金文獎(jiǎng),侯 平,張 偉,梁立成,俞 飛
(浙江農(nóng)林大學(xué) 林業(yè)與生物技術(shù)學(xué)院,浙江 杭州 311300)
溫州鰲江流域表層底泥及河岸土壤重金屬空間分布與生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)
金文獎(jiǎng),侯 平,張 偉,梁立成,俞 飛
(浙江農(nóng)林大學(xué) 林業(yè)與生物技術(shù)學(xué)院,浙江 杭州 311300)
為揭示溫州鰲江流域重金屬污染情況,分別采集該河流的表層底泥與河岸土壤,合計(jì)31組,共62個(gè)樣品。樣品經(jīng)處理后使用光譜儀X-MET 7000測量重金屬質(zhì)量分?jǐn)?shù),使用土壤背景值、差異性分析、相關(guān)性分析和潛在生態(tài)評(píng)價(jià)法分析其中的重金屬鉻、銅、鋅、鎳和鉛質(zhì)量分?jǐn)?shù)空間分布及潛在生態(tài)風(fēng)險(xiǎn)。結(jié)果表明:①從整體上看,除鉛外,河岸土壤與表層底泥中的其他4種重金屬質(zhì)量分?jǐn)?shù)均顯著高于溫州市土壤重金屬背景值(P<0.05),呈現(xiàn)富集現(xiàn)象;底泥與土壤中鉻、銅、鋅和鉛的質(zhì)量分?jǐn)?shù)差異不顯著(P>0.05),海口涌潮河水回流是主要原因,而底泥中鎳質(zhì)量分?jǐn)?shù)顯著高于岸邊土壤(P<0.05)。②相關(guān)性分析表明,表層底泥與河岸土壤中鉻、銅、鋅之間均存在極顯著正相關(guān)(P<0.01),表層底泥中銅和鎳存在顯著相關(guān)(P<0.05),污染主要來源于制革印染和電鍍業(yè);鉛和其他元素?zé)o顯著性相關(guān)(P>0.05)。③元素質(zhì)量分?jǐn)?shù)空間分布分析表明,在生活垃圾堆放、工業(yè)廢水排放等人為干擾嚴(yán)重河段底泥和土壤的重金屬富集程度較高;流域的5種重金屬的單因子潛在生態(tài)風(fēng)險(xiǎn)與流域整體的綜合潛在生態(tài)危害分別低于40與150,均屬輕微污染。應(yīng)加強(qiáng)流域周邊的產(chǎn)業(yè)管理。圖2表5參34
生態(tài)學(xué);表層底泥;河岸土壤;重金屬;生態(tài)風(fēng)險(xiǎn);鰲江流域
河流的重金屬含量是河流的重要參考指標(biāo),與河流健康密切相關(guān)[1-2]。自然情況下,河流的重金屬含量通常很低。工業(yè)排放的重金屬會(huì)嚴(yán)重污染河流岸邊土壤及河床表層底泥,威脅河流環(huán)境健康[3]。與其他的污染不同,重金屬作為一類非降解性有毒有害物質(zhì),容易在水環(huán)境的沉積物中吸附和積累[4]。同時(shí),排放到水環(huán)境中的重金屬又很容易通過物質(zhì)循環(huán)進(jìn)入食物鏈,最終進(jìn)入人體造成嚴(yán)重危害[5]。20世紀(jì)50年代日本發(fā)生的水俁病和骨痛病等公害病,20世紀(jì)70年代中國陜西發(fā)現(xiàn)的華縣癌癥村,均因重金屬污染引起[6-8]。早在20世紀(jì)70年代,歐美等發(fā)達(dá)國家就開始對(duì)河流重金屬污染開展研究,如塞納河[9]、 多瑙河[10]、 萊茵河[11]等, 迄今為止幾乎包括了所有重要河流。 其中 CASTILLO 等[12]對(duì)西班牙 Andalucfa地區(qū)水體及底泥中的重金屬生物有效性進(jìn)行了分析,發(fā)現(xiàn)20世紀(jì)以來工業(yè)發(fā)展對(duì)該地區(qū)水體及底泥造成嚴(yán)重污染,尤其是銅、鎳、鉛污染最為嚴(yán)重。近年來,國內(nèi)學(xué)者對(duì)河流、湖泊及水庫的河岸土壤及表層底泥重金屬污染展開大量研究[13-17]。其中,周立旻等[18]對(duì)蘇州河上海段底泥重金屬污染特征進(jìn)行了分析,發(fā)現(xiàn)元素銅、鉛、鋅、鉻等是主要產(chǎn)生生態(tài)危害的重金屬元素,底泥重金屬富集程度與沿岸的工業(yè)化發(fā)展進(jìn)程密切相關(guān)。在浙江沿海的溫州鰲江流域,工業(yè)生產(chǎn)和社會(huì)經(jīng)濟(jì)迅速發(fā)展,河流水環(huán)境重金屬污染不斷加重,給生態(tài)環(huán)境和人體健康帶來了極大威脅[19-20]。2015年浙江省制定《浙江省重金屬污染綜合防治方案》,溫州市平陽縣被列為國家級(jí)重金屬重點(diǎn)防控區(qū),但截至目前尚未有人對(duì)該區(qū)鰲江流域的重金屬開展研究。本研究擬以鰲江北港段為對(duì)象,研究河流表層底泥與河岸土壤中的重金屬分布,并對(duì)潛在生態(tài)風(fēng)險(xiǎn)進(jìn)行評(píng)價(jià),以期為水環(huán)境治理和管理提供科學(xué)依據(jù)。
鰲江流域是浙江省八大水系之一,位于浙江省溫州市境內(nèi),是全國三大涌潮江之一,干流全長82.47 km。研究區(qū)域?yàn)榱鹘?jīng)平陽縣內(nèi)的鰲江干流和鬧村溪、帶溪、鳳臥溪等3條支流。制革印染是當(dāng)?shù)刂饕a(chǎn)業(yè),也是亞洲最大的加工地。制革大量使用含鉻鞣劑和含高濃度三價(jià)鉻鹽[21];皮革染色常用銅鹽(酒石酸銅鈉、硫酸銅、醋酸銅)和鉻鹽作為染色的固色劑[22]。制革印染產(chǎn)生的廢水約占全縣廢水總量的70%,污染物排放總量約為84 500 t·a-1[19];2015年溫州市環(huán)境質(zhì)量公報(bào)顯示,鰲江流域?yàn)橹卸任廴?,已?duì)該流域附近的居民生產(chǎn)生活用水產(chǎn)生極大影響[23]。
底泥樣本采集于2016年3月,在干流和3條支流的拐彎處、堤壩、橋梁、河(溪)口等河道底泥淤積嚴(yán)重的斷面設(shè)置采樣點(diǎn)31個(gè)[24],共采集斷面表層底泥和河岸土壤樣品31組(圖1)。用重力式柱狀沉積物采樣器采集水下0~20 cm處底泥,樣品采集后裝入聚四氟乙烯自封袋中;用ETC-300A手動(dòng)土壤采樣器采集河岸0.3~2.0 m處0~20 cm土壤,樣品采集后同樣裝入聚四氟乙烯自封袋中[25]。記錄取樣點(diǎn)位置、編號(hào)和周圍環(huán)境等信息(表1)。風(fēng)干采集樣品,去除植物殘?bào)w和石礫,用瑪瑙棒研壓,過100目尼龍篩后備用;使用X-MET 7000射線熒光光譜儀(精度為1 mg·kg-1)[26]測量鉻、鎳、銅、鋅、鉛的質(zhì)量分?jǐn)?shù)。采用國家標(biāo)準(zhǔn)物質(zhì)《土壤成分分析標(biāo)準(zhǔn)物質(zhì)——暗棕壤》(GSS-1)和《水系沉積物標(biāo)準(zhǔn)物質(zhì)》(GSD-12)進(jìn)行控制。測量結(jié)果表明:GSS-1和GSD-12標(biāo)準(zhǔn)樣品中重金屬元素實(shí)測值與參考值的相對(duì)標(biāo)準(zhǔn)偏差(RSD)均小于 10%。
圖1 鰲江表層底泥及河岸土壤采樣點(diǎn)Figure 1 Sampling location of surface sediments and riparian soil in Aojiang River
表1 采樣點(diǎn)位置及周邊環(huán)境Table 1 Location of sampling sites and the surroundings
用SPSS 19.0及GraphPad Prism 5.0進(jìn)行數(shù)據(jù)分析,采樣點(diǎn)分布圖在Arc GIS 10.2軟件中處理與輸出。重金屬質(zhì)量分?jǐn)?shù)與背景值的差異性分析采用單樣本T檢驗(yàn)法;不同介質(zhì)的重金屬質(zhì)量分?jǐn)?shù)差異性采用獨(dú)立樣本t檢驗(yàn)法;數(shù)據(jù)正態(tài)分布檢驗(yàn)采用K-S檢驗(yàn)(P>0.05,樣本呈正態(tài)分布),對(duì)符合正態(tài)分布的數(shù)據(jù)進(jìn)行相關(guān)分析和Hakanson潛在生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)[27]。具體公式如下:
式中:Cfi為某污染因子;Ci為表層沉積物中某重金屬的實(shí)測值;Cni為計(jì)算所需的參比值;Tri為沉積物中某污染物的毒性響應(yīng)系數(shù),5種重金屬鉻、銅、鋅、鎳、鉛的毒性響應(yīng)系數(shù)分別為2,5,1,5,5[20]。Eri為某單個(gè)污染物的潛在生態(tài)風(fēng)險(xiǎn)指數(shù)。對(duì)應(yīng)的污染級(jí)別可分為:Eri<40屬于輕微生態(tài)危害;40≤Eri<80屬于中等生態(tài)危害;80≤Eri<160屬于強(qiáng)生態(tài)危害;160≤Eri<320屬于很強(qiáng)生態(tài)危害;Eri≥320屬于極強(qiáng)生態(tài)危害。IR為多種重金屬綜合潛在生態(tài)風(fēng)險(xiǎn)指數(shù)。對(duì)應(yīng)的污染級(jí)別可分為IR<150屬于輕微生態(tài)風(fēng)險(xiǎn);150≤IR<300屬于中等生態(tài)風(fēng)險(xiǎn);300≤IR<600屬于強(qiáng)生態(tài)風(fēng)險(xiǎn);600≤IR<1 200屬于很強(qiáng)生態(tài)風(fēng)險(xiǎn);IR≥1 200屬于極強(qiáng)生態(tài)風(fēng)險(xiǎn)。
如表2所示:表層底泥和河岸土壤中的鉻、鎳、銅、鋅質(zhì)量分?jǐn)?shù)均顯著高于溫州市土壤重金屬背景值[28],而鉛基本持平。實(shí)地調(diào)查資料顯示(表1):河流表層底泥污染來自于河水污染沉淀,岸邊土壤污染則是因?yàn)橛砍奔昂铀亓魈a(chǎn)生的 “二次污染”[29],因此,表層底泥與河岸土壤中重金屬質(zhì)量分?jǐn)?shù)差異極小。
表2 表層底泥和河岸土壤重金屬累積量Table 2 Concentration of heavy metals in surface sediments and riparian soil
對(duì)鰲江北港段表層底泥5種重金屬離子相關(guān)性分析表明(表3),表層底泥鉻—銅、鉻—鋅、銅—鋅的相關(guān)系數(shù)均達(dá)到極顯著水平(P<0.01),銅—鎳的相關(guān)系數(shù)達(dá)到顯著水平(P<0.05),鉛與其他元素間為無明顯關(guān)系或負(fù)相關(guān)。河岸土壤中鉻—銅、鉻—鋅、銅—鋅的相關(guān)系數(shù)也均達(dá)到極顯著水平(P<0.01),鉛與其他各元素之間無明顯相關(guān)性。底泥表層與岸邊土壤中的重金屬離子的相關(guān)性特征一致,表征兩者的污染過程和強(qiáng)度基本一同。
富集程度較高的樣點(diǎn)主要分布在鰲江北港段和帶溪,有574.37萬t·a-1制革印染污水排放,占全縣廢水總量的52.63%[19]。這與付傳城等[30]對(duì)南京市柘塘鎮(zhèn)土壤重金屬研究結(jié)果相同,重金屬污染主要來自當(dāng)?shù)毓I(yè)排放。表層底泥中銅和鎳的相關(guān)性主要來自電鍍企業(yè)[31-32]。鉛平均質(zhì)量分?jǐn)?shù)與背景值差異不顯著,主要來源成土母質(zhì)。
表3 表層底泥及河岸土壤重金屬元素相關(guān)系數(shù)矩陣Table 3 Correlation matrix of heavy metals in surface sediments and riparian soil
2.3.1 表層底泥和河岸土壤重金屬質(zhì)量分?jǐn)?shù)空間分布 如圖2所示:鉻在整個(gè)流域范圍內(nèi)鰲江北港7~12號(hào)和帶溪19~22,24號(hào)采樣點(diǎn)呈現(xiàn)高值區(qū);鎳只在鰲江北港9~16號(hào)的底泥呈現(xiàn)高值區(qū);銅在鰲江北港5,9~12號(hào)和帶溪19~22,24號(hào)采樣點(diǎn)呈現(xiàn)高值區(qū);鋅在鰲江北港9~12號(hào)和帶溪19~22,24號(hào)采樣點(diǎn)呈現(xiàn)高值區(qū);鉛除17號(hào)點(diǎn)外,其他樣點(diǎn)質(zhì)量分?jǐn)?shù)變化不明顯??偟膩砜?,這5種重金屬質(zhì)量分?jǐn)?shù)較大值主要出現(xiàn)在鰲江北港段的9~12,16號(hào)和帶溪的19~22,24號(hào)采樣點(diǎn)。此外,發(fā)現(xiàn)流域2種介質(zhì)中鉻、銅、鋅變化趨勢基本一致,鰲江北港段表層底泥的鎳與銅變化趨勢較為一致,2組變化趨勢的一致性與上文的相關(guān)性分析結(jié)果對(duì)應(yīng)。
圖2 表層底泥和河岸土壤重金屬質(zhì)量分?jǐn)?shù)空間變化Figure 2 Spatial variation of heavy metals concentration in surface sediments and riparian soil
部分采樣點(diǎn)表層底泥和河岸土壤重金屬富集程度較高,可能是生活垃圾堆放和工業(yè)排放等人為干擾因素造成的。尚小娟等[33]研究表明:垃圾中重金屬因自由降水的淋溶,溶解釋放到河岸土壤和河底底泥中,會(huì)導(dǎo)致其中的鉻、鎳和銅富集。根據(jù)表1實(shí)際情況看,鰲江北港的5~12號(hào)采樣點(diǎn)生活垃圾堆放是鉻、鎳和銅富集程度較高主要原因之一。FAHIM等[34]研究表明:鉻主要來源于制革印染工業(yè)區(qū)大量排放的廢水。根據(jù)表1記錄,鰲江北港的6~9號(hào),帶溪的20~22號(hào)采樣點(diǎn)的周圍是麻園工業(yè)區(qū)和騰蛟工業(yè)區(qū),該工業(yè)區(qū)以制革印染業(yè)為主,解釋了這些樣點(diǎn)鉻富集程度較高的原因。李萍等[22]對(duì)制革印染工業(yè)流程的研究表明:銅和鋅來源于制革、印染企業(yè)生產(chǎn)過程中使用的染料和助劑,鎳并非來自企業(yè)生產(chǎn)環(huán)節(jié),而是一些印染企業(yè)廢水處理過程中使用廢酸所致,有些廢酸源于電鍍、鍍鋅等企業(yè),里面含有包括銅、鋅和鎳在內(nèi)的多種重金屬雜質(zhì)。因此鰲江北港段的大部分采樣點(diǎn)銅、鋅和鎳富集程度較高,主要是制革印染業(yè)排放引起的。帶溪17號(hào)采樣點(diǎn)的河岸土壤鉛質(zhì)量分?jǐn)?shù)較高,可能原因是該地的地殼和巖石鉛本底值較高,采樣周圍未發(fā)現(xiàn)污染源。
2.3.2 表層底泥重金屬潛在生態(tài)風(fēng)險(xiǎn)評(píng)價(jià) 采用Hakanson潛在生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)法,以溫州市土壤背景值為參照值對(duì)鰲江流域表層底泥中重金屬的潛在生態(tài)危害進(jìn)行評(píng)估,結(jié)果見表4。從單一重金屬來看,鰲江流域表層底泥的重金屬鉻、鎳、銅、鋅和鉛的各河段的生態(tài)風(fēng)險(xiǎn)指數(shù)(Eri)均小于40,屬輕微污染;從多種重金屬綜合情況來看,各河段的表層底泥中多種重金屬的綜合潛在生態(tài)風(fēng)險(xiǎn)指數(shù)(IR)均小于150,屬輕微污染??偟膩砜?,表層底泥5種重金屬潛在生態(tài)風(fēng)險(xiǎn)指數(shù)(Eri)從大到小依次為鉻>銅>鉛>鎳>鋅;各河段底泥重金屬綜合潛在生態(tài)風(fēng)險(xiǎn)系數(shù)(IR)從大到小依次為帶溪>鰲江北>鬧村溪>鳳臥溪。
表4 鰲江流域表層底泥潛在生態(tài)風(fēng)險(xiǎn)指數(shù)(Eri)和綜合潛在生態(tài)風(fēng)險(xiǎn)指數(shù)(IR)Table 4 Potential ecological risk coefficient (Eri) and potential ecology risk index (IR) of heavy metals in surface sediments from the the Aojiang river
2.3.3 河岸土壤重金屬潛在生態(tài)風(fēng)險(xiǎn)評(píng)價(jià) 采用Hakanson潛在生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)法,以溫州市土壤背景值為參照值對(duì)鰲江流域河岸土壤中重金屬的潛在生態(tài)風(fēng)險(xiǎn)進(jìn)行評(píng)估,結(jié)果見表5。從單一重金屬潛在生態(tài)風(fēng)險(xiǎn)指數(shù)(Eri)來看,鰲江流域河岸土壤的重金屬鉻、鎳、銅、鋅和鉛的各河段Eri也均小于40,屬輕微污染;從多種重金屬綜合潛在生態(tài)風(fēng)險(xiǎn)指數(shù)(IR)來看,各河段的河岸IR均小于150,屬輕微污染??偟膩砜矗影锻寥乐?種重金屬潛在生態(tài)風(fēng)險(xiǎn)指數(shù)(Eri)從大到小依次為鉻>銅>鎳>鉛>鋅;各河段底泥重金屬綜合潛在生態(tài)風(fēng)險(xiǎn)指數(shù)(IR)從大到小依次為帶溪>鰲江北港段>鬧村溪>鳳臥溪。
表5 鰲江流域河岸土壤潛在生態(tài)風(fēng)險(xiǎn)指數(shù)(Eri)和綜合潛在生態(tài)風(fēng)險(xiǎn)系數(shù)(IR)Table 5 Potential ecological risk coefficient (Eri) and potential ecology risk index (IR) of heavy metals in sriparian soil from the of the Aojiang river
統(tǒng)計(jì)特征分析表明:除鉛外,其他重金屬質(zhì)量分?jǐn)?shù)均顯著高于溫州市土壤背景值,表層底泥中鎳的質(zhì)量分?jǐn)?shù)顯著高于河岸土壤。鰲江流域表層底泥與河岸土壤鉻、銅和 鋅質(zhì)量分?jǐn)?shù)表現(xiàn)極顯著相關(guān)性,主要受制革印染業(yè)影響,涌潮河水回流抬升對(duì)岸邊土壤產(chǎn)生二次污染;表層底泥鎳與銅具有較強(qiáng)的相關(guān)性,主要受電鍍業(yè)影響;鉛與其他元素均無顯著相關(guān)性,主要來自成土母質(zhì)。流域鉻、銅和鋅重金屬主要富集在鰲江北港段和帶溪段,鎳的富集主要在鰲江北港段,富集現(xiàn)象主要由于人為干擾;流域整體表層底泥及河岸土壤5種重金屬單一潛在生態(tài)風(fēng)險(xiǎn)指數(shù)(Eri)均小于40,屬輕微污染;2處的5種重金屬綜合潛在生態(tài)風(fēng)險(xiǎn)指數(shù)(IR)均小于150,也屬輕度污染。其中鉻的潛在生態(tài)風(fēng)險(xiǎn)最大,帶溪的重金屬綜合潛在生態(tài)風(fēng)險(xiǎn)指數(shù)(IR)最大,應(yīng)當(dāng)開展針對(duì)性清理。
[1] GAO Xuelu,ZHOU Fengxia,CHEN C T A.Pollution status of the Bohai Sea:an overview of the environmental quality assessment related trace metals [J].Environ Int,2014,62(4):12-30.
[2] 雷鳴,曾敏,胡立瓊,等.不同含磷物質(zhì)對(duì)重金屬污染土壤-水稻系統(tǒng)中重金屬遷移的影響[J].環(huán)境科學(xué)學(xué)報(bào),2014, 34(6): 1527-1533.LEI Ming,ZENG Min,HU Liqiong,et al.Effects of different phosphorus-containing substances on heavy metals migration in soil-rice system [J].Acta Sci Circumst,2014,34(6):1527-1533.
[3] 簡敏菲,李玲玉,徐鵬飛,等.鄱陽湖-樂安河濕地水土環(huán)境中重金屬污染的時(shí)空分布特征[J].環(huán)境科學(xué),2014, 5(5): 1759-1765.JIAN Minfei,LI Lingyu,XU Pengfei,et al.Spatiotemporal varian characteristics of heavy metals pollution in the water,soil and sediments environment of the Lean River-Poyang Lake Wetland [J].Environ Sci,2014,5(5):1759-1765.
[4] MA Zongwei,CHEN Kai,YUAN Zengwei,et al.Ecological risk assessment of heavy metals in surface sediments of six major Chinese freshwater lakes [J].J Environ Qual,2013,4(2):341-350.
[5] 李海燕,黃延,王崇臣.北京西城區(qū)雨水管道沉積物中重金屬污染風(fēng)險(xiǎn)評(píng)價(jià)[J].環(huán)境污染與防治,2013,32(3): 28-33.LI Haiyan,HUANG Yan,WANG Chongchen.Assessment on the pollution risk of heavy metal in the storm sewer sediments in Xicheng District[J].Environ Poll Control,2013,32(3):28-33.
[6]方企圣.環(huán)境汞污染的危害——水俁?。跩].江蘇醫(yī)藥,1979(7):42-45.FANG Qisheng.Hazards of environmental mercury pollution-minamata disease [J].Jiangsu Med J,1979(7):42-45.
[7] 少樺.日本的骨痛?。跩].地理譯報(bào), 1984(1): 64.SHAO Hua.Japan’s bone pain [J].Geogr Transl Rep,1984(1):64.
[8] 王紹芳,林景星,史世云,等.生態(tài)環(huán)境地質(zhì)病:陜西一癌癥村實(shí)例分析[J].環(huán)境保護(hù),2001(5):42-43,46.WANG Shaofang,LIN Jingxing,SHI Shiyun,et al.Geological disease caused by ecological environment:an example of cancer village in Shanxi Province [J].Environ Prot,2001(5):42-43,46.
[9] MEYBECK M,LESTEL L,BONTE P,et al.Historical perspective of heavy metals contamination (Cd,Cr,Cu,Hg,Pb,Zn) in the Seine River basin (France) following a DPSIR approach (1950-2005) [J].Sci Total Environ,2007,375(1/3):204-231.
[10] WOITKE P,WELLMITZ J,HELM D,et al.Analysis and assessment of heavy metal pollution in suspended solids and sediments of the river Danube [J].Chemosphere,2013,51(8):633-642.
[11] MULLER G.Index of geoaccumulation in sediments of the Rhine River [J].Geol J,1969,2(3):108-118.
[12] CASTILLO M A,TRUJILLO I S,ALONSO E V,et al.Bioavailability of heavy metals in water and sediments from a typical Mediterranean Bay (Málaga Bay,Region of Andalucía,Southern Spain) [J].Mar Poll Bull,2013,76(1/2):427-434.
[13] 張智慧,李寶,梁仁君.南四湖南陽湖區(qū)河口與湖心沉積物重金屬形態(tài)對(duì)比研究[J].環(huán)境科學(xué)學(xué)報(bào),2015, 35(5): 1408-1416.ZHANG Zhihui,LI Bao,LIANG Renjun.Comparison of sediment heavy metal fractions at estuary and center of Nanyang zone from Nansi Lake,China [J].Acta Sci Circumst,2015,35(5):1408-1416.
[14] 李蓮芳,曾希柏,李國學(xué),等.北京市溫榆河沉積物的重金屬污染風(fēng)險(xiǎn)評(píng)價(jià)[J].環(huán)境科學(xué)學(xué)報(bào),2007,27(2): 289-297.LI Lianfang,ZENG Xibai,LI Guoxue,et al.Institute of environment and sustainable development for agriculture [J].Acta Sci Circumst,2007,27(2):289-297.
[15] 張芬,楊長明,潘睿捷.青山水庫表層沉積物重金屬污染特征及生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)[J].應(yīng)用生態(tài)學(xué)報(bào),2013,24(9): 2625-2630.ZHANG Fen,YANG Changming,PAN Ruijie.Pollution characteristics and ecological risk assessment of heavy metals in surface sediments of Qingshan Reservoir in Lin’an City,Zhejiang Province of East China [J].Chin J Appl Ecol,2013,24(9):2625-2630.
[16] 李如忠,徐晶晶,姜艷敏,等.銅陵市惠溪河濱岸帶土壤重金屬形態(tài)分布及風(fēng)險(xiǎn)評(píng)估[J].環(huán)境科學(xué)研究,2013,26(1): 88-96.LI Ruzhong,XU Jingjing,JIANG Yanmin,et al.Fraction distribution and ecological risk assessment of soil heavy metals in the riparian zone of Huixi stream in Tongling City [J].Res Environ Sci,2013,26(1):88-96.
[17] 何文鳴,吳峰,張昌盛,等.河岸帶土壤重金屬元素的污染及危害評(píng)價(jià)[J].生態(tài)學(xué)雜志,2011,30(9):1993-2001.HE Wenming,WU Feng,ZHANG Changsheng,et al.Heavy metal pollution and its ecological risk assessment of riparian soils [J].Chin J Ecol,2011,30(9):1993-2001.
[18] 周立旻,鄭祥民,殷效玲.蘇州河上海段底泥重金屬的污染特征[J].城市環(huán)境與城市生態(tài),2008,21(2):1-5.ZHOU Limin,ZHENG Xiangmin,YAN Xiaoling.Heavy metal acumulation in sdiments of Suzhouhe River in Shanghai[J].Urban Environ Urban Ecol,2008,21(2):1-5.
[19] 張愛軍.平陽縣制革業(yè)的廢水治理對(duì)策探討[J].環(huán)境科學(xué)與技術(shù),2005,28(增刊1):94-96.ZHANG Aijun.Discussion on countermeasures of waste water treatment in leather industry of Pingyang County [J].Environ Sci Technol,2005,28(suppl 1):94-96.
[20] 徐越,司言武,肖也佳,等.農(nóng)村點(diǎn)源水污染成因及其治理研究:以溫州市平陽縣鰲江為例[J].特區(qū)經(jīng)濟(jì),2014, 1(4): 158-161.XU Yue,SI Yanwu,XIAO Yejia,et al.Study on the cause and control of rural point source water pollution:a case study of Aojiang in Pingyang County,Wenzhou City [J].Spec Zone Econ,2014,1(4):158-161.
[21] 劉衛(wèi)國,張新申,劉明華.制革工業(yè)中鉻污染及防治[J].皮革科學(xué)與工程,2001,11(3):1-6.LIU Weiguo,ZHANG Xinshen,LIU Minghua.Chromiun pollution and control in the leather-making industry [J].Leather Sci Eng,2001,11(3):1-6.
[22] 李萍,范舉紅,劉銳,等.制革印染工業(yè)園區(qū)污水廠重金屬污染特性及去除效果研究[J].環(huán)境工程,2012, 30(增刊 1): 101-104.LI Ping,FAN Juhong,LIU Rui,et al.A study on pollution characteristics and removal performance of heavy metals in a tannery and textile dyeing industrial park waste water treatment plant[J].Environ Eng,2012,30(suppl 1):101-104.
[23] 溫州市環(huán)境監(jiān)測站.溫州市2015年度環(huán)境質(zhì)量公報(bào)[EB/OL].溫州市政府[2016-06-02].http://www.wenzhou.gov.cn/.
[24] 張偉,陳蜀蓉,侯平.浦陽江流域疏浚前后底泥重金屬污染及其潛在生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)[J].浙江農(nóng)林大學(xué)學(xué)報(bào),2016, 33(1): 33-41.ZHANG Wei,CHEN Shurong,HOU Ping.Heavy metal contamination and potential ecological risk for sediments in the Puyang River Basin prior to and post dredging [J].J Zhejiang Aamp;F Univ,2016,33(1):33-41.
[25] 張兆永,吉力力·阿不都外力,姜逢清.博爾塔拉河河水、表層底泥及河岸土壤重金屬的污染和潛在危害評(píng)價(jià)[J].環(huán)境科學(xué), 2015, 36(7): 2422-2429.ZHANG Zhaoyong,Jilili Abudouwaili,JIANG Fengqing.Pollution and potential ecology risk evaluation of heavy metals in river water,top sediments on bed and soils along banks of Bortala River,Northwest China [J].Environ Sci,2015,36(7):2422-2429.
[26] 王立前,向峰.攜式 X熒光光譜儀的實(shí)測比對(duì)與應(yīng)用[J].環(huán)境科學(xué)導(dǎo)刊,2012,31(5):97-101.WANG Liqian,XIANG Feng.Comparison and application of portable X-Ray fluorescence spectrometer [J].Environ Sci Surv,2012,31(5):97-101.
[27] HAKANSON L.An ecological risk index for aquatic pollution control:a sedimentological approach [J].Water Res,1980,14(8):975-1001.
[28] 中國環(huán)境監(jiān)測總站.中國土壤元素背景值[M].北京:中國環(huán)境科學(xué)出版社,1991.
[29] 張菊,陳詩越,鄧煥廣,等.山東省部分水岸帶土壤重金屬含量及污染評(píng)價(jià)[J].生態(tài)學(xué)報(bào),2012,32(10):3144-3153.ZHANG Ju,CHEN Shiyue,DENG Huanguang,et al.Heavy metal concentrations and pollution assessment of riparian soils in Shandong Province [J].Acta Ecol Sin,2012,32(10):3144-3153.
[30] 付傳城,王文勇,潘劍君,等.城鄉(xiāng)結(jié)合帶土壤重金屬時(shí)空變異特征與源解析:以南京市柘塘鎮(zhèn)為例[J].土壤學(xué)報(bào), 2014, 51(5): 1066-1077.FU Chuancheng,WANG Wenyong,PAN Jianjun,et al.Spatial-temporal variation and source apportionment of soil heavy metals in peri-urban:a case study of Zhetang Town,Nanjing [J].Acta Pedol Sin,2014,51(5):1066-1077.
[31] PANAYOTOVA T,DIMOVA-TODOROVA M,DOBREVSKY I.Purification and reuse of heavy metals containing wastewaters from electroplating plants [J].Desalination,2007,206(1):135-140.
[32] CHANG I,KIM B H.Effect of sulfate reduction activity on biological treatment of hexavalent Chromium [Cr(VI)]contaminated electroplating wastewater under sulfate-rich condition [J].Chemosphere,2007,68(2):218-226.
[33] 尚小娟,趙樹蘭,多立安.施用垃圾堆肥土壤重金屬在不同溫度和酸雨條件下的淋溶特征[J].環(huán)境工程學(xué)報(bào), 2012, 6(3): 995-999.SHANG Xiaojuan,ZHAO Shulan,DUO Li’an.Leaching characteristics of MSW compost heavy metals in soil under different temperatures and simulated acid rain [J].Tech Equip Environ Poll Control,2012,6(3):995-999.
[34] FAHIM N E,BARSOUM B N,EID A E,et al.Removal of Chromium (Ⅲ)from tannery wastewater using activated carbon from sugar industrial waste [J].J Hazard Mater,2006,136(2):303-309.
Spatial distributions and ecological risks of heavy metals in surface sediments and riparian soils of the Aojiang River Basin,Wenzhou
JIN Wenjiang,HOU Ping,ZHANG Wei,LIANG Licheng,YU Fei
(School of Forestry and Biotechnology,Zhejiang A & F University,Hangzhou 311300,Zhejiang,China)
To reveal heavy metal pollution of the Aojiang River Basin in Wenzhou,surface sediment and riparian soil were acquired from the river totaling 62 samples in 31 groups.Heavy metal content of chromium (Cr),copper (Cu),zinc (Zn),nickel(Ni),and lead (Pb) were measured with a handheld X-ray fluorescence spectrometer (X-MET 7000).Soil background values,variance analysis,correlation analysis,and evaluation methods for potential ecological problems were used to analyze spatial distribution and potential ecological risks of heavy metals.Results showed that 1)in general,the contents of four metals other than Pb in the riparian soil and surface sediment were significantly higher than background values of heavy metals in the soil of the Wenzhou Region (P<0.05)representing an enrichment phenomenon.Also,content of Cr,Cu,Zn,and Pb in the sediment and soil had no significant differences (P>0.05),mainly because of the tidal water reflux at the seaport,but Ni content of sediment was significantly higher than riparian soil(P<0.05).2) The correlation analysis showed highly significant,positive correlations for Cr—Cu (rsurfacesediments= 0.666,rripariansoils=0.841,P<0.01),Cu—Zn (rsurfacesediments= 0.781,rripariansoils=0.688,P<0.01) and Cu—Zn (rsurfacesediments= 0.831,rripariansoils=0.800,P<0.01) between surface sediments and riparian soils and significant correlations (rsurfacesediments= 0.433,P<0.05)between Cu and Ni in surface sediments.However,Pb was not significantly correlated to the other elements(P>0.05).3) The spatial distribution analysis of elemental contents showed a highly enrichment degree of heavy metals in the sediment and soil along the river reaches.In this river basin the potential single-factor ecological risks (Eri) of these five heavy metals was below 40 and the comprehensive potential ecological hazards(IR)was below 150.There was slight pollution from tanning,printing,and electroplating industries as well as from severe human disturbances,such as domestic garbage dumping and industrial sewage drainage,so that industrial management and human disturbances around this river basin should be lessened.[Ch,2 fig.5 tab.34 ref.]
ecology;surface sediment;riparian soil;heavy metal;ecological risk;Aojiang River Basin
S7-05;X502
A
2095-0756(2017)06-0963-09
10.11833/j.issn.2095-0756.2017.06.001
2016-10-31;
2017-01-12
浙江省自然科學(xué)基金資助項(xiàng)目(LQ17C160004)
金文獎(jiǎng),從事生態(tài)環(huán)境監(jiān)測研究。E-mail:595974406@qq.com。通信作者:侯平,教授,博士,從事生態(tài)環(huán)境監(jiān)測研究。E-mail:houpingg@263.net