李孟華, 陳行堤
(華僑大學(xué) 數(shù)學(xué)科學(xué)學(xué)院, 福建 泉州 362021)
非對(duì)稱區(qū)間上調(diào)和函數(shù)的Schwarz引理
李孟華, 陳行堤
(華僑大學(xué) 數(shù)學(xué)科學(xué)學(xué)院, 福建 泉州 362021)
研究單位球到給定一般區(qū)間上的實(shí)調(diào)和函數(shù)的Schwarz型引理.運(yùn)用調(diào)和函數(shù)的平均值定理,將像域在對(duì)稱區(qū)間[-1,1]上的調(diào)和函數(shù)的Schwarz引理推廣到在一般區(qū)間[a,b]上.作為一個(gè)應(yīng)用,改進(jìn)了Partyka和Sakan的一個(gè)結(jié)果,得到實(shí)調(diào)和函數(shù)的下界估計(jì).
調(diào)和函數(shù); Schwarz引理; Poisson核; 平均值定理
由于在單位球Bp上的調(diào)和函數(shù)滿足平均值定理和Fatou定理[1],因此,對(duì)于0lt;clt;1,可記
為了方便,記
式(6),(7)中:v=1;μ=p/2.
Heinz運(yùn)用Schwarz引理得出單位圓盤到自身上的調(diào)和函數(shù)的Heinz不等式[2].基于此理論,Partyka等[3]用擬從屬技巧,將Schwarz引理從條件|ReF(z)|lt;1推廣為帶形區(qū)域a≤ReF(z)≤b的情形[4],有
并對(duì)其加以應(yīng)用[5-6].許多學(xué)者對(duì)Schwarz引理進(jìn)行深入研究[7-9].Kalaj等[9]研究單位球上實(shí)調(diào)和函數(shù)的模,并給出了相應(yīng)的Schwarz引理.Burgeth[10]給出了單位球Bp上實(shí)調(diào)和函數(shù)滿足條件-1≤h(x)≤1下的偏差估計(jì).
命題1設(shè)h為單位球Bp上的實(shí)調(diào)和函數(shù),且a,b∈R,alt;b.若a≤h(x)≤b,h(0)=d,則對(duì)于c=(d-a)/(b-a)和任意的x∈Bp,有
證明 首先,對(duì)于任意的t∈R+,x∈Bp測度函數(shù)σ(Pxgt;t)在R+上連續(xù)且是關(guān)于t的嚴(yán)格單調(diào)遞減函數(shù).因此,對(duì)任意的c∈[0,1],都存在唯一的tc∈R+,使得σ(Pxgt;tc)=c·σ(Sp).從而有
).
由式(5)知:χ{Pxgt;tc}∈Kc.令x∈Bp,y∈Sp,|x|=r,則單位球Bp上的Poisson核為
由于x·y=rcos(x,y),因此,對(duì)固定的x,Px(y)的單調(diào)性由cos(x,y)確定,其中,(x,y)表示y到x的轉(zhuǎn)角,從而當(dāng)Px(y)gt;tc時(shí),y的取值范圍是以ex為中心的球S(c,ex),即
由上式及χSp-χS(1-c,ex)=χS(c,ex),可得
定理1假設(shè)h為單位圓盤D上滿足h(0)=0的調(diào)和映照,令a,b∈R且alt;b.若a≤h(x)≤b,則
同理計(jì)算可得
而文獻(xiàn)[2]中所得結(jié)論為
[1] AXLER S,BOURDON P,RAMEY W.Harmonic function theory[M].New York:Springer Verlag,2000.
[2] HEINZ E.On one-to-one harmonic mappings[J].Pac J Math,1959,9(1):101-105.
[3] PARTYKA D,SAKAN K.On a variant of Heinz′s inequality for harmonic mappings of the unit disk onto bounded convex domains[J].Bull Soc Sci Lett,2009,52(2):25-36.
[4] DUREN P.Harmonic mappings in the plane[M].Cambridge:Cambridge University Press,2004:75-77.
[5] PARTYKA D,SAKAN K.Three variants of Schwarz lemma for harmonic mappings[J].Bull Soc Lett,2006,51(2):27-34.
[6] PARTYKA D,SAKAN K.Quasiconformal and Lipschitz harmonic mappings of the unit disk onto bounded convex domains[J].Anna Acad Scie Fenn Math,2014,39(2):811-830.
[7] KALAJ D.Schwarz lemma for harmonic mappings in the unit ball[J].Proc Amer Math Soc,2010,140(1):161-166.
[8] PAVLOVIC M.A Schwarz lemma for the modulus of a vector-valued analytic function[J].Proc Amer Math Soc,2011,139(3):969-973.
[9] KALAJ D,VUORINEN M.On harmonic functions and the Schwarz lemma[J].Proc Amer Math Soc,2010,140(1):161-166.
[10] BURGETH B.A Schwarz Lemma for harmonic and hyperbolic-harmonic functions in higher dimensions[J].Manu Math,1992,77(1):283-291.
[11] DUREN P.Theory of-space[M].New York:Dover Publications,2000.
(責(zé)任編輯: 陳志賢英文審校: 黃心中)
SchwarzLemmaforHarmonicFunctionsinAsymmetricInterval
LI Menghua, CHEN Xingdi
(School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China)
In this paper, we investigate the Schwarz lemma for real harmonic functions of the unit ball into a general interval. By appealing to the method of mean-value theorem of harmonic functions, we obtain the Schwarz lemma of harmonic functions with their image domains generalized from the symmetric interval [-1,1] to a general interval [a,b]. As an application of this result, we improve the upper bound estimate given by Partyka and Sakan. Moreover, a lower bound for this class of harmonic functions is also given.
harmonic mapping; Schwarz lemma; Poisson kernel; mean-value theorem
10.11830/ISSN.1000-5013.201612009
O 174.55
A
1000-5013(2017)06-0898-05
2016-12-04
陳行堤(1976-),男,教授,博士,主要從事函數(shù)論的研究.E-mail:chxtt@hqu.edu.cn.
國家自然科學(xué)基金資助項(xiàng)目(11471128); 福建省自然科學(xué)基金計(jì)劃資助項(xiàng)目(2014J01013); 華僑大學(xué)青年教師科研提升計(jì)劃資助項(xiàng)目(ZQN-YX110); 華僑大學(xué)研究生科研創(chuàng)新能力培育計(jì)劃資助項(xiàng)目(1511313002)
華僑大學(xué)學(xué)報(bào)(自然科學(xué)版)2017年6期