蒲 軍
(陜西法士特汽車傳動集團有限公司鑄造分公司,陜西寶雞 722409)
二維振動緊實臺振動力大小及方向控制原理
蒲 軍
(陜西法士特汽車傳動集團有限公司鑄造分公司,陜西寶雞 722409)
本文介紹了一種消失模鑄造造型用二維振動緊實臺的結(jié)構(gòu),并研究了振動力大小和方向的控制原理。利用動量守恒定律,建立起四個振動電機偏心塊在轉(zhuǎn)動過程中轉(zhuǎn)速及相互間相位差,與振動緊實臺振動力大小及方向之間變化關(guān)系的數(shù)學(xué)模型。通過分析發(fā)現(xiàn),振動緊實臺振動力的大小與偏心塊的轉(zhuǎn)速的平方成正比;振動力的方向則由在轉(zhuǎn)動過程中偏心塊間的相位差決定。
消失模;振動緊實臺;振動力矢量控制
振動緊實臺是消失模鑄造中的關(guān)鍵設(shè)備之一。消失模鑄造的振動緊實臺,產(chǎn)生高頻振動,使砂箱內(nèi)干型砂受到振動力的作用,在砂層內(nèi)產(chǎn)生擠壓力,同時振動波也在砂層內(nèi)迅速傳播,砂粒之間摩擦力的大小和方向也隨之不斷變化,使砂粒之間的咬合能力大大削弱,型砂流動性顯著提高。型砂在擠壓力的作用下,在良好流動性的促進下,克服摩擦力由擠壓力大的區(qū)域向著擠壓力小、密度小的區(qū)域移動,完成充填和緊實的任務(wù)。目前,振動緊實臺通常采用振動電機作為驅(qū)動源,結(jié)構(gòu)簡單,操作方便,成本低。根據(jù)振動電機的數(shù)量及安裝方式,可以分為一維振動緊實臺、二維振動緊實臺、三維振動緊實臺。
當(dāng)前使用消失模工藝生產(chǎn)的鑄件類型越來越多,其中有許多形狀結(jié)構(gòu)較為復(fù)雜的高附加值鑄件,如汽車渦輪增壓器中間殼體、發(fā)動機缸體、發(fā)動機缸蓋等。這些復(fù)雜高端鑄件在生產(chǎn)中通常都存在模樣死角部位難以填砂和白模模樣變形這兩個問題。這是因為在振動作用下,型砂的流態(tài)化程度畢竟有限,向下和水平方向的填充能力較好,而向上的充填能力就十分有限。所以,當(dāng)鑄件存在填充死角時,就需要選擇二維或三維振動緊實臺,通過控制振動力大小和方向,形成滿足充填要求的定向型砂運動和強弱可調(diào)的均勻激振力,來完成填充。
如圖l所示,該振動緊實臺采用抱夾式結(jié)構(gòu),砂箱四周被振動框架所包圍,四個空氣彈簧充氣將框架抬升,框架上的四個砂箱支撐將砂箱托起,四個夾緊油缸伸出壓緊砂箱,四個振動電機沿振動系統(tǒng)的重心對稱分布。
圖l 二維振動緊實臺的結(jié)構(gòu)
參振部分包括:砂箱、砂箱內(nèi)型砂、振動框架、四臺振動電機,總重量約為:7 0l3 kg.
振動電機參數(shù):5.5kW,2極,額定轉(zhuǎn)速3000rpm,最大激振力62.4 kN.
S——振動設(shè)備的雙振幅,m;
F——激振力,N;
n——振動電機轉(zhuǎn)速,r/min;
W——振動機械設(shè)備的參振重量,kg.
可得,在四臺振動電機的共同作用下該振動緊實臺的最大雙振幅:,
對于由振動框架、振動電機、砂箱及砂箱中的型砂組成的參振系統(tǒng),只受到重力和空氣彈簧的支撐力這兩個外力的作用,在靜止時合力為零,在振動時所受外力的合力為系統(tǒng)偏離平衡位置后產(chǎn)生的回復(fù)力?;貜?fù)力大小為:
FMax合=4×△F,
△F——彈簧力(N),△F=k×△X;
k——空氣彈簧剛度(kN/m)在使用高度時,0.5 MPa壓力下,空氣彈簧的剛度為47l kN/m;
△X——空氣彈簧變形量,m.
得:FMax合=4×△F=4×k×S/2=4×47l×l03×(0.722×l0-3/2)≈680 N.
在振動過程中,外力FMax合遠遠小于參振系統(tǒng)內(nèi)力即振動電機產(chǎn)生的振動力FMax振,F(xiàn)Max振=4×62.4×l03=249.6 kN,所以滿足動量守恒定律,可以認為該參振系統(tǒng)在振動時的總動量保持不變。
為便于分析,將參振系統(tǒng)中四個振動電機偏心塊分別簡化為質(zhì)點A、B、C、D,質(zhì)量為m,偏心矩為r;其余參振部分簡化為質(zhì)點E,質(zhì)量之和為M.如圖2,X軸為水平方向,Y軸為垂直方向,在X-Y平面內(nèi),將各部分動量沿水平、垂直方向分解。由參振部分動量守恒,得到下面兩個等式:
圖2 4個振動電機偏心塊質(zhì)點簡化圖
maAx+maBx+maCx+maDx+Max=0
maAy+maBy+maCy+maDy+May=0
又由于m×a=F,F(xiàn)為作用在物體上的合力,
所以FAx+FBx+FCx+FDx+Fx=0
整理后得:
Fx——作用在質(zhì)點E上的振動力沿X方向的分力;
Fy——作用在質(zhì)點E上的振動力沿Y方向的分力。
如圖3所示,當(dāng)質(zhì)點A以角速度ω旋轉(zhuǎn)到相位角α?xí)r,F(xiàn)A為偏心塊產(chǎn)生的振動力即振動電機A產(chǎn)生的振動力,振動力FA沿X軸和Y軸分解得:
FAx=FA振×cosα; FAy=-(FA振×sinα).
同理,當(dāng)質(zhì)點B以角速度ω速度旋轉(zhuǎn)到相位角β時,如圖2所示,振動力FB沿X軸和Y軸分解為:
當(dāng)質(zhì)點C以角速度ω速度旋轉(zhuǎn)到相位角γ時,如圖2所示,振動力FC沿X軸和Y軸分解為:
因為
圖3 A質(zhì)點旋轉(zhuǎn)
當(dāng)質(zhì)點D以角速度ω速度旋轉(zhuǎn)到相位角δ時,如圖2所示,振動力FD沿X軸和Y軸分解為:
振動電機振動力的計算公式為:F振=mrω2.
由于A、B、C、D四個振動電機的偏心塊質(zhì)量及偏心矩相同且轉(zhuǎn)速相同,所以可得:FA振=FB振=FC振=FD振=F振=mrω2.
將各振動電機產(chǎn)生的振動力分量代入式(5)和式(6)得質(zhì)點E受到的振動力為式(7)和式(8):
從式(7)和式(8)得,振動力的大小周期性變化,最大值與振動電機旋轉(zhuǎn)角速度ω2成正比。
振動緊實臺工作時,四個振動電機同時以速度ω,按圖2所示方向旋轉(zhuǎn)。通過振動電機的控制系統(tǒng),使偏心塊B與A的相位角一致,使偏心塊C和偏心塊D比A的相位角提前l(fā)80°.
即 α=β=ω×t;γ=δ=ω×t+l80°,t為時間,代入式(7)和式(8)得:
可以看出,此時振動緊實臺只受到水平方向上的振動力Fx作用,在振動的過程中,F(xiàn)x的矢量圖如圖4線段l所示。其作用點在坐標(0,0)處,終點在線段l上游走,振動力大小和方向同余弦函數(shù)一樣,周期變化,極限值為±m(xù)rω2.
在振動電機旋轉(zhuǎn)的過程中,調(diào)整彼此間的相位差,使偏心塊變?yōu)镈與A的相位角一致,偏心塊B和 C 比 A 的相位角提前 l80°. 即 α=δ=ω×t;β=γ=ω×t+l80°;帶入式(7)和式(8),得 :
此時振動緊實臺變?yōu)橹皇艿酱怪狈较蛏系恼駝恿y作用,F(xiàn)y的矢量圖如圖4線段2所示,其作用點在坐標(0,0)處,終點在線段2上游走,振動力大小和方向同正弦函數(shù)一樣,周期變化,極限值為±4×ω2.
圖4 振動矢量圖
再次調(diào)整偏心塊之間的相位差,當(dāng)以偏心塊A為基準,偏心塊C和偏心塊D的相位角提前l(fā)80°,偏心塊B相位角提前量為60°.
即 α=ω×t;β=ω×t+60°;γ=δ=ω×t+l80°帶入式(7)和式(8),得:
將 t作為變量,通過式(l2)和(l3)計算出振動力矢量在時間t時的終點坐標,得到如圖5所示的一個以(0,0)點為中心的橢圓。于是振動緊實臺受到的隨時間周期變化的振動力矢量即可表示為:作用點在(0,0)位置,箭頭指向橢圓上的點的線段,并且該線段以作用點為圓心,以速度ω旋轉(zhuǎn)??梢姡谡駝拥倪^程中,振動力的大小和方向是在不斷變化的,但可以近似認為振動力的方向主要集中在橢圓的長軸方向上。同理,當(dāng)偏心塊B的相位角提前量分別為 90°、l20°、240°、270°、300°時,得到的由振動力矢量線段終點構(gòu)成的橢圓分別如圖5所示,可見隨著偏心塊B的提前量從60°增加到300°,振動力的方向繞(0,0)點逆時針方向旋轉(zhuǎn),一個特定提前量對應(yīng)一個特定的振動力方向。
圖5 振動矢量圖
l)該振動緊實臺在振動過程中,振動力的大小與振動電機轉(zhuǎn)速的平方成正比。通過控制轉(zhuǎn)速就可以控制振動力的大小。
2)振動緊實臺振動力的方向與四個振動電機偏心塊在轉(zhuǎn)動時的相位角有關(guān)。在振動的過程中,調(diào)整四個振動電機偏心塊之間相位角的差值,就可以實現(xiàn)實時的振動力方向控制。
[l]孫耀天,吳劍.舊砂再生中激振力對舊砂搓磨力度的理論分析[J].鑄造設(shè)備與工藝,20l0(03):9-ll.
[2]吳劍.一種筒式振動搓磨再生機的研究設(shè)計[J].鑄造設(shè)備與工藝,20l5(04):l-2.
[3]吳劍.雙質(zhì)體落砂機在近共振區(qū)工作的振動機理分析[J].鑄造設(shè)備與工藝,20l2(03):7-9.
[4]吳劍.振動機械結(jié)構(gòu)優(yōu)化設(shè)計的特性分析[J].鑄造設(shè)備與工藝,2009(03):8-l0.
Control Principle of the Vibratory Force Magnitude and Direction of 2D Vibrating Ramming Platform
PU Jun
(Foundry Branch of Shanxi Fait Automotive Transmission Group CO.,LTD.,Baoji Shanxi 722409,China)
The structure of 2D vibrating ramming platform for lost-foam casting was introduced and the control principle of the magnitude and direction of vibratory force was researched.Based on the law of momentum conservation,the mathematical model of the relationship between the speed and phase of the eccentric block of four vibrating motors in the course of rotation and the magnitude and direction of the vibratory force was established.It was found that the magnitude of the vibratory force was proportional to the square of the speed of the eccentric block,and the direction of the vibration force was determined by the phase difference between the eccentric blocks.
lost-foam casting,vibratory compaction platform,vector control
TG23l.6
A
l674-6694(20l7)05-00ll-04
20l7-03-29
蒲軍(l982-),男,陜西寶雞人,工程師,工學(xué)學(xué)士,主要從事設(shè)備自動化工作。
l0.l6666/j.cnki.issnl004-6l78.20l7.05.002