4的CDS序列存在一個(gè)堿基的差異,可能改變其在細(xì)胞內(nèi)的定位;(2)病原菌入侵時(shí)靶蛋白定位發(fā)生改變。本研究中的游離材料取自于接種稻瘟病菌24 h后的幼苗,有研究表明一些抗病相關(guān)基因會(huì)隨著病原菌的入侵而改變細(xì)胞中的定位,由細(xì)胞核流向細(xì)胞質(zhì),如定位于葉綠體的NRIP1蛋白識(shí)別病原菌效應(yīng)因子后,會(huì)從葉綠體流向細(xì)胞質(zhì)及細(xì)胞核[39]。有研究表明與的CC結(jié)構(gòu)域互作產(chǎn)生相應(yīng)的信號(hào)轉(zhuǎn)導(dǎo)后,使宿主產(chǎn)生相應(yīng)的抗性[38]。初步推測(cè)Pik1-H4主要起到一個(gè)無毒蛋白與宿主抗病的銜接作用,識(shí)別外源物質(zhì)入侵及啟動(dòng)防御信號(hào)傳遞給Pik2-H4,能夠受到病原物的誘導(dǎo)而表達(dá)。Pik2-H4接收到信號(hào)以后通過調(diào)配代謝物的合成以及物質(zhì)運(yùn)輸方式啟動(dòng)宿主的防御模式,加厚被侵染細(xì)胞的細(xì)胞壁或者直接啟動(dòng)自殺機(jī)制阻止相鄰細(xì)胞被侵菌絲侵入。AvrPik在稻瘟病菌孢子的細(xì)胞膜上主要起到信號(hào)傳遞的作用,便于被宿主識(shí)別。
水稻葉鞘原生質(zhì)體游離的最佳時(shí)間為4—6 h,最適轉(zhuǎn)化時(shí)間為14—16 h,F(xiàn)AD染色發(fā)現(xiàn)得到的細(xì)胞具有較高的活力,檢測(cè)GFP熒光觀察到較高的轉(zhuǎn)化效率,通過亞細(xì)胞定位觀察及Western blot驗(yàn)證目標(biāo)蛋白的表達(dá),為Pik-H4與無毒蛋白互作機(jī)制的研究打下了基礎(chǔ)。推測(cè)Pik1-H4可能主要參與AvrPik-H4蛋白的識(shí)別反應(yīng),Pik2-H4主要調(diào)控下游抗病反應(yīng)。
[1] FISHER M C, HENK D A, BRIGGS C J, BROWNSTEIN J S, MADOFF L C, MCCRAW S L, GURR S J. Emerging fungal threats to animal, plant and ecosystem health., 2012, 484(7393): 186-194.
[2] NANJAREDDY K, ARTHIKALA M, BLANCO L, ARELLANO E, LARA M. Protoplast isolation, transient transformation of leaf mesophyll protoplasts and improved-mediated leaf disc infiltration of: tools for rapid gene expression analysis., 2016, 16: 53.
[3] XIAO W, YANG Q, WANG H, GUO T, LIUY, ZHU X, CHEN Z. Identification and fine mapping of a resistance gene toin a space-induced rice mutant., 2011, 28(3): 303-312.
[4] 孫琴, 孫進(jìn)華, 王樹軍, 李煥苓, 王家保. 荔枝16-2基因啟動(dòng)子的克隆與瞬時(shí)表達(dá)分析. 熱帶作物學(xué)報(bào), 2016, 37(4): 736-741.
SUN Q, SUN J H, WANG S J, LI H L, WANG J B. Cloning and transient expression assay of16-2 gene promoter from litchi., 2016, 37(4): 736-741. (in Chinese)
[5] ZHANG Y, LIANG Z, ZONG Y, WANG Y, LIU J, CHEN K, QIU J, GAO C. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA., 2016, 7: 12617.
[6] ANDERSSON M, TURESSON H, NICOLIA A, FALT A, SAMUELSSON M, HOFVANDER P. Efficient targeted multiallelic mutagenesis in tetraploid potato () by transient CRISPR-Cas9 expression in protoplasts., 2016, 36(1): 117-128.
[7] HAYASHI S, WAKASA Y, OZAWA K, TAKAIWA F. Characterization of IRE1 ribonuclease-mediated mRNA decay in plants using transient expression analyses in rice protoplasts., 2016, 210(4): 1259-1268.
[8] BAI Y, HAN N, WU J, YANG Y, WANG J, ZHU M, BIAN H. A transient gene expression system using barley protoplasts to evaluate microRNAs for post-transcriptional regulation of their target genes., 2014, 119(1): 211-219.
[9] ZHAO F L, LI Y J, HU Y, GAO Y R, ZANG X W, DING Q, WANG Y J, WEN Y Q. A highly efficient grapevine mesophyll protoplast system for transient gene expression and the study of disease resistance proteins., 2016, 125(1): 43-57.
[10] CAO J, YAO D, LIN F, JIANG M. PEG-mediated transient gene expression and silencing system in maize mesophyll protoplasts: a valuable tool for signal transduction study in maize., 2014, 36(5): 1271-1281.
[11] IM J H, YOO S D. Transient expression inleaf mesophyll protoplast system for cell-based functional analysis of MAPK cascades signaling//Komis G, ?AMAJ J.. Humana Press, 2014: 3-12.
[12] 趙文婷, 魏建和, 劉曉東, 高志暉. 植物瞬時(shí)表達(dá)技術(shù)的主要方法與應(yīng)用進(jìn)展. 生物技術(shù)通訊, 2013, 24(2): 294-300.
ZHAO W T, WEI J H, LIU X D, GAO Z H. Advance of the main methods and applications of plant transient expression system., 2013, 24(2): 294-300. (in Chinese)
[13] YANG J W, FU J X, Li J, CHENG X L, LI F, DONG J F, LIU Z L, ZHUANG C X. A novel co-immunoprecipitation protocol based on protoplast transient gene expression for studying protein-protein interactions in rice., 2014, 32(1): 153-161.
[14] PLANCHAIS S, CAMBORDE L, JUPIN I. Protocols for studying protein stability in anprotoplast transient expression system//LOIS L M, MATTHIESEN R., 2016, 1450: 175-194.
[15] YAO L, LIAO X, GAN Z, PENG X, WANG P, LI S, LI T. Protoplast isolation and development of a transient expression system for sweet cherry (L.)., 2016, 209: 14-21.
[16] CHEN Q, DENT M, HURTADO J, STAHNKE J, MCNULTY A, LEUZINGER K, LAI H. Transient protein expression by agroinfiltration in lettuce//MACDONALD J, KOLOTILIN I, MENASSA R.. Humana Press, 2016: 55-67.
[17] NICOLIA A, PROUX-WERA E, AHMAN I, ONKOKESUNGA N, ANDERSSON M, ANDEASSONB E, ZHU L H. Targeted gene mutation in tetraploid potato through transient TALEN expression in protoplasts., 2015, 204: 17-24.
[18] PITINO M, ARMSTRONG C M, CANO L M, DUAN Y. Transient expression ofLiberibacter Asiaticus effector induces cell death in., 2016, 7: Article 982.
[19] 鹿連明, 秦梅玲, 王萍, 蘭漢紅, 牛曉慶, 謝荔巖, 吳祖建, 謝聯(lián)輝. 利用免疫共沉淀技術(shù)研究RSV、CP、SP和NSvc4蛋白的互作. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào), 2008, 16(5): 891-897.
LU L M, QIN M L, WANG P, LAN H H, NIU X Q, XIE L Y, WU Z J, XIE L H. Studies on the interactions between RSV CP, SP and NSvc4 proteins using co-immunoprecipitation technology., 2008, 16(5): 891-897. (in Chinese)
[20] 王華忠, 陳雅平, 陳佩度. 植物瞬間表達(dá)系統(tǒng)與功能基因組學(xué)研究. 生物工程學(xué)報(bào), 2007, 23(3): 367-374.
WANG H Z, CHEN Y P, CHEN P D. Plant transient expression system in functional genomics., 2007, 23(3): 367-374. (in Chinese)
[21] ZHANG Y, SU J, DUAN S, AO Y, DAI J, LIU J WANG P, LI Y, LIU B, FENG D, WANG J, WANG H. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes., 2011, 7: 30.
[22] KIM N, MOON S, MIN M K, CHOI E, KIM J, KOH E, YOON I, BYUN M, YOO S, KIM B. Functional characterization and reconstitution of ABA signaling components using transient gene expression in rice protoplasts., 2015, 6: Article 614.
[23] LIN Q P, ZHOU Z J, LUO W B, FANG M, LI M, LI H. Screening of proximal and interacting proteins in rice protoplasts by proximity-dependent biotinylation., 2017, 8: Article 749.
[24] CANTRELL R P, REEVES T G. The cereal of the world’s poor takes center stage., 2002, 296(5565): 53.
[25] 郭萍, 武瑤, 李嘉, 方榮祥, 賈燕濤. 利用水稻原生質(zhì)體快速分析miRNA靶標(biāo)RNA. 生物工程學(xué)報(bào), 2014, 30(11): 1751-1762.
GUO P, WU Y, LI J, FANG R X, JIA Y T. Efficient transient expression to analyze miRNA targets in rice protoplasts., 2014, 30(11): 1751-1762. (in Chinese)
[26] ANDRIEU A, BREITLER J C, SIRE C, MEYNARD D, GANTET P, GUIDERDONI E. An in planta,-mediated transient gene expression method for inducing gene silencing in rice (L.) leaves., 2012, 5: 23.
[27] ISLAM M A, DU H, NING J, YE H, XIONG L. Characterization of-homologous genes in rice involved in leaf wax accumulation and drought resistance., 2009, 70(4): 443-456.
[28] MA J F, YAMAJI N. Silicon uptake and accumulation in higher plants., 2006, 11(8): 392-397.
[29] BART R, CHERN M, PARK C, BARTLEY L, RONALD P C. A novel system for gene silencing using siRNAs in rice leaf and stem-derived protoplasts., 2006, 2: 13.
[30] 段煉, 錢君, 郭小雨, 朱英. 一種快速高效的水稻原生質(zhì)體制備和轉(zhuǎn)化方法的建立. 植物生理學(xué)報(bào), 2014, 50(3): 351-357.
DUAN L, QIAN J, GUO X Y, ZHU Y. A rapid and efficient method for isolation and transformation of rice protoplast., 2014, 50(3): 351-357. (in Chinese)
[31] MARTIN G B, BOGDANOVE A J, SESSA G. Understanding the functions of plant disease resistance proteins., 2003, 54(1): 23-61.
[32] ASHIKAWA I, HAYASHI N, ABE F, WU J, MATSUMOTO T. Characterization of the rice blast resistance gene Pik cloned from Kanto51., 2012, 30(1): 485-494.
[33] CHEN J, PENG P, TIAN J, HE Y, ZHANG L, LIU Z, YIN D, ZHANG Z., a rice blast resistance allele consisting of two adjacent NBS-LRR genes, was identified as a novel allele at thelocus., 2015, 35(5): 117
[34] 霍琳, 及曉宇, 王玉成. 農(nóng)桿菌介導(dǎo)的煙草瞬時(shí)表達(dá)試驗(yàn)條件優(yōu)化. 分子植物育種, 2016, 14(1): 80-85.
HUO L, JI X Y, WANG Y C. Transient expression conditions of tobacco transformation mediated by., 2016, 14(1): 80-85. (in Chinese)
[35] 劉海燕, 馮冬茹, 劉兵, 何炎明, 王宏斌, 王金發(fā). 農(nóng)桿菌介導(dǎo)的MpASR蛋白在洋蔥表皮細(xì)胞的定位研究. 熱帶亞熱帶植物學(xué)報(bào), 2009, 17(3): 218-222.
LIU H Y, FENG D R, LIU B, HE Y M, WANG H B, WANG J F. Studies on subcellular localization of MpASR in onion epidermal cells mediated by., 2009, 17(3): 218-222. (in Chinese)
[36] ROSAS-DIAZ T, CANA-QUIJADA P, AMORRIM-SILVA V, BOTELLA M, LOZANO-DURAN R, BEJARANO E.plants as a suitable and efficient system for transient expression using., 2017, 10(2): 353-356.
[37] MARION J, BACH L, BELLEC Y, MEYER C, GISSOT L, FAURE J. Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation ofseedlings., 2008, 56(1): 169-179.
[38] ZHAI C, ZHANG Y, YAO N, LIN F, LIU Z, DONG Z, WANG L, PAN Q. Function and interaction of the coupled genes responsible forencoded rice blast resistance., 2014, 9(6): e98067.
[39] CAPALN J L, KUMAR A S, PARK E, PADMANABHAN M, HOBAN K, MODLA S, CZYMMEK K, DINESH-KUMAR S. Chloroplast stromules function during innate immunity., 2015, 34(1): 45-57.
(責(zé)任編輯 岳梅)
Construction of Rice Leaf sheath Protoplast Transformation System and Transient Expression of Pik-H4 and AvrPik-H4 Proteins
LIU Wei, LIU Hao, DONG ShuangYu, GU FengWei, CHEN ZhiQiang, WANG JiaFeng, WANG Hui
(National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642)
The objective of this study is to obtain the suitable digestion and transformation time of protoplasts of rice sheath, improve the efficiency of transient expression, the target gene can be detected at the protein level and expressed in large quantities. To explore the feasibility of transient expression of rice blast resistance protein Pik1-H4, Pik2-H4 and avirulence protein AvrPik-H4 in protoplasts of rice leaf sheath, and to analyze the function of above target genes.High blast resistance rice variety H4 and control variety Zhonger Ruanzhan were used as experimental materials. Rice seedlings were cultured with 1/2 MS medium at 25℃ for 7-10 d. The protoplasts were isolated by cellulase and macerozyme enzymatic action. The optimal time of digestion was obtained by counting the number of cells in 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 h using hemocytometer. The target genesPik-H4,Pik-H4andwere fused with GFP to construct the transient expression vector. The total RNA was extracted from transformed protoplasts in 10, 12, 14, 16, 18, 20, 22 and 24 h, respectively. Real-time quantitative PCR (qRT-PCR) was used to detect the relative expression ofto obtain the best transformation time,housekeeping gene was used as control andspecific amplification primers were designed. The method of subcellular localization of the target gene by laser confocal scanning microscopy was used to estimate the gene function. The total protein was extracted and anti-GFP was used as the primary antibody, verified that the target protein successful expression by Western blot.rice seedlings were grown better quality and vitality in constant temperature 1/2 MS medium with rich and balanced nutrients, compared with soil planted at room temperature. Digested time had a greater impact on protoplast isolation efficiency. The results showed that the best time to digest was 4-6 h. The number of cells grew fastest at 3-4 h, tended to be stable at 4-6 h, showed a downward trend after 6 h, cell death rate accelerated and observed debris increased in the microscopic cell after 7 h. By detecting the relative expression of, it was found that the most suitable time for transformation was 14-16 h, reached the highest value at 16 h, and then gradually decreased. Subsequently, fluorescence of the GFP protein was observed to be quenched by fluorescence microscopy. Subcellular localization observation of AvrPik-H4 protein was mainly located in the cell membrane, presumably this is a membrane protein that is transported by some form to the host cell as an exciton to trigger a series of reactions.is composed ofPik-H4andPik-H4, which is highly efficient broad-spectrum rice blast gene. Pik1-H4 and Pik2-H4 were mainly located in the endoplasmic reticulum and plastid, respectively. From the subcellular localization results, it was presumed that Pik1-H4 might be mainly involved in the recognition of Avr-Pik protein and signal transmission, Pik2-H4 mainly play a role in changing the energy transmission and regulation of downstream disease caused hypersensitive reaction. Western blot results showed that the target protein was successfully expressed and the molecular size was correct. The expression of Pik1-H4 and AvrPik-H4 was higher than that of Pik2-H4, indicating that the size of the molecular weight is not a key factor affecting the transforming efficiency.The protoplast transient expression system of rice leaf sheath has the characteristics of high efficiency and rapidity, the exploration of protoplast isolation and transformation time has laid a foundation for the extensive practice of rice transient expression system. The successful expression of the target gene has provided a valuable theoretical basis for the study of the interaction mechanism between Pik-H4 and Avr protein.
rice; protoplast; subcellular localization; Western blot
2017-06-12;
2017-07-20
國(guó)家重點(diǎn)研發(fā)計(jì)劃(2017YFD0100100)、國(guó)家“863”計(jì)劃(2012AA101201)、國(guó)家自然科學(xué)基金(31401722)、廣東省省級(jí)科技計(jì)劃(2016A020210064)
聯(lián)系方式:劉維,Tel:18819266052;E-mail:1158397772@qq.com。通信作者王慧,Tel:020-85283237;E-mail:wanghui@scau.edu.cn