張 琳,吳 迎,曾凡星,石麗君
PI3K/Akt和MAPK信號(hào)通路平衡在運(yùn)動(dòng)調(diào)控高血壓血管平滑肌表型轉(zhuǎn)換中的作用
張 琳,吳 迎,曾凡星,石麗君
目的:探究PI3K/Akt(磷脂酰肌醇3激酶/蛋白激酶B)和MAPK(絲裂原活化蛋白激酶)信號(hào)通路間平衡在有氧運(yùn)動(dòng)調(diào)控高血壓平滑肌表型轉(zhuǎn)換中的作用。方法:選取3月齡雄性Wistar-Kyoto大鼠(WKY)和自發(fā)性高血壓大鼠(SHR),隨機(jī)分為安靜組[WKY-SED(正常血壓)、SHR-SED(高血壓)]、有氧運(yùn)動(dòng)組[WKY-EX(正常血壓)、SHR-EX(高血壓)]。運(yùn)動(dòng)組進(jìn)行8周55%~65% V.O2max強(qiáng)度的跑臺(tái)運(yùn)動(dòng),觀察有氧運(yùn)動(dòng)對(duì)高血壓大鼠胸主動(dòng)脈管壁厚度、平滑肌標(biāo)志蛋白和信號(hào)蛋白表達(dá)的影響。結(jié)果:1)與WKY-SED組相比,SHRSED組SBP顯著升高(P<0.01),WKY-EX組SBP顯著下降(P<0.05)。與SHR-SED組相比,SHR-EX組SBP顯著下調(diào)(P<0.01)。2)與WKY-SED組相比,SHR-SED組胸主動(dòng)脈管壁厚度明顯增加(P<0.01),WKY-EX組無(wú)顯著性差異;與SHR-SED組相比,SHR-EX組胸主動(dòng)脈管壁厚度顯著降低(P<0.05)。3)與WKY-SED組相比,SHR-SED組平滑肌收縮表型標(biāo)志蛋白(α-SM-actin、calponin)蛋白表達(dá)顯著下調(diào),而合成表型標(biāo)志蛋白(OPN)顯著上調(diào) (P<0.01),WKY-EX組無(wú)顯著性差異。與SHR-SED組相比,SHR-EX組α-SM-actin、calponin的蛋白表達(dá)顯著上調(diào),而OPN的蛋白表達(dá)顯著下調(diào)(P<0.05)。與WKY-SED組相比,SHR-SED組p-Akt、eNOS的蛋白表達(dá)顯著下調(diào)(P<0.01),p-ERK、p-p38的蛋白表達(dá)顯著上調(diào)(P<0.01),WKY-EX組p-Akt(P<0.05)、eNOS(P<0.01)的蛋白表達(dá)呈上調(diào)趨勢(shì)。與SHR-SED組相比,SHR-EX組p-Akt(P<0.05)、eNOS(P<0.01)的蛋白表達(dá)顯著上調(diào),p-ERK和p-p38(P<0.05)的蛋白表達(dá)顯著下調(diào)。結(jié)論:有氧運(yùn)動(dòng)可抑制高血壓大鼠VSMC由收縮表型向合成表型轉(zhuǎn)換,且VSMC的表型可能是通過(guò)PI3K/Akt和MAPK通路之間的平衡作用進(jìn)行調(diào)控的。
有氧運(yùn)動(dòng);高血壓;表型轉(zhuǎn)換;PI3K/Akt;MAPK
高血壓作為威脅人類健康的殺手,如不及時(shí)發(fā)現(xiàn)和治療將會(huì)導(dǎo)致心肌梗塞、中風(fēng)、腎衰竭,甚至造成死亡。2014年成人高血壓的管理指南中指出,60歲及以上高血壓患者的治療目標(biāo)是血壓低于150/90 mmHg,而對(duì)于30~59歲的高血壓人群來(lái)說(shuō),要求血壓低于140/90 mmHg[14]。血壓升高與血管功能密切相關(guān),血管的舒縮活動(dòng)主要取決于血管平滑肌細(xì)胞(vascular smooth muscle cell,VSMC)[11]。VSMC位于動(dòng)脈管壁的中層,通過(guò)舒縮來(lái)調(diào)節(jié)血流阻力和流向外周的血流量。成年個(gè)體中,VSMC呈收縮表型,在眾多細(xì)胞因子和生長(zhǎng)因子的調(diào)控下,可從處于靜息狀態(tài)的收縮表型轉(zhuǎn)換為具有增殖遷移功能的合成表型。收縮表型的標(biāo)志蛋白有α平滑肌肌動(dòng)蛋白(α-SM-actin)、調(diào)寧蛋白(calponin)、平滑肌肌球蛋白重鏈蛋白(SM-MHC),轉(zhuǎn)凝蛋白(SM22α)等,合成表型的標(biāo)志蛋白有骨橋蛋白o(hù)steopontin(OPN),表皮調(diào)節(jié)素(Epiregulin)[2]。同時(shí),VSMC的這種變化受磷脂酰肌醇激酶信號(hào)通路(PI3K/Akt)和絲裂原活化蛋白激酶級(jí)聯(lián)反應(yīng)(mitogen-activated protein kinase,MAPK)等多種通路的調(diào)控[26]。
靜坐少動(dòng)的生活方式導(dǎo)致肥胖、II型糖尿病和心血管疾病等慢性病的發(fā)病率大大增加。規(guī)律性的有氧運(yùn)動(dòng)可以激活體內(nèi)相關(guān)信號(hào)通路,從而延緩慢性病的發(fā)展進(jìn)程[20]。運(yùn)動(dòng)作為非藥物治療手段,已經(jīng)被越來(lái)越多的高血壓患者所接受,堅(jiān)持長(zhǎng)期規(guī)律性的有氧運(yùn)動(dòng)可以有效降低血壓,改善血管舒縮功能,積極地預(yù)防心血管疾病。運(yùn)動(dòng)改善VMSC的舒縮功能可能是通過(guò)調(diào)控VSMC的表型來(lái)實(shí)現(xiàn)的,表型轉(zhuǎn)換在VSMC的功能調(diào)控方面起著重要作用。
本實(shí)驗(yàn)采用自發(fā)性高血壓大鼠(spontaneously hypertensive rat,SHR)和正常血壓大鼠(Wistar Kyoto rats,WKY),探討有氧運(yùn)動(dòng)對(duì)正常血壓和高血壓大鼠VSMC表型轉(zhuǎn)換的影響及相關(guān)信號(hào)通路(PI3K/Akt和MAPK)的平衡在VSMC表型轉(zhuǎn)換中的調(diào)控。
選取3月齡雄性SPF級(jí)的WKY和SHR各24只。全部大鼠采用國(guó)家標(biāo)準(zhǔn)嚙齒類動(dòng)物飼料進(jìn)行飼養(yǎng),自由飲食和進(jìn)水,動(dòng)物飼養(yǎng)完全符合動(dòng)物倫理委員會(huì)的相關(guān)規(guī)定。
全部大鼠先進(jìn)行為期1周的跑臺(tái)適應(yīng)性訓(xùn)練,1周后對(duì)大鼠進(jìn)行分組。分組情況如下:正常血壓安靜對(duì)照組(WKY-SED)、正常血壓有氧運(yùn)動(dòng)組(WKY-EX)、高血壓安靜對(duì)照組(SHR-SED)、高血壓有氧運(yùn)動(dòng)組(SHR-EX)。WKY-EX和SHR-EX進(jìn)行8周的跑臺(tái)運(yùn)動(dòng)干預(yù)。運(yùn)動(dòng)干預(yù)方案為:以55%~65%O2max進(jìn)行訓(xùn)練,20 m/min,60 min/天,5 天/周。
測(cè)試要求在安靜、溫暖的環(huán)境下,大鼠需保持清醒,用智能無(wú)創(chuàng)血壓測(cè)試儀BP-2010A(軟隆生物公司,北京)測(cè)量大鼠安靜時(shí)的尾動(dòng)脈血壓和心率HR。
選取各組大鼠的胸主動(dòng)脈進(jìn)行固定,梯度酒精二甲苯脫水透明后,浸蠟包埋。石蠟塊固定于病理切片機(jī)上,設(shè)置4 μm的蠟片厚度,將胸主動(dòng)脈切片放于60 ℃烤箱烤2 h。二甲苯脫蠟及梯度濃度酒精水化后,分別用蘇木素伊紅對(duì)細(xì)胞核和細(xì)胞質(zhì)進(jìn)行著色,酒精二甲苯處理后封片。
檢測(cè)了各組大鼠胸主動(dòng)脈α-SM-actin、calponin、OPN的表達(dá)。對(duì)抗原修復(fù)后的各組胸主動(dòng)脈切片使用0.3%TritonX-100進(jìn)行打孔處理,BSA封閉20 min后進(jìn)行免疫反應(yīng),滴加一抗于切片上,4 ℃過(guò)夜。第2天取出切片,室溫下復(fù)溫1 h后,用0.01 mol/L的PBS緩沖液洗3×5 min(一抗不同要分開洗)。滴加辣根過(guò)氧化物酶標(biāo)記的二抗,室溫孵育1h,DAB顯色,蘇木素復(fù)染,梯度酒精和二甲苯處理后,中性樹膠封片。
采用蛋白免疫印跡技術(shù)檢測(cè)了各組大鼠胸主動(dòng)脈平滑肌表型標(biāo)志蛋白α-SM-actin、Calponin、OPN及信號(hào)蛋白p-Akt、Akt、eNOS、p-42/44 ERK、42/44ERK、p-p38 MAPK、p38 MAPK、的蛋白表達(dá)量。具體操作如下:動(dòng)物麻醉取大鼠的胸主動(dòng)脈,剝離干凈后投入液氮中暫存。研磨組織至粉狀,迅速加入裂解液(PIPA裂解液中已經(jīng)預(yù)先加入了一定比例的蛋白酶抑制劑和磷酸酶抑制劑)。振蕩搖勻后離心后取上清液。用BCA試劑盒測(cè)定蛋白濃度,樣品制備,聚丙烯酰胺凝膠(SDS-PAGE)電泳后,恒流轉(zhuǎn)膜。5%的BSA封閉2 h后加入一抗溶液過(guò)夜。第2天加入二抗孵育,ECL發(fā)光液滴于PVDF膜上,孵育1 min左右后放入ChemiDoc XRS+ 系統(tǒng)成像。Image Lab? Software軟件根據(jù)光密度進(jìn)行目標(biāo)蛋白質(zhì)條帶的半定量分析。
統(tǒng)計(jì)方法采用平均數(shù)±標(biāo)準(zhǔn)差來(lái)表示。組間比較采用SPSS 19.0進(jìn)行單因素方差分析(one way-ANOVA),P<0.05為具有顯著性差異,P<0.01為具有非常顯著性差異。蛋白印跡法用Image-Lab進(jìn)行分析,免疫組化用IPP進(jìn)行分析,統(tǒng)計(jì)圖表用GraphPad Prism 5制作。
表1和圖1所示,實(shí)驗(yàn)前(initial),SHR-SED組與SHREX組相比,WKY-SED組與WKY-EX組相比,體重?zé)o顯著差異。8周實(shí)驗(yàn)后(fi nal),高血壓運(yùn)動(dòng)組和正常血壓運(yùn)動(dòng)組分別與其安靜組相比,體重顯著下調(diào)(P<0.05)。大鼠的心臟重量指數(shù)(Heart Weight Index,Heart weight/Body weight),SHR-SED組顯著高于WKY-SED組(P<0.01),SHR-EX組顯著低于SHR-SED組(P<0.05),WKY-EX組顯著高于WKYSED組(P<0.05)。
表1 各組大鼠心臟重量指數(shù)Table 1 The Heart Weight/Body Weight of Rats
圖1 有氧運(yùn)動(dòng)對(duì)大鼠心臟重量/體重的影響Figure 1. E ff ects of Aerobic Exercise on HW/BW of Rats
對(duì)WKY和SHR實(shí)驗(yàn)前、后的收縮壓(SBP)、舒張壓(DBP)、平均動(dòng)脈壓(MAP)、HR進(jìn)行測(cè)量后發(fā)現(xiàn):1)實(shí)驗(yàn)前:與WKY-SED組相比,SHR-SED組的SBP、DBP、MAP、HR出現(xiàn)顯著性上調(diào)(P<0.01)。2)8周運(yùn)動(dòng)后:與WKY-SED組相比,WKY-EX組的SBP、DBP、MAP、HR雖有所下調(diào),但并未出現(xiàn)顯著性的差異。與SHR-SED組相比,SHR-EX組的SBP、MAP、HR均出現(xiàn)顯著下調(diào),其中以SBP的下調(diào)尤為顯著(P<0.01,圖2)。
取各組胸主動(dòng)脈進(jìn)行H&E染色,比較管壁厚度。與WKY-SED組相比,SHR-SED組胸主動(dòng)脈管壁厚度顯著增加(P<0.01),但與WKY-EX組相比管壁厚度無(wú)顯著差異。與SHR-SED組相比,SHR-EX組胸主動(dòng)脈管壁厚度顯著下降(P<0.05,圖3)。
圖2 有氧運(yùn)動(dòng)對(duì)大鼠血壓及心率的影響Figure 2. E ff ects of Aerobic Exercise on BP and HR of Rats
圖3 有氧運(yùn)動(dòng)對(duì)大鼠胸主動(dòng)脈管壁厚度的影響Figure 3. E ff ects of Aerobic Exercise on the Thickness of Thoracic Aortic Aorta of Rats
免疫組化實(shí)驗(yàn)檢測(cè)了各組大鼠胸主動(dòng)脈平滑肌表型標(biāo)志蛋白α-SM-actin、calponin及OPN的蛋白分布及表達(dá)。結(jié)果表明,與WKY-SED組相比,SHR-SED組中胸主動(dòng)脈的α-SM-actin、calponin的表達(dá)顯著下調(diào)(P<0.01),而OPN的表達(dá)顯著上調(diào)(P<0.01);與WKY-EX組無(wú)明顯差異;與SHR-SED組相比,SHR-EX組α-SM-actin、calponin的表達(dá)顯著上調(diào)(P<0.05),而OPN顯著下調(diào)(P<0.05)。組化染色及統(tǒng)計(jì),結(jié)果如圖4所示。
由圖5可知,與WKY-SED組相比,SHR-SED組α-SM-actin和calponin的蛋白表達(dá)量呈顯著性下調(diào)(P<0.01),而與SHR-SED組相比,SHR-EX組的α-SM-actin的蛋白表達(dá)量顯著上調(diào)(P<0.05)。WKY-SED組合WKY-EX組無(wú)顯著性差異。與WKY-SED組相比,SHR-SED組的OPN的蛋白表達(dá)顯著性上調(diào)(P<0.01),而與SHR-SED組相比,SHR-EX組OPN的蛋白表達(dá)量出現(xiàn)顯著性下調(diào)(P<0.05)。WKY-SED組與WKY-EX組之間無(wú)顯著性差異。
本實(shí)驗(yàn)有氧運(yùn)動(dòng)部分同樣對(duì)PI3K/Akt/eNOS和MAPK信號(hào)通路進(jìn)行檢測(cè)。MAPK信號(hào)通路中選取了兩個(gè)與平滑肌表型轉(zhuǎn)化相關(guān)的信號(hào),分別是42/44 ERK和p38 MAPK,觀察有氧運(yùn)動(dòng)對(duì)3個(gè)通路的磷酸化水平的影響。
圖4 大鼠胸主動(dòng)脈平滑肌表型標(biāo)志蛋白α-SM-actin、calponin及OPN分布及表達(dá)Figure 4. Protein Expression and Distribution of α-SM-actin,Calponin and OPN in Thoracic Aortic Smooth Muscle Cells
由圖6可知,與WKY-SED組相比,WKY-EX組p-Akt的蛋白表達(dá)顯著性升高(P<0.05),SHR-SED組p-Akt的蛋白表達(dá)水平顯著性下調(diào)(P<0.01)。與SHR-SED組相比,SHR-EX組p-Akt的蛋白表達(dá)水平顯著性上調(diào)(P<0.05)。與WKY-SED相比,WKY-EX組eNOS的蛋白表達(dá)量顯著性升高(P<0.01),SHR-SED組eNOS的蛋白表達(dá)量顯著性下調(diào)(P<0.01);與SHR-SED組相比,SHR-EX組eNOS的蛋白表達(dá)量顯著性上調(diào)(P<0.05)。
由圖7可知,與WKY-SED組相比,SHR-SED組p-42/44 ERK和p-p38 MAPK的蛋白表達(dá)量顯著上調(diào)(P<0.01),而WKY-EX組無(wú)顯著性差異;與SHR-SED相比,SHR-EX組p-42/44 ERK的蛋白表達(dá)量顯著下調(diào)(P<0.01),SHR-EX組p-p38 MAPK的蛋白表達(dá)量也顯著下降(P<0.05)。
平滑肌的表型調(diào)控在高血壓、動(dòng)脈粥樣硬化、肺動(dòng)脈高壓等心血管疾病中發(fā)揮重要作用。目前對(duì)VSMC表型的研究已經(jīng)有了一定的進(jìn)展。VSMC在胚胎時(shí)期和血管形成過(guò)程中呈合成表型,具有較強(qiáng)的增殖和遷移能力。在成熟個(gè)體中,VSMC呈高度分化型,通過(guò)舒縮來(lái)調(diào)控管腔大小、血壓以及血流的分布[23]。分化型的VSMC表現(xiàn)出較低的增殖和合成能力,通過(guò)表達(dá)特殊的收縮蛋白、離子通道及信號(hào)分子來(lái)完成細(xì)胞的收縮功能[24,30]。然而,已有研究表明,VSMC 在成年個(gè)體中具有高度的可塑性,當(dāng)血管發(fā)生損傷時(shí),其表型會(huì)發(fā)生可逆性轉(zhuǎn)變,此過(guò)程稱之為表型轉(zhuǎn)換(phenotypic switching)[3,4,13]。已有流行病學(xué)數(shù)據(jù)顯示,身體活動(dòng)能夠改善血管疾病,降低心血管的發(fā)病率和死亡[6,7,28],但鮮見有氧運(yùn)動(dòng)對(duì)高血壓血管平滑肌表型的調(diào)控研究。有氧運(yùn)動(dòng)調(diào)控血壓的機(jī)制可能是通過(guò)逆轉(zhuǎn)VSMC的表型來(lái)實(shí)現(xiàn)的。
圖5 有氧運(yùn)動(dòng)對(duì)大鼠胸主動(dòng)脈α-SM-actin蛋白表達(dá)量的影響Figure 5. E ff ects of Aerobic Exercise on the Makers Protein Expression of α-SM-actin,Calponin and OPN in Thoracic Aortic Smooth Muscle Cells
圖6 有氧運(yùn)動(dòng)對(duì)大鼠胸主動(dòng)脈eNOS蛋白表達(dá)量的影響Figure 6. E ff ects of Aerobic Exercise on the Protein Expression of p-Akt and eNOS in Thoracic Aortic Smooth Muscle Cells
常用心臟重量指數(shù)(Heart Weight Index)來(lái)評(píng)價(jià)心臟肥大的程度。本實(shí)驗(yàn)中,有氧運(yùn)動(dòng)可以增加正常大鼠的心臟重量指數(shù),降低安靜時(shí)的HR和收縮壓;高血壓運(yùn)動(dòng)組和安靜組對(duì)比發(fā)現(xiàn),有氧運(yùn)動(dòng)可以減輕因病理原因?qū)е碌男呐K病理性肥大,降低因高血壓引起的HR和心臟重量指數(shù)的增加,同時(shí)還可以有效降低收縮壓和平均動(dòng)脈壓。有氧運(yùn)動(dòng)對(duì)于正常血壓大鼠仍有良好效應(yīng),促進(jìn)其心臟產(chǎn)生運(yùn)動(dòng)適應(yīng),形成生理性肥大。有氧運(yùn)動(dòng)能顯著增強(qiáng)正常大鼠的心臟功能,血壓降低可能涉及到各種調(diào)節(jié)機(jī)制,從神經(jīng)系統(tǒng)分析,可能是因?yàn)橛醒踹\(yùn)動(dòng)有效調(diào)節(jié)植物神經(jīng)系統(tǒng),降低了交感神經(jīng)的興奮性,同時(shí)增強(qiáng)了迷走神經(jīng)的調(diào)節(jié)作用,從而緩解了小動(dòng)脈的痙攣[21]。
高血壓導(dǎo)致血管的結(jié)構(gòu)和功能發(fā)生改變,這種改變也體現(xiàn)了機(jī)體在高血壓癥狀下的自我防御[22]。在健康個(gè)體中,有氧運(yùn)動(dòng)可以引起血管結(jié)構(gòu)的適應(yīng)性變化,這種變化包括冠狀動(dòng)脈阻力的變化[17]。有氧運(yùn)動(dòng)可以維持動(dòng)脈管壁的彈性,延緩動(dòng)脈管壁增厚的速度,維持動(dòng)脈管壁原有的結(jié)構(gòu)和功能特點(diǎn)。實(shí)驗(yàn)結(jié)果顯示,SHR安靜對(duì)照組胸主動(dòng)脈的管壁厚度要明顯大于WKY安靜對(duì)照組,而有氧運(yùn)動(dòng)可以改善高血壓大鼠血管壁增厚的現(xiàn)象,與正常血壓的安靜組相比,經(jīng)過(guò)8周的規(guī)律性有氧運(yùn)動(dòng)的正常血壓有氧運(yùn)動(dòng)組胸主動(dòng)脈的管壁厚度出現(xiàn)一定程度的下降;與高血壓安靜組相比,高血壓有氧運(yùn)動(dòng)組胸主動(dòng)脈的管壁厚度明顯減少,猜想血管的彈性和功能都得到了積極性改善。無(wú)論是對(duì)于高血壓大鼠還是正常血壓大鼠來(lái)說(shuō),血管彈性的增強(qiáng),使得對(duì)抗心臟泵出血液的緩沖能力增強(qiáng),可以貯備更多的勢(shì)能,即使在血管舒張期也能將血液繼續(xù)泵向外周。
圖7 有氧運(yùn)動(dòng)對(duì)大鼠胸主動(dòng)脈p-42/44 ERK和p-p38 MAPK蛋白表達(dá)的影響Figure 7. E ff ects of Aerobic Exercise on the Protein Expression of p-42/44ERK and p-p38 MAPK in Thoracic Aortic Smooth Muscle Cells
在健康成熟個(gè)體中,VSMC以高度分化,無(wú)增殖和遷移能力的收縮表型為主,即以α-SM-actin、h1-calponin、SMMHC的蛋白表達(dá)為主,而OPN和Epiregulin等合成表型標(biāo)志蛋白表達(dá)較少[29]。一旦血管發(fā)生病變,VSMC的收縮表型蛋白表達(dá)下調(diào),合成表型蛋白表達(dá)上調(diào)。高血壓的發(fā)生可導(dǎo)致VSMC的結(jié)構(gòu)異常和功能紊亂。VSMC在血管損傷過(guò)程中的表型調(diào)控是一種適應(yīng)性的表現(xiàn),然而,這些適應(yīng)性的變化也導(dǎo)致了動(dòng)脈硬化或高血壓的發(fā)生[1,25]。本實(shí)驗(yàn)對(duì)VSMC收縮表型標(biāo)志蛋白α-SM-actin、h1-calponin和合成表型標(biāo)志蛋白OPN的表達(dá)量進(jìn)行了檢測(cè)。結(jié)果表明,SHR安靜對(duì)照組胸主動(dòng)脈的收縮表型標(biāo)志蛋白α-SM-actin和h1-calponin的表達(dá)量明顯少于WKY安靜對(duì)照組,相反,SHR安靜對(duì)照組合成表型標(biāo)志蛋白OPN的表達(dá)量明顯多于WKY安靜對(duì)照組。但經(jīng)過(guò)8周跑臺(tái)運(yùn)動(dòng)干預(yù)后,這種現(xiàn)象得到明顯逆轉(zhuǎn)。表明,有氧運(yùn)動(dòng)可以有效逆轉(zhuǎn)高血壓誘導(dǎo)的VSMC的表型轉(zhuǎn)換,使收縮表型標(biāo)志蛋白呈優(yōu)勢(shì)表達(dá),合成表型標(biāo)志蛋白表達(dá)量下調(diào),改變血管的結(jié)構(gòu),從而恢復(fù)血管的舒縮功能。
VSMC的表型轉(zhuǎn)化受多條信號(hào)通路的共同調(diào)控,蛋白磷酸化往往是信號(hào)傳遞信息改變基因表達(dá)的直接方式,轉(zhuǎn)錄因子或與其相互作用的蛋白質(zhì)常常是磷酸化作用的靶點(diǎn)。研究表明,VSMC的表型轉(zhuǎn)換是由細(xì)胞Ca2+進(jìn)行調(diào)控的,Ca2+介導(dǎo)細(xì)胞內(nèi)興奮轉(zhuǎn)錄耦聯(lián)過(guò)程,Ca2+通過(guò)激活相關(guān)信號(hào)通路,引起胞內(nèi)蛋白的異常表達(dá)[16]。與VSMC表型轉(zhuǎn)換相關(guān)的兩條主要信號(hào)通路分別為磷脂酰肌醇激酶信號(hào)通路(PI3K/Akt/eNOS)和絲裂原活化蛋白激酶信號(hào)通路(mitogen-activated protein kinase,MAPK)[12,21]。研究發(fā)現(xiàn),PI3K/Akt信號(hào)通路參與到VSMC的表型轉(zhuǎn)換,但對(duì)于其作用是維持VSMC的收縮表型還是合成表型還存在爭(zhēng)議[8,10,15]。MAPK通路具有三級(jí)激酶模式,ERK和p38MAPK是MAPK的亞族,參與到VSMC的表型轉(zhuǎn)換過(guò)程中[5,9,19],激活MAPK通路可促進(jìn)VSMC的增殖和遷移。本實(shí)驗(yàn)中,高血壓大鼠和正常血壓大鼠相比,高血壓大鼠分化表型標(biāo)志蛋白α-SM-actin、h1-calponin表達(dá)減少,合成表型標(biāo)志蛋白OPN增多時(shí),相應(yīng)的具有活性的p-Akt與eNOS的表達(dá)減少,而具有活性的p-ERK和p-p38MAPK作用增強(qiáng)。說(shuō)明PI3K/Akt/eNOS信號(hào)通路對(duì)VSMC的表型具有調(diào)控作用,維持VSMC的收縮表型。相反,ERK和p38MAPK信號(hào)通路主要維持VSMC的合成表型,使其具有增殖和遷移的能力。
有氧運(yùn)動(dòng)可以調(diào)控SHR的Ras元件,從而改善促炎反應(yīng)和抗炎反應(yīng)之間的平衡作用。Roque FR[27]等人用3月齡的SHR的冠狀動(dòng)脈和腸系膜動(dòng)脈作為研究對(duì)象,12周的運(yùn)動(dòng)干預(yù)后發(fā)現(xiàn),有氧運(yùn)動(dòng)可以明顯降低高血壓大鼠腸系膜動(dòng)脈的氧化應(yīng)激現(xiàn)象,同時(shí)使得 eNOS的蛋白表達(dá)量明顯增加,從而進(jìn)一步改善高血壓大鼠VSMC的功能[31]。本實(shí)驗(yàn)對(duì)調(diào)控平滑肌表型轉(zhuǎn)換的信號(hào)蛋白檢測(cè)發(fā)現(xiàn),有氧運(yùn)動(dòng)使高血壓大鼠p-Akt和eNOS的蛋白表達(dá)量均顯著上調(diào),同時(shí)p-ERK和p-p38水平顯著性下調(diào),有氧運(yùn)動(dòng)也可使正常血壓大鼠的p-Akt和eNOS的蛋白表達(dá)量顯著上調(diào)。說(shuō)明有氧運(yùn)動(dòng)介導(dǎo)的VSMC表型轉(zhuǎn)換是通過(guò)促進(jìn)PI3K/Akt信號(hào)通路作用增強(qiáng),同時(shí)抑制MAPK信號(hào)通路的作用,從而使得高血壓大鼠平滑肌向收縮表型方向轉(zhuǎn)化,抑制其向合成表型方向轉(zhuǎn)化。有氧運(yùn)動(dòng)對(duì)于正常血壓的大鼠血管機(jī)能方面也有良好的促進(jìn)作用。對(duì)于正常血壓大鼠來(lái)說(shuō),有氧運(yùn)動(dòng)也可以促進(jìn)PI3K/Akt信號(hào)通路的作用增強(qiáng),從而維持VSMC的收縮表型標(biāo)志蛋白優(yōu)勢(shì)表達(dá)。這也印證了VSMC主要以何種表型存在是由PI3K/PKB(Akt)和MAPK兩條信號(hào)之間的平衡作用決定的。
有氧運(yùn)動(dòng)可抑制高血壓大鼠VSMC由收縮表型向合成表型轉(zhuǎn)換,對(duì)VSMC的表型可能是通過(guò)PI3K和MAPK通路之間的平衡進(jìn)行調(diào)控的,且使促分化的PI3K/Akt作用增強(qiáng),促合成的MAPK作用減弱。
[1] AOSHIMA D,MURATA T,HORI M,et al. Time-dependent phenotypic and contractile changes of pulmonary artery in chronic hypoxia-induced pulmonary hypertension.[J]. J Pharmacol Sci,2009,110(2):182-190.
[2] BEAMISH J A,HE P,KOTTKE-MARCHANT K,et al. Molecular regulation of contractile smooth muscle cell phenotype:implications for vascular tissue engineering[J]. Tissue Eng Part B Rev,2010,16(5):467-491.
[3] BENTON J F,SONDERGAARD C S,KASSEM M,et al.Smooth muscle cells healing atherosclerotic plaque disruptions are of local,not blood,origin in apolipoprotein E knockout mice[J].Circulation,2007,116(18):2053-2061.
[4] BENTZON J F,WEILE C,SONDERGAARD C S,et al. Smooth muscle cells in atherosclerosis originate from the local vessel wall and not circulating progenitor cells in ApoE knockout mice[J].ArteriosclerThromb Vasc Biol,2006,26(12):2696-2702.
[5] BRENAN L,ANDREEV A,COHEN O,et al. Phenotypic characterization of a comprehensive set of MAPK1/ERK2 missense mutants[J]. Cell Rep,2016,17(4):1171-1183.
[6] BRIONES A M,TOUYZ R M. Moderate exercise decreases infl ammation and oxidative stress in hypertension:but what are the mechanisms[J]. Hypertension,2009,54(6):1206-1208.
[7] CAMPNELL N R,KHAN N A,HILL M D,et al. 2009 Canadian hypertension education program recommendations:the scienti fi c summary--an annual update[J]. Can J Cardiol,2009,25(5):271-277.
[8] CHOI K H,KIM J E,SONG N R,et al. Phosphoinositide 3-kinase is a novel target of piceatannol for inhibiting PDGF-BB-induced proliferation and migration in human aortic smooth muscle cells[J]. Cardiovasc Res,2010,85(4):836-844.
[9] CUENDA A,ROUSSEAU S. p38 MAP-kinases pathway regulation,function and role in human diseases[J]. Biochim Biophys Acta,2007,1773(8):1358-1375.
[10] FAN Z,LI C,QIN C,et al. Role of the PI3K/AKT pathway in modulating cytoskeleton rearrangements and phenotype switching in rat pulmonary arterial vascular smooth muscle cells[J]. DNA Cell Biol,2014,33(1):12-19.
[11] GERTHOFFER W T. Mechanisms of vascular smooth muscle cell migration[J]. Cir Res,2007,100(5):607-621.
[12] HAYASHI K,TAKAHASHI M,KIMURA K,et al. Changes in the balance of phosphoinositide 3-kinase/protein kinase B (Akt)and the mitogen-activated protein kinases (ERK/p38MAPK) determine a phenotype of visceral and vascular smooth muscle cells[J].J Cell Biol,1999,145(4):727-740.
[13] HOOFNAGLE M H,THOMAS J A,WAMHOFF B R,et al.Origin of neointimal smooth muscle we’ve come full circle[J].Arterioscler Thromb Vasc Biol,2006,26(12):2579-2581.
[14] JAMES P A,OPARIL S,CARTER B L,et al. 2014 evidence-based guideline for the management of high blood pressure in adults:report from the panel members appointed to the eighth Joint National Committee (JNC 8)[J]. JAMA,2014,311(5):507-520.
[15] KAWAHARA S,UMEMOTO S,TANAKA M,et al. Up-regulation of Akt and eNOS induces vascular smooth muscle cell di ff erentiation in hypertension in vivo[J]. J Cardiovasc Pharmacol,2005,45(4):367-374.
[16] KUDRYAVTSEVA O,AALKJAER C,MATCHKOV V V. Vascular smooth muscle cell phenotype is de fi ned by Ca2+-dependent transcription factors.[J]. FFBS J,2013,280(21):5488-5499.
[17] LAUGHLIN M H,BOWLES D K,DUNCKER D J. The coronary circulation in exercise training[J]. Am J Physiol,2012,302(1):H10-H23.
[18] LEANDRO C G,LEVADA A C,HIRABARA S M,et al. A program of moderate physical training for Wistar rats based on maximal oxygen consumption[J]. J Strength Cond Res,2007,21(3):751-756.
[19] LI H,WANG Y P,ZHANG L N,et al. Perivascular adipose tissue-derived leptin promotes vascular smooth muscle cell phenotypic switching via p38 mitogen-activated protein kinase in metabolic syndrome rats[J]. Exp Biol Med(Maywood),2014,239(8):954-965.
[20] LI S,LAHER I. Exercise pills:At the starting line[J]. Trends Pharmacol Sci,2015,36(12):906-917.
[21] MIMURA J,YUASA F,YUYAMA R,et al. The e ff ect of residential exercise training on barore fl ex control of heart rate and sympathetic nerve activity in patients with acute myocardial infarction[J].Chest,2005,127(4):1108-1115.
[22] MULVANY M J. Small artery remodelling in hypertension:causes,consequences and therapeutic implications[J]. Med Biol Eng Comput,2008,46(5):461-467.
[23] OWENS G K,KUMAR M S,WAMHOFF B R. Molecular regulation of vascular smooth muscle cell di ff erentiation in development and disease[J]. Physiol Rev,2004,84(3):767-801.
[24] OWENS G K. Regulation of differentiation of vascular smooth muscle cells[J]. Physiol Rev,1995,75(3):487-517.
[25] ORR A W,HASTINGS N E,BLACKMAN B R,et al. Complex regulation and function of the in fl ammatory smooth muscle cell phenotype in atherosclerosis[J]. J Vasc Res,2010,47(2):168-180.
[26] RENSEN S S,DOEVENDANS P A,VAN EYS G J. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity[J]. Neth Heart J,2007,15(3):100-108.
[27] ROQUE F R,BRIONES A M,GARCIA-REDONDO A B,et al.Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension.[J].Br J Pharmacol,2013,168(3):686-703.
[28] RUIVO J A,ALCANTARA P. Hypertension and exercise[J].Rev Port Cardiol,2012,31(2):151-158.
[29] SARTORE S,SCATENA M,CHIAVEGATO A,et al. Myosin isoform expression in smooth muscle cells during physiological and pathological vascular remodeling[J]. J Vasc Res,1994,31(2):61-81.
[30] SOMLYO A P,SOMLYO A V. Ca2+sensitivity of smooth muscle and nonmuscle myosin II:modulated by G proteins,kinases,and myosin phosphatase[J]. Physiol Rev,2003,83(4):1325-1358.
[31] WANG X,CADE R,SUN Z. Human eNOS gene delivery attenuates cold-induced elevation of blood pressure in rats[J]. Am J Physiol Heart Cir Physiol,2005,289(3):H1161-1168.
Role of the Balance of PI3K/Akt and MAPK Pathways in the Aerobic Exercise-induced Regulation of the Phenotypic Switching of VSMC from Spontaneously Hypertensive Rats
ZHANG Lin,WU Ying,ZENG Fan-xing,SHI Li-jun
Objective:This study aimed to explore aerobic exercise-induced the balance of PI3K/Akt and MAPK pathways on the phenotypic switching in the vascular smooth muscle cells from spontaneously hypertensive rats (SHR). Methods:12-week-old male SHR and WKY rats were randomly assigned to sedentary groups (SHR-SED,WKY-SED) and aerobic exercise training groups (SHR-EX,WKY-EX ). Exercise groups were performed an 8-week moderate-intensity treadmill running (55%~65%VO2max). After 8 weeks,thoracic aortic morphological and structural were evaluated. Results:1) Compared with WKY-SED,SBP was signi fi cantly higher than SHR-SED (P<0.01),however,SBP was signi fi cantly lower in WKY-EX ones (P<0.05). Compared with SHR-SED,SBP became signi fi cantly lower than in SHR-EX (P<0.01). 2) Compared with WKY-SED,thoracic aortic wall thickness was increased signi fi cantly in SHR-SED (P<0.01). There was no signi fi cant di ff erences in WKY-EX;Compared with SHR-SED,thoracic aortic wall thickness was signi fi cantly lower in SHR-EX ones (P<0.05). 3) Compared with WKY-SED,α-SM-actin,calponin protein expression level were signi fi cantly lower,and OPN was signi fi cantly higherin SHR-SED (P<0.01),there was no signi fi cant di ff erence between WKY-EX and WKY-SED. Compared with SHR-SED,α-SM-actin,calponin protein expression level were signi fi cantly increased,OPN was signi fi cantly lower in SHR-EX(P<0.05). Compared with WKY-SED,p-Akt (P <0.01) and eNOS (P<0.01) were signi fi cantly lowered,however,p-ERK (P< 0.01) and p-p38 MAPK(P<0.01) were signi fi cant increasing in SHR-SED. In WKY- EX group,the p-Akt (P<0.05),and eNOS (P<0.01) showeda trend of increasing. Compared with SHR-SED,p-Akt (P<0.05) and eNOS (P<0.01) were signi fi cant increasing,p-ERK (P<0.05) and p-p38 MAPK (P<0.05) were signi fi cantly lower in SHR-EX ones. Conclusions:Aerobic exercise can inhibit the phenotypic switching from contractile phenotype to synthetic phenotype,and VSMC phenotype is decided by the balance of PI3K/Akt and MAPK signal pathways.
aerobic exercise;hypertension;phenotypic switching;PI3K/Akt;MAPK
1002-9826(2017)06-0108-09
10. 16470/j. csst. 201706014
G804.7
A
2017-04-12;
2017-08-12
北京市自然科學(xué)基金資助項(xiàng)目(5172023);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(2017ZD004)。
張琳,女,在讀博士研究生,主要研究方向?yàn)檫\(yùn)動(dòng)和心血管生理學(xué),E-mail:zhanglinbsu@126.com。
北京體育大學(xué) 運(yùn)動(dòng)與體質(zhì)健康教育部重點(diǎn)實(shí)驗(yàn)室,北京100084 Beijing Sport University,Beijing 100084,China.